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Abstract

We revisit Weyl geometry in the context of recent higher-dimensional
theories of spacetime. After introducing the Weyl theory in a modern
geometrical language we present some results that represent extensions
of Riemannian theorems. We consider the theory of local embeddings
and submanifolds in the context of Weyl geometries and show how a Rie-
mannian spacetime may be locally and isometrically embedded in a Weyl
bulk. We discuss the problem of classical confinement and the stability of
motion of particles and photons in the neighbourhood of branes for the
case when the Weyl bulk has the geometry of a warped product space.
We show how the confinement and stability properties of geodesics near
the brane may be affected by the Weyl field. We construct a classical
analogue of quantum confinement inspired in theoretical-field models by
considering a Weyl scalar field which depends only on the extra coordi-
nate.

1 Introduction

It has been suggested in the recent years that our ordinary spacetime may be
viewed as a hypersurface embedded in a higher-dimensional manifold, often re-
ferred to as the bulk [I]. As far as the geometry of this hypersurface is concerned,
it has been generally assumed that it has a Riemannian geometrical structure.
This assumption avoids possible conflicts with the well-established theory of
general relativity which operates in a Riemannian geometrical frame. On the
other hand, with very few exceptions, there has not been much discussion on
what kind of geometry the bulk possesses, which is generally supposed to be
also Riemannian. A very few attempts to broaden this scenario has appeared
recently in the literature, where a non-Riemannian geometry, namely a Weyl
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geometry, is taken into consideration as a viable possibility to describe the bulk
[2, B, [4]. However, a vast number of interesting non-Riemannian geometries are
currently known and could be investigated in this context. It is presently our in-
tention to carry out such a program of research, and a first step in this direction
would be to consider the Weyl geometry [5], one of the simplest generalizations
of Riemannian geometry.

The paper is organized as follows. We start in Section 2 with a modern defini-
tion of the Weyl geometry and state some results that represent straightforward
extensions of Riemannian theorems. We proceed in Section 3 to consider the
theory of local embeddings and submanifolds in the context of Weyl geometries.
In Section 4 we show that a Riemannian spacetime may be embedded in a Weyl
bulk and this constitutes one of our main results. Section 5 contains an applica-
tion of the formalism to the problem of classical confinement and the stability
of motion of particles and photons in the neighbourhood of branes. In Section
6 we show how the presence of a Weyl field may affect both the confinement
and/or stablity of the particle’s motion and discuss how a geometrical field, such
as the Weyl field, may effectively act as a quantum scalar field, which in some
theoretical-field modes is the responsible for the confinement of matter in the
brane [6]. In
Section 7 we give a simple application of the ideas developed previously. We con-
clude, in Section 8, with some final remarks.

2  Weyl geometry

As is well known, the kind of geometrical structure conceived by H. Weyl in
1918, although admirably ingenious as an attempt to unify gravity with electro-
magnetism, turned out to be a failure as a physical theory. In fact, immediately
after have been exposed to Weyl’s ideas, Einstein raised strong objections to
the adoption of Weyl geometry in the description of electromagnetic as well as
gravitational phenomena [7]. Einstein’s argument was that in a non-integrable
geometry it would not be possible the existence of sharp spectral lines in the
presence of an electromagnetic field since atomic clocks would depend on their
past history [8]. It should be said, however, that a variant of Weyl geometries,
known as Weyl integrable geometry, which does not suffer from the drawback
pointed out by Einstein has attracted the attention of cosmologists some years
ago [9].

In this section we review some basic definitions and results that are valid in
Riemannian and Weyl geometry. As we shall see, Weyl geometry may be viewed
as a kind of generalization of Riemannian geometry, and some theorems that will
be presented here are straightforward extensions of corresponding theorems of
the former. However, these extensions have a different and new flavour especially
when they are applied to study geodesic motion. Let us start with the definition
of affine connection .

