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We address issues on the origin of gravity and the cosmological constant problem based on a recent
understanding about the correspondence between noncommutative field theory and gravity. We
suggest that the cosmological constant problem can be resolved in a natural way if gravity emerges
from a gauge theory in noncommutative spacetime. Especially, we elucidate why the emergent
gravity implies that vacuum energy does not gravitate but only fluctuations around the vacuum
generate gravity. That is, a flat spacetime emerges from uniform condensation of energy, previously
identified with the cosmological constant.
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Over the past ten or twenty years, several magnificent
astronomical observations have revealed that our Uni-
verse curiously hides its critical aspects behind the dark
side such as dark matter and dark energy. The experi-
mental data have shown that our Universe is composed
of 4 % radiations and ordinary matters while 21 % dark
matter and 75 % dark energy [1]. The scientific frame-
work of the twentieth century using the Standard Model
and general relativity, strictly speaking, has failed to shed
some light on the dark side in spite of spectacular success
to explain most of phenomena on Earth and in heaven.
Morally speaking, the dark side is thus ‘the saddest chap-
ter in theoretical physics’ using Heisenberg’s word.
The remarkable success of the contemporary theoreti-

cal physics has been based on the action

S = SG + SSM (1)

where

SG = − 1

16πG

∫
d4x

√−g(R+ 2Λ), (2)

SSM =

∫
d4x

√−gLSM (3)

with LSM the Standard Model Lagrangian. The equa-
tions of motions for gravitation are given by

Rµν − 1

2
gµνR− Λgµν = −8πGTµν, (4)

where Λ is the so-called cosmological constant (CC).
Eq.(4) contains two fundamental length scales related
to the Planck scale L2

P ≡ 8πG and the length scale
L2
H ≡ 1/Λ defined by the CC and it shows that the CC

acts like a fluid with an energy density given by

ρΛ =
Λ

8πG
=

1

L2
PL

2
H

(5)

satisfying an exotic equation of state p = −ρ. Thus the
CC exerts a negative pressure, causing an exponential
expansion of universe as in inflation era and the current
accelerating expansion of universe.

The CC consists of a uniform and unclustered energy
with a negative pressure, sharing the same property with
the dark energy, the most part (75 %) of the energy con-
tent of our Universe. The CC might be the simplest and
the most natural candidate for the dark energy [1]. So,
from the following, we will identify the CC with the dark
energy.
One has realized that the CC can be interpreted as

a measure of the energy density of the vacuum because
anything that contributes to the energy density of the
vacuum acts just like a cosmological constant. One finds
that the resulting energy density is of the form

ρthΛ =
1

V

∑

k

1

2
~ωk ∼ ~k4max (6)

where kmax is a certain momentum cutoff below which an
underlying theory can be trusted. So we would naturally
estimate a contribution to the vacuum energy (6), for
example, of order ρPl

Λ
∼ (1018GeV )4 for a quantum field

theory of which we can trust all the way up to the Planck
scale MPl = (8πG)−1/2 ∼ 1018GeV .
The observed value of the CC or the dark energy

turned out to be very very tiny [1], say,

ρobsΛ ≤ (10−12GeV )4, (7)

which is desperately different from the theoretical estima-
tion (6). Their ratio is roughly ρobs

Λ
/ρth

Λ
∼ 10−120, that

would stand for an unprecedent failure in the history of
science. This huge discrepancy between the theoretical
and observational value is the long standing CC problem.
The tiny value of the CC in (7) implies that our Uni-

verse prefers a flat spacetime. In this sense, the CC prob-
lem is how to understand the dynamical origin of the flat
spacetime. But there is a blind point about the dynami-
cal origin of spacetime in general relativity; it says noth-
ing about the dynamical origin of flat spacetime since the
flat spacetime is a geometry of special relativity rather
than general relativity. In other words, the flat spacetime
defining a local inertial frame is assumed to be a priori
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given without reference to its dynamical origin. Thus we
raise the first question about whether the CC problem
can be solved within the framework of Einstein gravity.
We suspect that it may not be the case for the following
reasons.

The first phenomenological reason is that all attempts
to solve the CC problem have been failed so far (see the
reviews [1]). Now there exists some consensus that we
need a more fundamental theory beyond Einstein gravity
to resolve the problem from which gravity is emergent.

