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Spinning particles in scalar-tensor gravity
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Abstract

We develop a new model of a spinning particle in Brans-Dicke space-
time using a metric-compatible connection with torsion. The particle’s
spin vector is shown to be Fermi-parallel (by the Levi-Civita connection)
along its worldline (an autoparallel of the metric-compatible connection)
when neglecting spin-curvature coupling.

1 Introduction

Scalar fields are replete in string-inspired low-energy effective theories and oc-
cupy a prominent position in modern particle physics and cosmology. The most
widely accepted implementations of mass generation and inflation employ scalar
fields and it is not unreasonable to suggest that they should play a role on large
scales. Indeed, a number of authors have suggested that Einsteinian gravity
(General Relativity), a purely metric-based theory, is incomplete and should be
augmented by a scalar component; one of the simplest examples of such a theory
was proposed by Brans and Dicke [1]. Their theory was originally formulated
as an action principle whose degrees of freedom are the spacetime metric and
the Brans-Dicke scalar field ϕ. It was later shown [2] that Brans-Dicke the-
ory could also be obtained from an action whose independent variables are a
metric-compatible connection ∇, an orthonormal frame field and ϕ. Unlike the
Levi-Civita connection ∇̄ of Einsteinian gravity, whose torsion vanishes identi-
cally, the field equations for ∇ yield a non-trivial torsion tensor in terms of ϕ.
Although the action principle in [2] differs from that introduced by Brans and
Dicke, the standard Brans-Dicke equations of motion are recovered when ∇ is
expressed in terms of ∇̄ and ϕ.

In Einsteinian and Brans-Dicke gravity, electrically neutral spinless particles
are postulated to follows autoparallels of ∇̄ (geodesics). However, the most
natural connection in Brans-Dicke theory, from the perspective of [2], is ∇ and
it is perfectly reasonable to suggest [3] that electrically neutral spinless massive
particles should follow the autoparallels of ∇ rather than ∇̄. This hypothesis

∗Department of Physics, Lancaster University, UK
†Department of Physics, National Central University, Taiwan

1

http://arxiv.org/abs/0711.2573v2


was examined in [3] where the autoparallels of ∇ and ∇̄ were used to compare
the perihelion shifts of Mercury predicted by the two connections. The difference
between the perihelion shifts predicted by the new theory and the original Brans-
Dicke theory are sufficiently different to warrant further attention.

Analysis of inspiralling compact binaries using existing and future gravita-
tional wave detectors employs matched filtering techniques. Signal extraction
relies on accurate templates of the expected gravitational wave emission and
relativistic spin-orbit and spin-spin coupling play a critical role (see [4] for a
recent discussion). Existing templates rely on post-Newtonian treatments of
Einsteinian gravity and may need modification if the effects of torsion and spin
are significant. Furthermore, it is reasonable to suggest that the worldlines of
spinning particles could be governed by ∇ rather than ∇̄; the purpose of this
Letter is to investigate this possibility.

Spinning particles in Einsteinian gravity have long been a source of inter-
est and consideration was recently given to spinning particles in theories of
gravity with torsion [5]. The general approach followed in [5] has two main
ingredients : (1) a set of relativistic balance laws and (2) a set of constitutive
relations (akin to equations of state in gas dynamics). The balance laws are
Noether identities arising from the diffeomorphism and gauge invariances of an
action; they only involve sources (stress-energy-momentum tensor, spin tensor
and other currents). The constitutive relations are model-dependent equations
for the sources in terms of the true dynamical degrees of freedom and are needed
to reduce the balance laws to a closed system of field equations.

Many workers (see [5] for a review) have invested effort in deriving the equa-
tions of motion for a spinning particle in General Relativity using the simplest
source models. In this Letter, motivated by [3], we develop equations of motion
for a spinning particle, based on a simple source model, that lead to the au-
toparallel equation of ∇ and the parallel transport law with respect to ∇. The
equations for a spinning particle presented here are a natural alternative to the
hypothesis that the Papapetrou-Dixon equations in Einsteinian gravity are also
valid in the context of Brans-Dicke gravity.