Definition. Let M be a differentiable manifold and T'(M) the set of all
differentiable vector fields on M. An affine connection is a mapping V : T'(M) x



T(M) — T(M), which is denoted by (U,V) — VyV, satisfying the following
properties:

i) ViviguW = fVyW + gV W, (1)
i) Vy(U 4+ W) =VyU+ VyW, (2)
iii) Vv (fU) = V[fIU+ fVvU, (3)

where V, U, W € T(M), f and g are C° scalar functions defined on M. An
important result comes immediately from the above definition and allows one
to define a covariant derivative along a differentiable curve.

Proposition. Let M be a differentiable manifold endowed with an affine
connection V, V a vector field defined along a differentiable curve a : (a,b) C
R — M. Then, there exists a unique rule which associates another vector field
% along a to V, such that

D(V+U) DV DU

D= ot (4)
DUFV)  d DV
i) (d*’; ) _ %V-ﬁ-fd—/\, (5)

where o = «(\) and A € (a,b).

i) If the vector field U()) is induced by a vector field U € T(M),
then % = Vy U, where V is the tangent vector to the curve o, i.e V = %.
For a proof of this proposition we refer the reader to [10]. We now are ready for
being introduced to the concept of parallel transport of a vector along a given
curve.

Definition. Let M be a differentiable manifold with an affine connection
V,a: (a,b) € R — M a differentiable curve on M, and V a vector field defined
along a = a(A). The vector field V' is said to be parallel if Z3 = 0 for any value
of the parameter X € (a,b).

Among all admissible affine connections defined on a manifold, an important
role in Riemannian and also in Weyl theory is played by a special class of
connections, namely, the torsionless connections, as defined below.

Definition. We say that an affine connection V defined on M is torsionless
(or symmetric) if for any U,V € T (M) the following condition holds:

VyU - VyV = [V, U] (6)

We now introduce the concept of Weyl manifold through the following defi-
nition.

Definition. Let M be a differentiable manifold endowed with an affine con-
nection V, a metric tensor g and a one-form field o, called a Weyl field, globally
defined in M. We say that V is Weyl-compatible ( or W-compatible) with g if
for any vector fields U, V, W € T'(M), the following condition is satisfied:

Vig(U,W)] = g(VvU,W) + g(U, Vv W) + o(V)g(U,W) (7)



This is, of course, a generalization of the idea of Riemannian compatibility
between V and g. If the one-form ¢ vanishes throughout M, we recover the
Riemannian compatibility condition. It is therefore rather natural to expect that
a generalized version of the Levi-Civita theorem holds if we restrict ourselves to
torsionless connections. Indeed, we have the following result:

Theorem (Levi-Civita extended). In a given differentiable manifold M
endowed with a metric g and a differentiable one-form field o defined on M,
there exists only one affine connection V such that: i) V is torsionless; i) V is
W-compatible.

Proof. Let us first suppose that such V exists. Then, from (7)) we have the
following three equations

Vig(U, W) = g(VvU W)+ g(U,VyW) +a(V)g(U,W) (8)
Wig(V,U)] = g(VwV,U) + g(V,VwU) + o(W)g(V,U) 9)
UlgW, V)] = g(VuW, V) + g(W,VyV) +o(U)g(W,V) (10)

Adding @) and (@) and subtracting (), and also taking into account the
torsionless condition (@), we are left with

g(VwV,U) = %V[Q(U, W)+ Wlg(V,U)] = Ulg(W, V)] — g([V, W], U) (11)
—g((W, UL V) = g((V, UL W) +a(U)g(V,W) = a(V)g(U, W) —o(W)g(U,V)}

The above equation shows that the affine connection V, if it exists, is uniquely
determined from the metric g and the Weyl field of one-forms o. Now, to prove
the existence of such a connection we just define V; V' by means of (I1). At this
point it is instructive to write (@) in a local coordinate system {x*}, a = 1, ..., n.
Then, a straightforward calculation shows that one can express the components
of the affine connection completely in terms of the components of g and o

1
gc = {gc} - ggad[gdbo'c + 9dcob — gbco'd] (12)

where {{.} = % 9°U[gab.c + Gde.b — gbe.d) denotes the Christoffel symbols of second
kind.

