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Dilaton as a Dark Matter Candidate and Its Detection
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Assuming that the dilaton is the dark matter of the universe, we propose an experiment

to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-

photon conversion in strong electromagnetic background. We calculate the density of the

relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter

of the universe. With this we calculate the dilaton detection power in the resonant cavity,

and compare it with the axion detection power in similar resonant cavity experiment.
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I. INTRODUCTION

One of the important issues in cosmology is the search for the dark matter. The notable

candidates among many dark matter candidates are the dilaton and axion [1, 2]. The two particles

differ completely in their origins, but are very similar in their coupling to the electromagnetic field

and the fermionic matter fields. The dilaton is a universal scalar field which appears in all higher-

dimensional unified theories (including the Kaluza-Klein theory and the superstring theory) which

plays the role of the scalar graviton, and thus couples directly to all matter fields [3, 4, 5]. On

the other hand, the axion is a pseudoscalar Goldstone boson generated by spontaneous breakdown

of the Peccei-Quinn UPQ(1) symmetry which was introduced to solve the so called “strong CP

problem” in strong interaction [6, 7]. But they have almost identical electromagnetic coupling,

except that the dilation (being a scalar) couples to F 2
µν while the axion (being a pseudoscalar)

couples to Fµν F̃µν . In this sense the dilaton and axion may be viewed as the scalar-pseudoscalar

partners of each other. This is particularly true for the gravitational axion, the pseudoscalar
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graviton which has been proposed by Ni independent of the strong CP problem [8].

The axion has been believed to be one of the strong candidates of the dark matter by many

physicists, and experiments to detect it have been actively performed [2, 9]. In comparison, the

detection of the dilaton has not so actively been performed up to now, in spite of its theoretical

importance. It is well known that the dilaton generates the fifth force which can affect the Einstein’s

gravity in a fundamental way [10, 11]. Moreover, in cosmology it can play the role of the inflaton,

and can be an excellent candidate of the dark matter [1, 12]. In this paper we study the dilaton

as a candidate of dark matter in detail, and propose a dilaton detection experiment using an

electromagnetic resonant cavity. In particular, we refine the existing estimate of the dilaton mass,

calculate the dilaton detection power in the resonant cavity, and compare this with the axion

detection power in similar experiments.

The paper is organized as follows. In Section II we briefly review the dilaton physics based

on Kaluza-Klein theory. In particular, we discuss how the dilaton mass can resolve the hierarchy

problem and determine the size of the internal space. In Section III we discuss the role of dilaton

in cosmology, and estimate the number density of the relic dilaton in the present universe based

on the dilaton decay to two photons and fermion-antifermion pairs. In Section IV we discuss the

condition for the dilaton to be a candidate of dark matter, and refine the acceptable mass range

of dilaton. In Section V we propose the experiment to detect the dilaton using an electromagnetic

resonant cavity. We calculate the dilaton detection power in the resonant cavity, and compare

it with the axion detection power in similar experiments. Finally in Section VI we discuss the

physical implications of our analysis.

II. DILATONIC FIFTH FORCE AND HIERARCHY PROBLEM

All known interactions are mediated by spin-one or spin-two fields. However, the unification of

all interactions inevitably requires the existence of a fundamental spin-zero field. In fact, all modern

unified theories (Kaluza-Klein theory, supergravity, and superstring) contain a fundamental scalar

field called the dilaton, or more precisely the Kaluza-Klein dilaton [3, 10]. What makes this scalar

field unique is that unlike others scalar fields like the Higgs field, it couples directly to the (trace of

the) energy-momentum tensor of the matter fields. As such it plays the role of the scalar graviton,

and generates the dilatonic fifth force which modifies Einstein’s gravity in a fundamental way.