2 Noether identities

Balance laws are generated from diffeomorphism and gauge invariances of an
action. The approach adopted here is a generalisation of [5] and [6] to accom-
modate the Brans-Dicke scalar field ϕ. For simplicity, we will only consider
electrically neutral matter and represent it using a single1 p-form Φ.

Consider an effective action S

S[Φ] =

∫

M

Λ (1)

1It is straightforward to include more fields and charged matter but this would draw at-
tention away from the essential features of our argument.
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for uncharged matter Φ in a background spacetime M with metric g, metric-
compatible connection ∇ and a background Brans-Dicke scalar field ϕ. The 4-
form Λ is constructed tensorially from g,∇, ϕ,Φ and, regardless of the detailed
structure of Λ, it follows

LXΛ ≃ τa ∧ LXea + Sa
b ∧ LXωa

b + ρ ∧ LXϕ+ E ∧ LXΦ (2)

where LX is the Lie derivative with respect to any vector field X on M, ≃
indicates equality up to an exact 4-form, {ea} is a g-orthonormal basis for 1-
forms and {ωa

b} are the connection 1-forms of ∇ associated with {ea} (a, b, c =
0, 1, 2, 3). The precise details of the sources (the stress 3-forms τa, spin 3-forms
Sa

b, 0-form ρ and (4 − p)-form E) depend on the details of Λ; this will not
concern us.

For a vector field X with compact support it follows
∫

M

LXΛ =

∫

M

(
τa ∧ LXea + Sa

b ∧ LXωa
b + ρ ∧ LXϕ+ E ∧ LXΦ

)
. (3)

Varying S with respect to Φ yields

δS =

∫

M

E ∧ δΦ (4)

where δΦ is an arbitrary variation of Φ with compact support. Thus, imposing
the equations of motion E = 0 for Φ leads to

∫

M

LXΛ =

∫

M

(
τa ∧ LXea + Sa

b ∧ LXωa
b + ρ ∧ LXϕ

)
. (5)

Cartan’s identity LXΛ = ιXdΛ + dιXΛ, where d is the exterior derivative and
ιX is the interior product on forms with respect to X , yields

∫

M

LXΛ = 0 (6)

because dΛ = 0 and X has compact support and using (5) it follows
∫

M

(
τa ∧ LXea + Sa

b ∧ LXωa
b + ρ ∧ LXϕ

)
= 0. (7)

It can be shown [6]

LXea = D(ιXea) + ιXT a − δSO(1,3)e
a, (8)

LXωa
b = ιXRa

b − δSO(1,3)ω
a
b (9)

where δSO(1,3) indicates an infinitesimal SO(1, 3) frame transformation, D is the
exterior covariant derivative on the orthonormal frame bundle, T a the torsion
2-forms and Ra

b the curvature 2-forms of ∇ associated with {ea}. The action
is invariant under SO(1, 3) frame transformations,

0 =

∫

M

δSO(1,3)Λ =

∫

M

(
τa ∧ δSO(1,3)e

a + Sa
b ∧ δSO(1,3)ω

a
b

)
, (10)
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and it follows
∫

M

(
Dτc + τa ∧ ιXc

T a + Sa
b ∧ ιXc

Ra
b + ρ ιXc

dϕ
)
Wc = 0 (11)

using (7-10) and X = WaXa with {Xa} dual to {ea},

ea(Xb) = δab (12)

where δab is the Kronecker delta. The action of δSO(1,3) on ea and ωa
b is

δSO(1,3)e
a = −Wa

be
b, (13)

δSO(1,3)ω
a
b = DWa

b (14)

where Wa
b is an element of the Lie algebra so(1, 3) and has compact support

on M. Using (10), (13) and (14) it follows

∫

M

[
DSa

b −
1

2
(τa ∧ eb − τb ∧ ea)

]
Wa

b = 0 (15)

and since (11), (15) hold for all Wa and Wa
b with compact support we obtain

the Noether identities

Dτc + τa ∧ ιXc
T a + Sa

b ∧ ιXc
Ra

b + ρ ιXc
dϕ = 0, (16)

DSa
b −

1

2
(τa ∧ eb − τb ∧ ea) = 0 (17)

relating the sources τa, Sa
b, ρ.