At this stage let us note that the Weyl compatibility condition () may
equivalently be interpreted as requiring that the covariant derivative of the
metric tensor g in the direction of a vector field V' € T'(M) do not vanish, as
in Riemannian geometry, but, instead, that it be regulated by the Weyl field o
defined in the manifold M. In other words, we must have

Vg=0®g (13)

where 0 ® g denotes the direct product of ¢ and g. It looks a bit surprising
that this new requirement does not spoil the miraculous determinability of the
connection V from o and g only. [II]. A clear geometrical insight on the
properties of Weyl parallel transport is given by the following proposition:



Corollary Let M be a differentiable manifold with an affine connection V,
a metric g and a Weyl field of one-forms o. If V is W-compatible, then for any
smooth curve o = a(\) and any pair of two parallel vector fields V and U along
a, we have J

S9(V,U) = o(=)g(V,U) (14)

where di)\ denotes the vector tangent to o.

If we integrate the above equation along the curve «, starting from a point
Py = a(\g) then we readily obtain

g(VN), UN) = g(V (M), UAg))elxo 7(E)4 (15)

Putting U = V and denoting by L(A) the length of the vector V(A) at an
arbitrary point P = «(\) of the curve, then it is easy to see that in a local
coordinate system {x®} the equation (I4]) reduces to

dL o, dz®
dx 2 d\
Consider the set of all closed curves a : [a,b] € R — M, i.e, with a(a) = a(b).
Then, the equation

g(V (1), UD)) = g(V(a), U(a))ela 7(dx)dA

defines a holonomy group, whose elements are, in general, a composition of a
homothetic transformation and an isometry. If we want the elements of this
group to correspond to an isometry only, then we must have

fa(%)dxzo

for any loop. It follows, from Stokes’ theorem, that ¢ must be an exact form,
that is, there exists a scalar function ¢, such that ¢ = d¢. In this case we have
what is often called in the literature a Weyl integrable manifold.

Weyl manifolds are completely caracterized by the triple (M, g, o), which
we shall call a Weyl frame. It is interesting to see that the Weyl compatibility
condition (I4]) remains unchanged when we go to another Weyl frame (M,q,7)
by performing the following simultaneous transformations in ¢ and o

g=e¢’ (16)

T=0—d¢ (17)
where ¢ is a scalar function defined on M. Clearly the conformal map (I6)
and the gauge transformation (I7) define classes of equivalences in the set of
Weyl frames. It is worth mentioning that the discovery that the compatibility
requirement (4] is invariant under this group of transformations was what
primarely led Weyl to his attempt at unifying gravity and electromagnetism,
extending the concept of spacetime to that of a collection of manifolds equipped

with a conformal structure, i.e, the spacetime would be viewed as a class [g] of
conformally equivalent Lorentzian metrics [5].




3 Submanifolds and isometric embeddings in Weyl
geometry

Definition.  Let (M,g,0) and (M,g,) be differentiable Weyl manifolds of
dimensions m and n = m + k, respectively. A differentiable map f: M — M
is called an immersion if

i) the differential f, : Tp(M) — TypyM is injective for any P € M;

i1) o(V) = a( f«(V)) for any V € Tp(M). The number k is called the
codimension of f. We say that the immersion f : M — M is isometric at a
point P € M if g(U, V) =g( f.(U), f«(V)) for every U,V in the tangent space
Tp(M). If, in addition, f is a homeomorphism onto f(M), then we say that f is

an embedding. If M C M and the inclusion i : M C M — M is an embedding,

then M is called a submanifold of M.