Actually the simplest unified theory which contains the dilaton is the Brans-Dicke theory [13, 14].
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Unfortunately the Brans-Dicke dilaton is proposed as a massless scalar graviton, so that it must

create a long range fifth force which is comparable to Newton’s gravitational force. This contradicts

the experiments which tell that such long range fifth force does not exist in nature [15, 16]. This

rules out the Brans-Dicke theory as unphysical. On the other hand, the Kaluza-Klein dilaton has

no such problem, because it naturally acquires a mass and generates a short range fifth force which

does not contradict all known experiments [3, 10]. So we will discuss the Kaluza-Klein dilaton in

detail in the following.

The Kaluza-Klein dilaton plays a crucial role to resolve the so called hierarchy problem. It has

been very difficult to understand why the Planck mass fixed by the Newton’s constant is so large

compared to the mass scale of ordinary elementary particles, or equivalently why the gravitational

force is so weak compared to other forces. There have been many proposals to resolve this problem.

Long time ago Dirac conjectured that the Newton’s constant may not be a constant but actually

a time-dependent parameter to resolve the problem [17]. Another proposal based on the higher-

dimensional unification is that the gravitational force in higher-dimension is actually as strong as

other forces, but a relatively large (compared to the Planck scale) internal space of the order of

TeV scale makes the 4-dimensional gravitational force very weak [18, 19]. In this section we show

that the dilaton plays the pivotal role in both proposals to resolve the hierarchy problem.

Since all higher-dimensional unified theories contain the (4 + n)-dimensional gravitation, we

start from the Kaluza-Klein theory. To obtain the 4-dimensional effective theory one has to make

the dimensional reduction. A simple and elegant way to do this is to impose an isometry [3, 20].

In this dimensional reduction by isometry one may view the (4 + n)-dimensional unified space as

a principal fiber bundle P(M,G) made of the 4-dimensional space-time manifold M as the base

manifold and n-dimensional group manifold G as the vertical fiber (the internal space) on which G

acts as an isometry group. Let γµν and φ̃ab be the 4-dimensional metric on M and the n-dimensional

metric on G, γ and φ̃ be the determinants of γµν and φ̃ab, and ρab = φ̃ab/
n

√

φ̃ (|detρab| = 1) be the

normalized metric on G. In this setting the (4+n)-dimensional Einstein-Hilbert action on P leads

to the following 4-dimensional Lagrangian in the Jordan frame [3]

LCF = − V̂G
16πGP

√

γ
√

φ̃

[

RM − n− 1

4n
γµν

(∂µφ̃)(∂ν φ̃)

φ̃2
+
κ2

4

n

√

φ̃ ρabγ
µαγνβF aµνF

b
αβ

+
γµν

4
(Dµρ

ab)(Dνρab) +
1

κ2
n

√

φ̃
R̂G(ρab) + ΛP + λ(|detρab| − 1)

]

, (1)

where GP is the (4+n)-dimensional Newton’s constant, V̂G is the normalized volume of the internal
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space G, RM is the scalar curvature of M fixed by γµν , R̂G(ρab) is the normalized internal curvature

fixed by ρab, κ is the unit scale of the internal space G, F aµν is the gauge field of the isometry group

G, ΛP is a (4+n)-dimensional cosmological constant, and λ is a Lagrange multiplier.

Notice that the scalar field φ̃ couples non-minimally to RM , so that the metric γµν does not

describe the massless spin-two graviton [14]. To cure this defect and discuss the physics of (1), we

have to choose the physical conformal frame in which the metric describes the massless spin-two

graviton. Let < φ̃ >= v0
2 and introduce the Pauli metric gµν and the Kaluza-Klein dilaton σ by

gµν = exp
(

√

n

n+ 2
σ
)

γµν , φ̃ =
[

v0 exp
(

√

n

n+ 2
σ
)]2

. (2)

The reason why we call σ the dilaton is obvious. It determines the local dilatation in the conformal

transformation. With this we find the following Lagrangian in the Pauli frame [1, 10],

LCF = − v0V̂G
16πGP

√
g
[

R+
1

2
(∂µσ)

2 − 1

4
(Dµρ

ab)(Dµρab)