3 Equations of motion for a spinning particle

Brans-Dicke theory can be obtained from a variational principle whose indepen-
dent variables are {ea, ωa

b, ϕ} [2] and leads to the torsion 2-forms

T a =
1

2
T a

bc e
b ∧ ec = ea ∧

dϕ

ϕ
(18)

for ϕ 6= 0. Equations (16-18) must be supplemented by further information in
order to obtain a closed system. The following simple constitutive relations

τa = ϕP a ⋆ e0, (19)

Sa
b = Σa

b ⋆ e0, (20)

ρ = −P 0 ⋆ 1 (21)

reduce to the model in [5] when ϕ is constant, where ⋆ is the Hodge map
associated with g and ⋆1 is the spacetime volume 4-form.

Equations describing a neutral spinning particle follow by taking moments of
(16) and (17) in Fermi-normal coordinates on an open set U ⊂ M containing the
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image of the particle’s worldline σ with proper time t (the unit tangent to σ is

denoted σ̇). The orthonormal co-frame {ea} is defined on σ such that2 e0 = −˜̇σ
and {e1, e2, e3} are Fermi-parallel (with respect to ∇) along σ. Furthermore,
{ea} is induced away from σ by parallel transport along radial spacelike autopar-
allels of ∇ whose tangents are orthogonal to σ̇ (see [5], [7] for details). Moments
of (16) and (17) are computed in Fermi-normal coordinates {x1, x2, x3} on U
and to leading order

dP̂ 0

dt
= −A · P , (22)

dPµ

dt
= −

1

ϕ̂

∂̂ϕ

∂t
Pµ −Aµ P̂

0 − T̂ a
0µP̂a − P̂ 0 1

ϕ̂

∂̂ϕ

∂xµ
+

1

ϕ̂
R̂abµ0Σ̂

ab, (23)

dh

dt
= A× s+

1

2
ϕ̂P , (24)

ds

dt
= h×A (25)

where

Ra
b =

1

2
Ra

bcde
c ∧ ed, (26)

Aµ = êµ(∇σ̇σ̇), (27)

and hats indicate evaluation over the image of σ, i.e. at {xµ = 0}, and

Pµ = P̂µ, (28)

hµ = Σ̂0
µ, (29)

sµ =
1

2
ǫµνωΣ̂

νω (30)

where ǫµνω is the Levi-Civita alternating symbol with µ, ν, ω = 1, 2, 3. For
given external fields ϕ and Ra

bcd, equations (22-25) and (18) are not sufficient
to determine the worldline and spin of the particle. Thus, the above system is
supplemented by the Tulczyjew-Dixon (subsidiary) conditions

P̂aΣ̂
ab = 0 (31)

i.e.

hP̂ 0 = s× P . (32)

Furthermore, using (18) equation (23) can be simplified to

dPµ

dt
= −Aµ P̂

0 +
1

ϕ̂
R̂abµ0Σ̂

ab. (33)

2 ėσ(Y ) = g(σ̇, Y ) for all vectors Y .
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Equations (22), (33), (24), (25) and (32) are a differential-algebraic system for
the worldline and spin of a particle in a Brans-Dicke background spacetime.

Consider the weak-field limit of the above theory where the spin-curvature
coupling in (33) is neglected,

dPµ

dt
= −Aµ P̂

0. (34)

Equations (22), (34), (24), (25) and (32) have the particular solutions

P = 0, (35)

h = 0, (36)

A = 0, (37)

sµ = const., (38)

P̂ 0 = const. (39)

and it immediately follows from (35-39)

∇σ̇σ̇ = 0, (40)

∇σ̇S = 0, (41)

g(S, σ̇) = 0 (42)

where S = s
µ∂/∂xµ is the particle’s spin vector. Clearly, for such solutions σ

is an autoparallel of ∇ and S is parallel-transported with respect to ∇ along σ.
The metric-compatible connection ∇ and the Levi-Civita connection ∇̄ are

related as

Z̃(∇XY ) = Z̃(∇̄XY ) +
1

2

[
X̃(T (Z, Y )) + Ỹ (T (Z,X)) + Z̃(T (X,Y ))

]
(43)

where the (2, 1) torsion tensor T and the torsion 2-forms T a, equation (18),
satisfy

ea(T (Xb, Xc)) = ιXc
ιXb

T a = δab
Xcϕ

ϕ
− δac

Xbϕ

ϕ
. (44)