It is important to note that locally any immersion is an embedding. Indeed,
let f: M — M be an immersion. Then, around each P € M, there is a
neighbourhood U C M such that the restriction of f to U is an embedding onto
f(U). We may, therefore, identify U with its image under f, so that locally we
can regard M as a submanifold embedded in M, with f actually being the
inclusion map. Thus, we shall identify each vector V € Tp(M) with f.(V) €
Tt(py(M) and consider Tp(M) as  a subspace of Ty(p) (M).

Now, in the vector space Tp(M) the metric g allows one to make the de-
composition Tp(M) = Tp(M) @ Tp(M)*+, where Tp(M)=* is the orthogonal
complement of Tp(M) C Tp(M). That is, for any vector V € Tp(M), with
P € M, we can decompose V into V =V + VL V € Tp(M), V+ e Tp(M)*+.

Let us denote the Weyl connection on M by V.We now can prove the fol-
lowing proposition.

Proposition. If V and U are local vector fields on M, and V and U are
local extensions of these fields to M, then the Weyl connection VvyU will be
given by

VvU = (Ve0)" (18)
where (VVU)T is the tangential component of WVU.

Proof. We start with the equation which expresses the Weyl compatibility
requirement

V[g(U, W) =g(VyU, W) +3(U, ViW) +3(V)g(U, W) (19)
where V, U , W € T(M). Now, suppose that V, U , W are local extensions of
the the vector fields V, U, W to M. Clearly, at a point P € M, we have

V[g(U,W)] =V[gU,W)] = V[g{U, W) (20)

where we have taking into account that the inclusion of M into M is isometric.
On the other hand, evaluating separately each term of the right-hand side of

@) at P yields
g(VVU, W) = g((vVU)T + (vVU)va) = g((vVU)va) = g(vVU)Tv W)



with an analogous expression for g(U, VVW). From the above equations and

the fact that (V) = (V) we finally obtain

VigU,W)] = g(V50) T, W) + g(U, (V5 W) ) + a(V)g(U, W)

From the Levi-Civita theorem extended to Weyl manifolds, which asserts the
uniqueness of affine connection V in a Weyl manifold we conclude that (I8
holds. In other words, the tangential component of the covariant derivative
VVU, evaluated at points of M, is nothing more than the covariant derivative
of the induced Weyl connection from the metric g on M, defined by g(V,U) = g(

fe(V), fo(U).

4 Embedding the spacetime in a Weyl bulk

Now that we know how the mechanism of embedding submanifolds in Weyl
geometry works, we are led to ask the following question: Is it possible to have
a Riemannian submanifold embedded in a Weyl ambient space? The answer
to this question is given by the following argument. A Riemannian manifold
is a particular case of a Weyl manifold, in which the Weyl field o vanishes.
Therefore, a submanifold M embedded in Weyl space M will be Riemannian if
and only if the field of 1-forms ¢ induced by pullback from & vanishes throughout
M. That is, the necessary and sufficient condition for M to be an embedded
Riemannian manifold is that o(V') = 0 for any V € T(M).

To illustrate the above, and having in view future applications, let us consider
the case in which the manifold M is foliated by a family of submanifolds defined
by k equations y4 = y4 =constant , with the spacetime M corresponding to
one of these manifolds y4 = y? =constant. In local coordinates {y*} of M
adapted to the embedding the condition (V) = 0 reads 0,V* = 0, where ¢ =
o.dz® and V = VP3s. In the case of a Weyl integrable manifold o = d¢. In
this case o(V) = 0 for any V € T(M) if, and only if aaxﬂ = 0. Therefore,
in a Weyl integrable manifold if the scalar field ¢ is a function of the extra
coordinates only, then the spacetime submanifold M embedded in the bulk M
is Riemannian.