+κ−2v0
−2/nR̂G(ρab) exp

(

−
√

n+ 2

n
σ
)

+ ΛP exp
(

−
√

n

n+ 2
σ
)

+λ exp
(

−
√

n

n+ 2
σ
)

(|detρab| − 1) +
κ2

4
v0

2/n exp
(

√

n+ 2

n
σ
)

ρabF
a
µνF

µνb
]

= −
√
g

16πG

[

R+
1

2
(∂µσ)

2 − 1

4
(Dµρ

ab)(Dµρab)

+
1

16πG
v0

−2/nR̂G(ρab) exp
(

−
√

n+ 2

n
σ
)

+ ΛP exp
(

−
√

n

n+ 2
σ
)

+λ exp
(

−
√

n

n+ 2
σ
)

(|detρab| − 1) + 4πG exp
(

√

n+ 2

n
σ
)

ρabF̂
a
µν F̂

µνb
]

, (3)

where we have put

v0V̂G
16πGP

=
1

16πG
,

κ2

16πG
= 1, (4)

and renormalized the field strength F aµν to F̂ aµν = v0
1/nF aµν to assure the minimal coupling of the

Pauli metric to the gauge field.

Notice that the unit scale of the internal space κ is fixed by the Planck scale
√
16πG, but the

actual scale of the internal space is given by v0
1/nκ, because the vacuum expectation value of the

volume of the internal space is fixed by

< VG >=
√

< φ̃ > V̂G = v0 V̂G ≃ v0 κ
n ≃ v0 (16πG)n/2. (5)

This tells that the scale of the higher-dimensional gravitational constant GP need not be fixed by

the Planck scale, because it is given by [1, 11]

GP
1/(n+2) = (16π)n/2(n+2) v0

1/(n+2) G1/2. (6)
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So, with a large v0, one can easily bring the length scale (n+2)
√
GP to the order of the elementary

particle length scale. Indeed, n = 2 brings the Plank scale down to TeV scale when the scale of

the internal space becomes of the order of 10−1cm. This is precisely the proposal which has been

popularized to resolve the hierarchy problem [18, 19].

Now we show how the dilaton can resolve the hierarchy problem. Consider the gravitational

coupling to the gauge field in (3). Here the dilaton modifies G to G exp[
√

(n+ 2)/n σ], which

can be interpreted as a space-time dependent Newton’s constant. So the dilaton transforms the

hierarchy problem to a space-time dependent artifact [3, 10]. And this is precisely the Dirac’s

proposal to resolve the hierarchy problem. Furthermore, with a large internal space, we can show

that the dilaton can bring down the Planck mass to the ordinary elementary particle mass. To see

this, suppose the Lagrangian (3) has the unique vacuum at

< gµν >= ηµν , < σ >= 0, < ρab >= δab, < Aaµ >= 0. (7)

Then we have the following dilatonic potential V (σ) [1, 10]

V (σ) =
1

16πG

[ R̂G
16πG

v0
−2/n exp(−

√

n+ 2

n
σ) + ΛP exp(−

√

n

n+ 2
σ)
]

+ V0

=
R̂G

(16πG)2
v0

−2/n
[

exp(−
√

n+ 2

n
σ)− n+ 2

n
exp(−

√

n

n+ 2
σ) +

2

n

]

, (8)

where R̂G = R̂G(< δab >) is the dimensionless vacuum curvature of the internal space G obtained

by the bi-invariant Cartan-Killing metric δab

R̂G = −1

2
f d
ab f

b
cd δ

ac − 1

4
f m
ab f n

cd δacδbdδmn, (9)

and V0 is a constant which assures that (8) does not create non-vanishing 4-dimensional cosmolog-

ical constant (vacuum energy). An important point here is that ΛP and V0 are completely fixed

by the vacuum condition dV (0)/dσ = 0 and V (0) = 0,

ΛP = −n+ 2

n
v0

−2/n R̂G
16πG

, V0 =
2

n
v0

−2/n R̂G
(16πG)2

. (10)