The second reason is that gravity and matters respond
differently to the vacuum energy. The equations of mo-
tion for matters in Eq.(1) are invariant under shifting the
matter Lagrangian by a constant λ:

LSM → LSM − 2λ. (8)

However the shift (8) results in that of the energy-
momentum tensor of matter by Tµν → Tµν −λgµν in the
presence of gravity. Therefore gravity breaks the shift
symmetry (8). The worse is that such shift (8) allowed
by the matter sector changes the CC by Λ → Λ+λ. Since
the vacuum energy (6) is originated from the matter sec-
tor, it is very difficult to imagine a definite solution to
the CC problem without cure for this mismatch [2].

The third practical reason is that the near zero CC
seems to indicate that the vacuum energy does not grav-
itate. Of course, this conclusion immediately leads to
the contradiction with the principle of general covari-
ance which requires that gravity couples universally to
all kinds of energy. Where is then an exit for the prob-
lem ?

In order to find an exit, we may boldly ask a ques-
tion whether gravity is really a fundamental force or not.
Interestingly, recent developments in theoretical physics
imply a surprising picture about gravity [3, 4]: Gravity

is not a fundamental force but a collective phenomenon

emergent from gauge fields. Let us summarize a few evi-
dences indicating this remarkable picture.

It has been well-known that there exist thermodynamic
descriptions of gravity [5], which strongly suggests that
there are “atoms of spacetime” (a microscopic structure
of spacetime) as Boltzmann taught us. As an analogy,
the existence of thermodynamics in solids implies that of
discrete constituents, i.e., atoms, and the elasticity and
the density of solid lose their meanings at atomic level.

Another splendid evidence is coming from the
AdS/CFT duality [6] where the bulk gravity in higher
dimensions emerges from a lower dimensional large N
gauge theory. The AdS/CFT duality is a thoroughly
tested example of the holographic principle [7] which
states that physical degrees of freedom in gravity resides
on a lower dimensional screen where gauge fields live than
gravitational theories are defined. Incidentally, the naive
estimate (6) in general violates holographic bounds con-
strained by the holographic principle [8].

Finally analogue gravity from condensed matter
physics also provides a clear picture on how (effective)
gravity emerges from collective excitations around a
Fermi surface and why the emergent gravity avoids the
CC problem [9]. An emerging picture for the CC problem
is that the system in equilibrium adjusts itself such that
the energy of vacuum is zero where a shift symmetry like
Eq.(8) plays a key role.
As we reasoned above, the CC problem requires a new,

radically different, approach to gravity which essentially
has to do with our understanding of the nature of gravity.
We will now examine the CC problem from the viewpoint
of emergent gravity based on the correspondence between
noncommutative (NC) field theory and gravity [10, 11].
A NC spacetime is obtained by introducing a symplec-

tic structure ω = 1

2
Babdy

a ∧ dyb and then by quantiz-
ing the spacetime M with its Poisson structure θab ≡
(B−1)ab, treating it as a quantum phase space. For ex-
ample, one can define NC R2n by the following commu-
tation relation [12]

[ya, yb]⋆ = iθab. (9)

The fact that the NC spacetime (9) is actually a (NC)
phase space leads to two important consequences [13]:
(I) If we consider a NC R2 for simplicity, any field

φ̂ ∈ Aθ on the NC plane can be expanded in terms of the
complete operator basis

Aθ = {|m〉〈n|, n,m = 0, 1, · · · }, (10)

that is,

φ̂(x, y) =
∑

n,m

Mmn|m〉〈n|. (11)

One can regard Mmn in (11) as components of an N ×N
matrix M in the N → ∞ limit. We then get the relation:

Any field on NC R2 ∼= N ×N matrix at N → ∞. (12)

If φ̂ is a real field, then M should be a Hermitian matrix.
The relation (12) means that NC fields can be regarded
as master fields of large N matrices [14].
(II) An important fact is that translations in NC direc-

tions are an inner automorphism of NC C*-algebra Aθ,
i.e., eik·y ⋆ f(y) ⋆ e−ik·y = f(y + θ · k) for any f(y) ∈ Aθ

or, in its infinitesimal form,

[ya, f ]⋆ = iθab∂bf. (13)

In the presence of gauge fields, the coordinates ya should
be promoted to the covariant coordinates defined by

xa(y) ≡ ya + θabÂb(y) (14)

in order for star multiplications to preserve the gauge co-
variance [15]. The inner derivations (13) are accordingly
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covariantized too as follows

adxa [f ] ≡ [xa, f(y)]⋆ = iθαβ
∂xa

∂yα
∂f

∂yβ
+ · · ·

≡ V α
a (y)∂αf(y) +O(θ3). (15)