The fact that we may have a Riemannian spacetime M embedded in a Weyl
bulk M does not mean that physical or geometrical effects coming from the extra
dimensions should be absent. A nice illustration of this point is given by the
behaviour of geodesics near the M. In section 6 we shall examine how a Weyl
field may affect the geodesic motion in the case of a bulk with a warped product
geometry. We shall be interested particularly in the problem of confinement and
stability of the motion of particles and photons near the spacetime submanifold.
[12, 13]

1From now on lower case Latin indices take value in the range (0,1,...,(n + 3)), while
Greek indices run over (0,1,2,3). The coordinates of a generic point P of the manifold M
will be denoted by y® = (z*,y*,...y"T3), where ® denotes the four-dimensional spacetime
coordinates and y (A > 3) refers to the n extra coordinates of P.



5 Geodesic motion in a Riemannian warped prod-
uct space

In this section let us consider the case where the geometry of the bulk contains
two special ingredients: a) It is a Riemannian manifold and b) its metric has the
structure of a warped product space [14]. As is well known, the importance of
warped product geometry is closely related to the so-called braneworld scenario
[1]. Let us start with the investigation of geodesics in warped product spaces,
firstly considering the Riemannian case.

We define a warped product space in the following way. Let (M, g) and
(N, h) be two Riemannian manifolds of dimension m and r, with metrics g and
h, respectively. Suppose we are given a smooth function f: N — R (which will
called warping function). Then we can construct a new Riemannian manifold
by setting M = M x N and defining a metric § = €2/ g @® k. Here, for simplicity,
we shall take M = M?*and N = R, where M* denotes a four-dimensional
Lorentzian manifold with signature (+ — ——) (referred to as spacetime). In
local coordinates %y“ = (2*,y*} the line element corresponding to this metric
will be written as

d52 = gabdyadyb

The equations of geodesics in the five-dimensional space M will be given by
Py ) pe WAy _
AN b dx

(22)

where A is an affine parameter and (5)I‘gc denotes the 5D Christoffel symbols
of the second kind defined by ®)T¢ = 1g (gdbﬁ +TGaep — gbcyd). Denoting
the fifth coordinate y* by y and the remaining coordinates y* (the ”spacetime”
coordinates) by z#, i.e. y* = (z*,y), we can easily show that the 4D part” of
the geodesic equations ([22]) can be rewritten in the form

Bzt () pu de* dz?
d\2 aBdx dA

=¢&r, (23)
where

dy 2 dx® dy
¢t = -4, (d_)\> _o®ps 2 I

“dN dA
1., _ _ dx® dxP
- §9H4 (g4a.ﬂ + 948,00 — 9ap,4 N (24)

and (4)FZ,8 = %g,uv (gua,ﬁ + guﬁ,a - gaﬁ,v)'

At this point we turn our attention to the five-dimensional brane-world sce-
nario, where the bulk corresponds to the five-dimensional manifold M, which,
as in the previous section, is assumed to be foliated by a family of submanifolds
(in this case, hypersurfaces) defined by the equation y = constant.

2Throughout this section Latin indices take values in the range (0,1,...4) while Greek indices
run from (0,1,2,3).



It turns out that the geometry of a generic hypersurface, say y = yo, will
be determined by the induced metric gos(r) = g,5(2,%0). Thus, on the hyper-
surface we have

ds® = Gop(T, yo)da®dz”.

We see then that the quantities (4)1"g 5 which appear on the left-hand side of
Eq. (23) are to be identified with the Christoffel symbols associated with the
induced metric in the leaves of the foliation defined above.