With this we find the following mass µ of the Kaluza-Klein dilaton,

µ2 = (16πG)
d2V (0)

dσ2
= −v0−2/n R̂G

8πn G
= −v0−2/n R̂G

8πn
m2
p, (11)

where mp ≃ 1.2 × 1019 GeV is the Planck mass. This confirms that when the internal space is of

the Planck scale (i.e., when v0 ≃ 1) the dilaton mass becomes of the Planck mass. But remarkably,

a large v0 naturally reduces the dilaton mass to the order of the elementary particle mass scale
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when R̂G 6= 0 [1, 11]. In fact (11) tells that the dilaton mass is determined by the scale of the

internal space LG as follows,

LG = v0
1/n κ =

√

−2R̂G
n

1

µ
≃ 1

µ
. (12)

In particular, for the S3 compactification of the 3-dimensional internal space in (4+3)-dimensional

unification with G=SU(2), we have R̂G = −3/2 and LG = 1/µ. This is how the dilaton resolves

the hierarchy problem in Kaluza-Klein unification.

At this point it is important to compare (6) and (11). Both provide a resolution of the hierarchy

problem, but there are important differences. First, (6) does that with the gravitational coupling

strength, while (11) does that with the dilaton mass. Secondly, the dimension of the internal space

n plays the crucial role in (6), but the curvature of the internal space plays the crucial role in (11).

In fact we have µ = 0 when R̂G = 0, independent of n and v0. More importantly, (11) tells that a

mass can be generated geometrically through the scalar curvature of the internal space [1, 10]. This

demonstrates that there is another mass generation mechanism other than the Higgs mechanism,

a geometric mass generation through the curvature of space-time. Understanding the origin of

mass has been a fundamental problem in physics. Our analysis shows that the hierarchy problem

is closely related to the problem of the origin of mass, and that the geometric mass generation

provides a natural resolution to the problem of the origin of mass.

In superstring or supergravity unification the situation is similar but more complicated, because

in this case one has other higher-dimensional matter fields [10, 12]. For example, in superstring one

has an extra higher-dimensional dilaton (the string dilaton) which remains massless in all orders

of perturbation, so that one has to find out a natural mechanism to make the dilaton massive first

[5]. Other than these complications the generic features of the dilaton physics remain the same.

This makes the dilaton a fundamental scalar field of nature which one can not ignore.

The dilaton has been called in various names, recently by the radion [18] or the chameleon [21].

But we notice that the dilaton as the scalar graviton has a long history. The first such dilaton

was the Brans-Dicke dilaton introduced by Jordan and independently by Brans and Dicke [13].

Subsequently the Kaluza-Klein dilaton [3] and string dilaton [5] have been introduced. Later, the

dilaton has been re-invented by many authors in so-called “the scalar field models”. Among these

only the Kaluza-Klein dilaton naturally acquires the mass and thus can describe a realistic scalar

graviton.

As we have remarked an immediate consequence of the dilaton is the presence of dilatonic fifth
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force which modifies Einstein’s gravitation [14]. To see how the dilaton affect the gravitation we

have to know the mass of dilation and its coupling strength to matter fields. In Kaluza-Klein theory

the dilaton naturally acquires a mass as we have shown in (11). As for the dilatonic coupling to

matter fields, the coupling may depend on the types of matter field it couples to [10, 14]. But

in practice only one type of coupling, the dilatonic coupling to the baryonic matter, is important

because this is what we measure in experiments. So, only two parameters, the baryonic coupling

constant and the mass of the dilaton, becomes important to describe the dilatonic fifth-force.