It turns out [16, 17] that the vector fields Va(y) ≡
V α
a (y)∂α form an orthonormal frame and hence define

vielbeins of a gravitational metric.
Of course, the pictures (I) and (II) should refer to the

same physics, which is essentially an equivalent state-
ment with the large N duality in string theory. The 1/N
expansion in the picture (I) corresponds to the derivative
corrections in terms of θ for the picture (II).
The above pictures (I) and (II) imply that a field the-

ory on NC spacetime should be regarded as a theory of
gravity, which we refer to as the emergent gravity [17].
The correspondence between NC field theory and grav-
ity can be explicitly confirmed for the self-dual sectors of
NC gauge theories. Recently it was shown in [16] that
self-dual electromagnetism in NC spacetime is equivalent
to self-dual Einstein gravity. For example, U(1) instan-
tons in NC spacetime are actually gravitational instan-
tons [18]. The emergent gravity for general cases can be
clarified by systematically applying to the NC gauge the-
ories the pictures (I) and (II). Let us briefly summarize
the construction in [13].
Consider a NC U(1) gauge theory on RD = Rd

C ×
R2n

NC whose NC part satisfies the relation (9). Let
us decompose D-dimensional U(1) gauge fields as fol-
lows: AM (z, y) = (Aµ,Φ

a)(z, y) (M = 1, · · · , D; µ =
1, · · · , d; a = 1, · · · , 2n) where Φa(z, y) ≡ xa(z, y)/κ are
adjoint Higgs fields of mass dimension defined by the co-
variant coordinates (14).
One can show, on the one hand, that, adopting the

matrix representation (11), the U(1) gauge theory on
Rd

C ×R2n
NC is exactly mapped to the U(N → ∞) Yang-

Mills theory on d-dimensional commutative space Rd
C :

SB = − 1

4g2YM

∫
dDX(FMN −BMN ) ⋆ (FMN −BMN )

= − (2πκ)
4−d

2

2πgs

∫
ddzTr

(
1

4
FµνF

µν +
1

2
DµΦ

aDµΦa

−1

4
[Φa,Φb]2

)
, (16)

where FMN (X) = ∂MAN − ∂NAM − i[AM , AN ]⋆ ∈ U(1)
and Dµ = ∂µ − iAµ(z) ∈ U(N → ∞). Note that the
10-dimensional NC U(1) gauge theory on R4

C ×R6
NC is

equivalent to the bosonic part of 4-dimensional N = 4
supersymmetric U(N) Yang-Mills theory. Therefore it
should not be so surprising that a D-dimensional gravity
could be emergent from the d-dimensional U(N → ∞)
gauge theory in Eq.(16), according to the large N duality
or AdS/CFT correspondence [6].
On the other hand, according to the map (15),

the D-dimensional NC U(1) gauge fields AM (z, y) =

(Aµ,Φ
a)(z, y) can be regarded as gauge fields on Rd

C tak-
ing values in the Lie algebra of volume-preserving vector
fields on a 2n-dimensional manifold X , i.e., the gauge
group G = SDiff(X):

Aµ(z) = Aa
µ(z, y)

∂

∂ya
, Φa(z) = Φb

a(z, y)
∂

∂yb
. (17)

It turns out [19] that f−1(D1, · · · , Dd,Φ1, · · · ,Φ2n)
forms an orthonormal frame and hence defines a met-
ric on Rd

C × X with a volume form ν = ddz ∧ ω
where f is a scalar, a conformal factor, defined by f2 =
ω(Φ1, · · · ,Φ2n) (see also [20]):

ds2 = f2ηµνdz
µdzν + f2δabV

a
c V

b
d (dy

c −Ac)(dyd −Ad)
(18)

where Aa = Aa
µdz

µ and V a
c Φ

c
b = δab .