Let us now consider the class of warped geometries given by the following

line element
dS? = e g, pda®da® — dy?, (25)

where f = f(y) and gap = gap(z). For this metric it is easy to sed] that
®)T%, = 0 and OTY, = 15"7g,,, = f'6!, where a prime denotes a derivative
with respect to y. Thus in the case of the warped product space the right-
P Y ped p P g
hand side of Eq. (23] reduces to £ = —2f’%g—§ and the 4D part of the

geodesic equations becomes

Pt ) __

D2 e N T an dN

dz® dzP dz* d
rar 2,i_y (26)

On the other hand the geodesic equation for the fifth coordinate y in the warped
product space becomes

dz® dz”

&y da® da?
d\ dX

= —0. (27)

+ fl€2fgaﬁ

By restricting ourselves to 5D timelike geodesics (gab% ‘Z‘—f = 1) we can readily

decouple the above equation from the 4D spacetime coordinates to obtain

Py dy\”

— 1 —= =0. 28

A ERE P (28)
Similarly, to study the motion of photons in 5D, we must consider the null

a b
geodesics (gab%% = O), in which case Eq. (27)) becomes

d*y dy\*
W+f’ (ﬁ) =0. (29)

Equations (28)) and (29) are ordinary differential equations of second-order
which, in principle, can be solved if the function f’ = f’(y) is known. A qual-
itative picture of the motion in the fifth dimension may be obtained without

3In the above calculation we have used the fact that the matrix Jdap has an inverse gB,
that is, g“ﬂggu = 65. This may be easily seen since by definition det g = —detg # 0.



the need to solve ([28) and (29) analytically [I3]. This is done by defining the
variable ¢ = % and then investigating the autonomous dynamical system [15]

dy _

a1

dq _

o P(q,y) (30)

with P(q,y) = —f'(e + ¢%), where ¢ = 1 in the case of ([28)) (corresponding to
the motion of particles with nonzero rest mass) and € = 0 in the case of (29)
(corresponding to the motion of photons). In the investigation of dynamical
systems a crucial role is played by their equilibrium points, which in the case of
system (B0) are given by % = 0 and g—g = 0. The knowledge of these points
together with their stability properties provides a great deal of information on
the types of behaviour allowed by the system.

5.1 The case of massive particles

In the case of nonzero rest mass particles, the motion in the fifth dimension is
governed by the dynamical system

dy

=4 (31)
Z—i =—f(1+¢* (32)

The critical points of (1) are given by ¢ = 0 and the zeros of the function f/(y)
(if they exist) which we generically denote by yo. These solutions, pictured as
isolated points in the phase plane, correspond to curves which lie entirely on a
hypersurface M of our foliation (since for them y = constant). It turns out that
these curves are timelike geodesics with respect to the hypersurface induced
geometry [13].

To obtain information about the possible modes of behaviour of particles
and light rays in such hypersurfaces, it is important to study the nature and
stability of the corresponding equilibrium points. This can be done by linearis-
ing equations (BIl) and studying the eigenvalues of the corresponding Jacobian
matrix about the equilibrium points. Assuming that the function f’(y) van-
ishes, at least at one point yq, it can readily be shown that the corresponding
eigenvalues are determined by the sign of the second derivative f”(yg), at the
equilibrium point, and some possibilities arise for the equilibrium points of the
dynamical system BI)) [13]. We shall discuss only the three following cases.

Case I. If f”(yg) > 0, then the equilibrium point (¢ = 0,y = yo) is a
center. This corresponds to the case in which the massive particles oscillate
about the hypersurface M (y = yo). Such cyclic motions are independent of the
ordinary 4D spacetime dimensions, and, except for the conditions f'(yo) = 0
and f”(yo) > 0, the warping function f(y) remains completely arbitrary.

Case IL. If f"(yo) < 0, then the point (¢ = 0,y = yo) is a saddle point. In
this case the solution corresponding to the equilibrium point is highly unstable

10



and the smallest transversal perturbation in the motion of particles along the
brane will cause them to be expelled into the extra dimension. An example of
this highly unstable ”confinement” at the hypersurface y = 0 is provided by
Gremm’s warping function [16]

f(y) = —blncosh(cy), (33)

where b and c are positive constants.