Let Fg and F5 be the gravitational and the fifth force between the two baryonic point particles

separated by a distance r. From the dimensional argument, one may express the total force in the

Newtonian limit as

F = Fg + F5 ≃
αg
r2

+
α5

r2
e−µr =

αg
r2

(1 + β e−µr) (13)

where αg, α5 are the fine structure constants of the gravitation and fifth force, and β is the ratio

between them. In terms of Feynman diagrams the first term represents one graviton exchange

but the second term represents one dilaton exchange in the zero momentum transfer limit. In the

Kaluza-Klein unification we have β = n/(n + 2) [1, 10], but in general one may assume β ≃ 1

because the dilaton is the scalar partner of the graviton. With this assumption one may try to

measure the range of the fifth force experimentally.

A recent torsion-balance fifth force experiment puts the upper bound of the range of the fifth

force to be around 56 µm with 95% confidence level [15, 16]. This tells that the dilaton mass has

to be larger than 10−2 eV. This, with (12), implies that, in the (4 + 3)-dimensional unification

with the S3 compactification of the internal space, the scale of the internal space LG is smaller

than 44 µm. In the following, however, we will simply treat the dilaton mass an undetermined

parameter, and find an independent estimate of the dilaton mass based on the assumption that

the dilaton is the dark matter of the universe.

III. RELIC DILATON IN COSMOLOGY

The dilaton has another important impact in cosmology. First of all, it could be a natural can-

didate for the dark matter of the universe [1, 12]. The dilaton starts with the thermal equilibrium

at the beginning and decouples from other sources very early near the Planck time. Moreover,

since its coupling to matter fields is very weak, it may easily survive in the present universe and

become the dark matter of the universe. In this section we estimate the density of the relic dilaton.
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Let’s consider the dilaton in the early universe. From the dimensional argument one may

assume the dilatonic coupling strength to matter fields to be g m/mp, where g is the dimensionless

coupling constant and m is the mass of the relevant matter (e.g., quarks and gluons). But at high

temperature (at T ≫ m), the coupling strength can be written as g T/mp. With this one can

easily estimate the dilaton creation (and annihilation) cross section as [12]

σ ≃ g2
(

T

mp

)2

× 1

T 2
, (14)

with the transition rates Γ

Γ ≃ Nσv ≃ g2
(

T

mp

)2

× T, (15)

where N and v are the density of the matter and the speed of the dilaton. Similarly the dilaton

scattering cross section and the interaction rate are given by

σ ≃ g4
(

T

mp

)4

× 1

T 2
, Γ ≃ Nσv ≃ g4

(

T

mp

)4

× T. (16)

On the other hand, the Hubble expansion rate in the early universe is given by H ≃ T 2/mp. So,

letting Γ ≃ H we find the dilaton decoupling temperature

TD ≃ mp

g4/3
. (17)

This confirms that the dilaton is thermally produced at the beginning, and decouples from the

other matters around the Planck time.

The dilaton becomes unstable and decays into ordinary matter. A typical decay process is

the two-photon process and the fermion-antifermion pair production process. The Lagrangian (3)

implies that, in the linear approximation where σ is assumed small enough, the decay may be

described by the following interaction Lagrangian,

Lint ≃ −1

4
g1
√
16πG σ̂ FµνF

µν − g2
√
16πG m σ̂ ψ̄ψ, (18)

where g1 and g2 are dimensionless coupling constants, m is the mass of the fermion, and σ̂ =

σ/
√
16πG is the dimensional (physical) dilaton field. This should be compared to the following

axion interaction Lagrangian given by [2, 8],

Lint ≃ −αγ a Fµν F̃µν − iαf a ψ̄γ
5ψ, (19)

where a is the axion field, αγ and αf are the axion coupling constants. This confirms that dilaton

and axion are the scalar-pseudoscalar counterparts of each other. Actually we can also include the
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following dilaton-fermion interaction in (18)

g3
√
16πG σ̂ ψ̄γµ∂µψ + g4

√
16πG ∂µσ̂ ψ̄γ

µψ. (20)

But for simplicity we will concentrate on (18) in the following.