It follows (40-42) can be written3

∇̄σ̇σ̇ = −
d̃ϕ

ϕ
−

dϕ(σ̇)

ϕ
σ̇, (45)

∇̄F
σ̇ S = 0, (46)

g(S, σ̇) = 0 (47)

where ∇̄F
σ̇ S is the Fermi-Walker derivative of the σ̇-orthogonal spin vector S

along σ,

∇̄F
σ̇ S = ∇̄σ̇S − S̃(∇̄σ̇σ̇)σ̇. (48)

3g(fdϕ, Y ) = dϕ(Y ) for all vectors Y .
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Equations (45-47) can also be written

Aa = −

(
gab +

dxa

dt

dxb

dt

)
1

ϕ

∂ϕ

∂xb
, (49)

dSa

dt
+ Γa

bcS
b dx

c

dt
= gabA

aSb, (50)

gabS
a dx

b

dt
= 0 (51)

for the particle’s world-line xa(t) and spin Sa where

Aa =
d2xa

dt2
+ Γa

bc

dxb

dt

dxc

dt
(52)

and Γa
bc are the Christoffel symbols of the Levi-Civita connection induced by

the metric gab.
Equations (49-52) are a natural generalisation to Brans-Dicke theory of the

conventional model of a freely-falling ideal gyroscope in Einsteinian gravity,

∇̄σ̇σ̇ = 0, (53)

∇̄σ̇S = 0, (54)

g(S, σ̇) = 0 (55)

i.e.

Aa = 0, (56)

dSa

dt
+ Γa

bcS
b dx

c

dt
= 0, (57)

gabS
a dx

b

dt
= 0. (58)

4 Conclusion

We have developed a simple model of a spinning particle on a Brans-Dicke
background. Brans-Dicke theory is naturally formulated in terms of a metric-
compatible connection ∇ with torsion and the present model, in the weak-field
regime, exhibits solutions where the particle’s worldline σ is an autoparallel of
∇ and its spin vector S is parallel (with respect to ∇) along σ. In terms of the
Levi-Civita connection ∇̄, the worldline σ has non-zero acceleration and S is
Fermi-parallel along σ.

Detailed knowledge of the collapse of compact spinning binaries is important
for attempts to detect gravitational waves. Furthermore, it is invisaged that
gravitational radiation will be used as a tool to study astrophysical objects and,
given the plethora of scalar fields in low-energy string-inspired field theories, an
effective Brans-Dicke scalar may play a significant role. Any predictive theory,
in the present context, of the behaviour of a spinning particle on a Brans-Dicke
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background relies on a source model that leads to a sensible Newtonian limit
for the theory. The above (with ϕ constant) has the same Newtonian limit as
the Papapetrou-Dixon equations in Einsteinian gravity.

The approach discussed here is a simple generalisation of the source model
discussed in [5] and further work is necessary to elucidate the differences between
such models when spin-curvature coupling is significant.

In the weak field limit, the particle behaves like an accelerating ideal gy-
roscope in Einsteinian gravity. It may be shown [7] that the precession rates
(geodetic and Lense-Thirring) in Kerr spacetime given by (56-58) and the cor-
responding rates in Kerr-Brans-Dicke spacetime given by (49-52) are indistin-
guishable to leading order. This has implications for any attempt to use Gravity
Probe B [8] to test the novel theory.

5 Acknowledgements

CHW thanks Prof Hoi-Lai Yu for his hospitality during a stay at Institute of
Physics, Academia Sinica, Taiwan.

References

[1] Brans, C. & Dicke, R. H., Phys. Rev. 124 (3), 925–935, (1961).

[2] Dereli, T. & Tucker, R. W., Phys. Letts. B 110, 206–210, (1982).

[3] Dereli, T. & Tucker, R. W., Mod. Phys. Lett. A 17, 421–428, (2002).

[4] Grandclément P., Kalogera V. & Vecchio A., Phys. Rev. D 67, 042003,
(2003).

[5] Tucker, R. W. Proc. Roy. Soc. Lond. A 460, 2819–2844, (2004).

[6] Benn, I. M. Ann. Inst. H. Poincaré 37, 67–91, (1982).
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