Case III. There are no equilibrium points at all. The warping function f(y)
does not have any turning points for any value of y. This implies that in this
case we cannot have confinement of classical particles to hypersurfaces solely
due to gravitational effects. An example of this situation is illustrated by the
warping function f(y) = 11In(Ay?/3) considered in [17]. In similar fashion,
note that for large values of y the warping function ([B3)) approaches that of the
Randall-Sundrum metric [I8])

ds* = 672k|y|na5dx°‘dxﬁ — dy?,

where k is a constant. In this case f'(y) = Fk according to whether y is
positive or negative. Again, there exist no equilibrium points, and therefore no
confinement of particles is possible due only to gravity.

5.2 The case of photons

The motion of photons is governed by the dynamical system
dy
d\

dq /2
Y fq (34)

=4q

The equilibrium points in this case are given by ¢ = 0, so they consist of a
line of equilibrium points along the y-axis, with eigenvalues both equal to zero.
Any point along the y-axis is an equilibrium point and corresponds to a 5D null
geodesics in the hypersurface y = constant. The existence of photons confined
to hypersurfaces does not depend upon the warping factor [13].

As is well known, in the brane-world scenario the stability of the confinement
of matter fields at the quantum level is made possible by assuming an interaction
of matter with a scalar field. An example of how this mechanism works is clearly
illustrated by a field-theoretical model devised by Rubakov, in which fermions
may be trapped to a brane by interacting with a scalar field that depends only
on the extra dimension [6]. On the other hand, the kind of confinement we
are concerned with is purely geometrical, and that means the only force acting
on the particles is the gravitational force. In a purely classical (non-quantum)
picture, one would like to have effective mechanisms other than a quantum
scalar field in order to constrain massive particles to move on hypersurfaces in
a stable way. At this point at least two possibilities come to our mind. One is
to assume a direct interaction between the particles and a physical scalar field.

11



Following this approach it has been shown that stable confinement in a thick
brane is possible by means of a direct interaction of the particles with a scalar
field through a modification of the Lagrangian of the particle [I9]. Another
approach would appeal to pure geometry: for instance, modelling the bulk with
a Weyl geometrical structure. As we shall see, in this case the Weyl field may
provide the mechanism necessary for confinement and stabilization of the motion
of particles in the brane.

6 Geodesic motion in the presence of a Weyl
field

The question we want to discuss now is: What happens with the geodesic motion
pictured in the previous section when we ”turn on” a Weyl field? For simplicity,
let us consider the case when the warped product bulk is an integrable Weyl
manifold (M,7,¢). As we have seen in Section IV, if the Weyl scalar depends
only on the extracoordinates, then the Weyl field of 1-forms o = d¢ induced on
the hypersurfaces of the foliation defined above vanishes. Indeed, any tangent
vector V of a given leaf M has the form V = V0,. Thus, we have o(V) =
dp(V) =V« aa;i = 0. Therefore, if M represents our spacetime embedded in
a integrable Weyl bulk M with ¢ = ¢(y), then we can be sure that M has a
Riemannian structure.

We have seen in Section II, that in a Weyl manifold the coefficients of the
Weyl connection I'f, are related to the Christoffel symbols through the equation

1
be = thet — §9ad[9db0’c + 9O — gheod) (35)

From (I2) it is not difficult to show that the geodesic equation for the fifth
coordinate y in this warped product space leads, for massive particles, to the

equation
Py dy 1, (dy)?
d—)\2+f 1+(a> — ¢ 5-1—(5) =0. (36)
where ¢/ = Z—ﬁ.
On the other hand, for photons we now have

d2y / n( dy 2_
-0 (5 o ")

The equations (36) and (B) respectively define the following dynamical sys-
tems:

dy B
o q (38)
dq Y, / ¢’ /

12



dy

o= (40)
dq / N2
Y (&~ g (a1)

Clearly, the presence of the derivative of the Weyl scalar in the above equa-
tions may completely change the picture of the solutions determined by the
dynamical system considered in the previous section. This is because the exis-
tence of equilibrium points, their topology and stability properties now depends
not only on the values the derivatives the warping function take at the brane,
but also on the derivatives of the Weyl scalar field ¢(y).