Consider the interaction between dilaton and photon first, and let’s introduce a dimensional

coupling constant α1 = g1
√
16πG/4 and denote the dilaton mass by µ. The differential dilaton

decay rate to two photons at tree level is given by

dΓσ→γγ =
1

2p0

∑

λ,λ′=±1

1

2!
(2π)4δ(4)(pµ − kµ − k′µ)|M |2 d3~k

(2π)32k0
d3~k′

(2π)32k′0
, (21)

M = −iα1

(

kµǫν(k, λ) − kνǫµ(k, λ)
)(

k′µǫ′ν(k′, λ′)− k′νǫ′µ(k′, λ′)
)

, (22)

where pµ and kµ, k′µ are the 4-momenta of the incoming dilaton and the outgoing photons, M is

the reduced Feynman matrix element, ǫµ(k, λ) and ǫ′µ(k′, λ′) are the transverse polarization vectors

of photons. It is simple to calculate the matrix element in the center of momentum (COM) frame

where ~k′ = −~k. From
(

kµǫν(k, λ)− kνǫµ(k, λ)
)(

k′µǫ′ν(k′, λ′)− k′νǫ′µ(k′, λ′)
)

= 2
(

kµk
′µ
)(

ǫν(k, λ)ǫ
′ν(k′, λ′)

)

,

kµk
′µ = −2|~k|2,

∑

λ,λ′

∣

∣

∣ǫν(k, λ)ǫ
′ν(k′, λ′)

∣

∣

∣

2
= 2, (23)

we get the following decay rate,

Γσ→γγ =
α2
1

2π2µ

∫

d3~k d3~k′|~k|2δ(4)(kµ + k′µ − pµ)

=
α2
1

2π2µ

∫

d3d3~k′~k |~k|2δ(k0 + k′0 − µ)δ(3)(~k + ~k′) =
α2
1

2π2µ

∫

d3~k |~k|2δ(2k0 − µ)

=
α2
1

2π2µ

∫

d|~k|dΩ~k|~k|
4 1

2
δ(|~k| − µ/2) =

α2
1µ

3

16π
. (24)

With this we get the following life-time of the dilaton

τσ→γγ =
1

Γσ→γγ
=

16m2
p

g21µ
3
. (25)

Notice that when µ ≃ mp, the dilaton has a very short life-time.

Now consider the dilaton-fermion interaction, and let α2 = g2
√
16πG m be the dimensionless

coupling constant. The differential decay rate of dilaton to fermion and anti-fermion pair at tree

level is written as

dΓσ→ψ̄ψ =
1

2p0

∑

s,s′=± 1
2

(2π)4δ(4)(pµ − kµ − k′µ)|M |2 d3~k

(2π)32k0
d3~k′

(2π)32k′0
,

M = −iα2ū(k, s)v(k
′, s′), (26)
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where pµ and kµ, k′µ are the 4-momenta of the incoming dilaton and the outgoing fermion-

antifermion pair, and s, s′ are the fermion spin indices. Using the well-known sum-rule [22],

∑

s,s′=± 1
2

|ū(k, s)v(k′, s′)|2 = 4(−kµk′µ −m2), (27)

we have the following decay rate,

Γσ→ψ̄ψ =
α2
2

8π2p0

∫

d3~k

k0
d3~k′

k′0
(−kµk′µ −m2)δ(4)(kµ + k′µ − pµ)

=
α2
2

8π2p0
× µ2 − 4m2

2

∫

d3~k

k0
d3~k′

k′0
δ(3)(~k + ~k′ − ~p)δ(k0 + k′0 − p0)

=
α2
2

8π2µ
× µ2 − 4m2

2

∫

d3~k

(k0)2
δ(2k0 − µ) (COM frame)

=
α2
2

8π2µ
× µ2 − 4m2

2

∫

d|~k|dΩ~k
|~k|2
(k0)2

δ(2
√

m2 + |~k|2 − µ)

=
α2
2

2πµ
× µ2 − 4m2

2
× |~k|

2(k0)

∣

∣

∣

∣

∣

k0=µ/2

=
α2
2µ

8π
×
[

1−
(

2m

µ

)2
]3/2

. (28)

So we have the following life-time of the dilaton

τσ→ψ̄ψ =
1

Γσ→ψ̄ψ

=
m2
p

2g22m
2µ

[

1−
(

2m

µ

)2
]−3/2

. (29)

Notice that this becomes comparable to (25) only when m ∼ 0.32 × µ, so that the two photon

decay becomes the dominant decay of dilaton in general.