The emergent gravity from NC field theories reveals
a radically different picture from Einstein gravity in the
sense that gravity is not a fundamental force but a col-
lective phenomenon emerging from NC (or non-Abelian)
gauge fields. (Although we are here confined to NC U(1)
gauge theories, it was recently suggested [21] that a NC
U(n) gauge theory should be interpreted as an SU(n)
gauge theory coupled to gravity.) So it is inviting to
ponder on the CC problem from the picture of the emer-
gent gravity. In order to address the problem with a new
light, we properly change our question from ‘why is the
vacuum energy (almost) zero ?’ to ‘why is the vacuum
not gravitating ?’, as the tiny observed value (7) already
drops a hint.
A remarkable picture in emergent gravity is that space-

time is also emergent from gauge field interactions [4].
Note that the metric (18) becomes flat when all fluctua-
tions are turned off, say, (Dµ,Φ

a) = (∂µ, y
a/κ). In other

words, the flat spacetime as a vacuum geometry is emer-
gent from the uniform condensation of gauge fields, i.e.,

〈Bab〉vac = (θ−1)ab, (19)

which defines the NC C*-algebra (9) [22].
Therefore a flat spacetime is indeed originated from

the uniform condensation of energy in a vacuum. A more
crucial point is that the action (16) is invariant under the
shift transformation by a constant like Eq.(8). This shift
effectively changes the background (19) from B to B′ or
from θ to θ′. However NC gauge theories for θ and θ′ are
physically equivalent, i.e., SB

∼= SB′ , which is precisely
the Seiberg-Witten equivalence between NC field theo-
ries [12]. Furthermore the vacuum geometry emerging
from both θ and θ′ is equally a flat spacetime as long as
they are constant, as Eq.(15) clearly shows. Hence the
vacuum energy such as Eq.(6) will only appear as read-
justing the vacuum (19) without affecting any physical
results. In other words, any kinds of constant vacuum
energy, previously identified with the CC, are universally
gauged away; they are used to make a flat spacetime.
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So we arrive at a critical point for the CC problem that
the vacuum energy is not gravitating unlike as Einstein
gravity. The same conclusion was already achieved and
was deemed to be critical for the resolution of the CC
problem in a perceptive work [23].
The emergent gravity reveals an intriguing picture

about the origin of flat spacetime. A flat spacetime is
not free gratis, but a result of the condensation of the
Planck energy (6), the maximum energy in Nature, in a
vacuum. This novel dynamical origin of the vacuum (19)
may explain the reason why the flat spacetime as well as
the Lorentz symmetry as its spacetime symmetry are so
robust against any perturbations.
Moreover, the vacuum (19) triggered by the Planck

energy condensations describes the NC spacetime whose
defining algebra (9) is equivalent to that of harmonic os-
cillators as illustrated in Eq.(10). Thus the spacetime
corresponds to a vast accumulation of harmonic oscilla-
tors and so behaves as a fluid with negative pressure.
Now the problem is how to explain the small nonzero

value (7) for the observed CC. A natural guess is to con-
sider vacuum fluctuations δBab around the primary back-
ground (19). First we notice that NC spacetime leads to
a perplexing mixing between short (UV) and large (IR)
distance scales [24]. Thereby a UV fluctuation in the NC
spacetime (9) whose natural scale is, as we know, the
Planck scale LP is necessarily paired with a correspond-
ing IR scale LH . A simple dimensional analysis shows
that |δBab| ∼ 1/LPLH . Thus we estimate the energy
density of the vacuum fluctuation is of the order

ρvac ∼ |δBab|2 ∼ 1

L2
PL

2
H

. (20)

Note that these vacuum fluctuations are not uniform
but of size LH . It is natural to identify the IR scale
LH with the size of cosmic horizon in our Universe.
Then Eq.(20) coincides with the dark energy (5) [23].
Furthermore, numerically, with LP ∼ 10−18GeV −1 and
LH ∼ 1042GeV −1, one obtains ρvac ∼ (10−12GeV )4 to
be in agreement with the observed value (7). This agree-
ment up to a factor is good enough since it would be
pretentious to simulate an exact factor at this stage.
The emergent gravity here would be the first sce-

nario for the CC problem showing microscopically how
to gauge away huge zero-point energies such as Eq.(6).
Indeed we notice that the emergent gravity remarkably
realizes all criteria in [2, 9, 23] suggested as a possible
solution for the CC problem. Nevertheless there are still
several important open issues to be clarified in the future.
Our picture for the CC problem, particularly, seems to

imply that explosive inflation era lasted roughly 10−33

seconds at the beginning of our Universe corresponds to
a dynamical process for an instantaneous condensation
of vacuum energy (6) or (19) to enormously spread out
a flat spacetime. However it is not clear how to describe
this process in terms of the NC (or matrix) action (16).
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