Finally, note that in the case of photons the Weyl scalar field ¢ has no
influence on the confinement. This can be easily explained by the fact that, ac-
cording to (??) and ([T, the presence of a scalar Weyl is equivalent to perform
a conformal transformation in the Riemannian metric § = €2/g @ k. This essen-
tially results in changing the warping function from f to f — ¢/2. Because the
existence of confined photons in the hypersurface is independent of the warping
function [I3], the Weyl scalar has no effect in the confinement. This interesting
property can also be explained by the fact that a conformal transformation does
not alter the light-cone structure of a manifold.

7 A simple example

As an illustration of the results obtained in the previous section, let us consider
the five-dimensional Riemannian space M endowed with a Mashhoon-Wesson-

type metric [I7]
2

A
ds? = ?y@aﬁdﬁdlﬁ — dy?. (42)

As we have remarked in Section 5, in this case there is no confinement of
particles in the hypersurfaces y = const. Now let us ”turn on” a Weyl field in
the space M by chosing, for instance,

¢ =Iny* + K(y —y)° (43)

where K is a constant. It is not difficult to verify that the Weyl scalar field
will act as a confining field, trapping massive particles in the hypersurface y =
yo. A simple calculation shows that if K > 0 we are in the presence of a
kind of confinement where particles lying near the hypersurface y = yg will
oscillate about it, entering and leaving the hypersurface indefinitely (see ([13]),
for details). On the other hand, if K < 0, the classical confinement is highly
unstable. Clearly, the same procedure can also be used to stabilize the motion
of the trapped particles in the case of Gremm s warping function (33). Finally,
note that since ¢ depends only on the extra coordinate y, the Riemannian

character of the hypersurfaces y = const is not affected by the presence of the
Weyl field.
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8 Final Remarks

An important class of higher-dimensional models in the braneworld scenario
share the following three properties: a) our spacetime is viewed as four-dimensional
Riemannian hypersurface (brane) embedded in a five-dimensional Riemannian
manifold (bulk); b) the geometry of the bulk space is characterized by a warped
product space; c¢) fermionic matter is confined to the brane by means of an
interaction of the fermions with a scalar field which depends only on the extra
dimension. In this article we have considered the possibility of describing the
bulk by a non-Riemannian geometry, namely, a Weyl manifold. For a class of
Weyl fields, the geometry induced on the brane has a Riemannian structure.
However, the confinement and stability properties of geodesics near the brane
may be affected by the Weyl field. Taking this fact into account we have con-
structed a classical analogue of the quantum confinement by considering a Weyl
scalar field which also depends only on the extra coordinate. In a certain way,
this Weyl scalar field, which has a purely geometrical nature, seems to mimic the
quantum scalar field that is responsible for the confinement in field-theoretical
models [6].

Throughout this article, we have assumed the existence a priori of a Weyl
field and have not discussed the dynamics of this field and how it would deter-
mine the geometry of the bulk. We leave this subject for a future work.

Finally, as far as the geometrical structure of Weyl inspired higher-dimensional
model is concerned, one would like to look at the embedding properties of the
bulk space. We now know that embedding theorems of differential geometry are
of vital importance for some higher-dimensional theories of spacetime. This is
particularly true in the case of the induced-matter proposal [20]. Thus, an in-
teresting question is how to formulate the analogous of the Campbell-Magaard
theorem and its extended versions in the context of a Weyl geometry [21]. An
answer to this question would, in principle, tell us what kind of Weyl bulk space
is admissible if matter and fields are to be generated from the extra dimensions,
pretty much in the same way as in the case of the (Riemannian) induced matter
proposal and Kaluza-Klein theories.
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