The dilaton number density n after the decoupling is given by the well-known equation [23].

d(nR3)

dt
= −1

τ
(nR3),

dn

dt
+ 3H n = −1

τ
n. (30)

where τ is the total life-time, R is the scale factor of the Friedmann-Robertson-Walker metric, and

H is the Hubble parameter. From this we have the familiar expression

n(t) = nD

(

RD
R

)3

exp(−t/τ), (31)

where the subscript D denotes the decoupling time. Note that the factor 1/R3 represents the

dilution of the dilaton due to Hubble expansion. To find the present dilaton number density notice

that in the highly relativistic regime (i.e., when T ≫ µ), the particle number density is given by

[23],

nb =
ζ(3)

π2
gT 3 (for a boson),

nf =
3

4

ζ(3)

π2
gT 3 (for a fermion), (32)
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where g is the internal degrees of freedom of the relevant particle and ζ(x) is the Riemann’s zeta

function. So, at the time of dilaton decoupling, the dilaton number density nD is given by

nD =
ζ(3)

π2
T 3
D ≃ 1.202

π2
T 3
D. (33)

On the other hand, the total entropy density s of the universe is given by [23],

s =
2π2

45
g∗T

3,

g∗ =
∑

i=bosons

gi

(

Ti
T

)3

+
7

8

∑

i=fermions

gi

(

Ti
T

)3

, (34)

where gi and Ti are the internal degrees of freedom and the thermal equilibrium temperature of

the i-th particle, and T is the thermal temperature of photon. At present we have g∗0 ≃ 3.91 (with

photon and three types of light neutrinos), but at the Plank time we have g∗ ≃ 106.75 according

to the standard model [23]. Now, the total entropy conservation of the universe in the co-moving

volume tells that g∗DT
3
DR

3
D = g∗0T

3
0R

3
0. From this we get (with T0 ≃ 2.73 K) the present dilaton

number density n(t0),

n(t0) = nD

(

RD
R0

)3

exp(−t0/τ) =
ζ(3)

π2
T 3
D

(

RD
R0

)3

exp(−t0/τ)

=
ζ(3)

π2
g∗0
g∗D

T 3
0 exp(−t0/τ) ≃ 7.5 exp(−t0/τ) cm−3. (35)

Note that the coefficient 7.5 cm−3 would be the present dilaton number density if the dilaton had

not been decaying at all, which is half the present number density of the massless graviton.

IV. DILATON AS A DARK MATTER CANDIDATE

The above analysis implies that the dilaton with a proper mass can easily survive to present

time, and could become the dark matter of the universe. Assuming this is the case, we can estimate

the mass of the dilaton. It has been argued that there are two mass ranges of the relic dilaton,

µ1 ≃ 500 eV and µ2 ≃ 270 MeV, in which the relic dilaton could be the dominant matter of the

universe [12]. This is because the dilaton with mass larger than µ2 does not survive long enough to

become the dominant matter of the universe, and the dilaton with mass smaller than µ1 survives

but fails to be dominant due to its low mass. The dilaton with mass in between cannot be seriously

considered because it would overclose the universe. In this section we refine the above result.

According to recent cosmological observations, the dark matter occupies about 23% of the crit-

ical density ρc = 3H2
0/(8πG) ≃ 10.5 h2 keV cm−3, where h is the dimensionless Hubble parameter
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g1 ≃ g2 µ1 τ1 µ2 τ2

10 160 eV 3.84× 1033 sec 75.6 MeV 3.62× 1016 sec

5 160 eV 1.53× 1034 sec 121 MeV 3.49× 1016 sec

2 160 eV 9.59× 1034 sec 219 MeV 3.35× 1016 sec

1 160 eV 3.84× 1035 sec 276 MeV 3.29× 1016 sec

0.9 160 eV 4.74× 1035 sec 292 MeV 3.27× 1016 sec

0.8 160 eV 6.00× 1035 sec 312 MeV 3.26× 1016 sec

0.7 160 eV 7.83× 1035 sec 341 MeV 3.25× 1016 sec

0.6 160 eV 1.07× 1036 sec 383 MeV 3.21× 1016 sec

0.5 160 eV 1.53× 1036 sec 445 MeV 3.19× 1016 sec

0.4 160 eV 2.40× 1036 sec 543 MeV 3.14× 1016 sec

0.3 160 eV 4.26× 1036 sec 702 MeV 3.09× 1016 sec

0.2 160 eV 9.60× 1036 sec 988 MeV 3.03× 1016 sec

0.1 160 eV 3.84× 1037 sec 1.68 GeV 2.94× 1016 sec

0.05 160 eV 1.53× 1038 sec 2.76 GeV 2.85× 1016 sec

10−2 160 eV 3.84× 1039 sec 8.37 GeV 2.66× 1016 sec

10−3 160 eV 3.84× 1041 sec 40.0 GeV 2.45× 1016 sec

10−4 160 eV 3.84× 1043 sec 191 GeV 2.25× 1016 sec

TABLE I: The coupling constants versus dilaton mass and life-time, where we have assumed g1 ≃ g2 . Here

the smaller mass is denoted by µ1 and larger mass is denoted by µ2, and τ1 and τ2 are the life-time of µ1

and µ2.

in units of 100 km sec−1 Mpc−1. On the other hand, the “dark energy” characterized by the cos-

mological constant is believed to occupy about 70% of the total energy of the universe [24]. So for

the dilaton to be the dark matter of the universe we must have the following requirement [12],

ρ(µ) = µ× 7.5 exp[−t0/τ(µ)] cm−3 = 0.23 × 3H2
0

8πG
≃ 0.23 × 10.5 h2 keV cm−3, (36)

where ρ(µ) is the dilaton mass density. At the same time, the energy density ρ̃(µ) of the daughter

particles (photons and light fermions) coming from the dilaton decay should be negligible compared

to the critical density. This gives the second requirement

ρ̃(µ) ≪ ρc. (37)

To find the dilaton mass which satisfies these constraints, we have to know the coupling constants

g1 and g2. In Kaluza-Klein unification they are given by [10]

g1 =

√

n+ 2

n
, g2 =

√

n

n+ 2
. (38)
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FIG. 1: The dilaton mass density ρ(µ) versus the dilaton mass µ, obtained with g1 ≃ g2 ≃ 1.

But in the following we will leave them as free parameters, although our favorite values are g1 ≃
g2 ≃ 1. Now, with t0 = 1.5 × 1010 yr = 4.73 × 1017 sec and h ≃ 0.7, we obtain the numerical

solutions of the first constraint (36) shown in TABLE I. As we see in the table, it has two solutions

for the dilaton mass and life-time for given coupling constants. We denote the smaller one by µ1

and τ1 and the larger one by µ2 and τ2 in the table. In our numerical calculations, the decay

channels we considered are γγ, νν, e+e−, µ+µ− processes. So when g1 ≃ g2 >∼ 5 × 10−2, our

calculations are exact. But when g1 ≃ g2 <∼ 10−2, the dilaton has larger mass and can decay into

other heavier particles like τ+τ−. But even in the latter case, the two-photon decay probability

is far greater than the fermion-antifermion decay probability except when m ≃ 0.32× µ (in which

case we have Γσ→ψ̄ψ ≃ 1.49×Γσ→γγ) as we have remarked, and the error in evaluating the dilaton

mass in the latter case is at most 20% or so.

Note that the smaller mass µ1 is insensitive to the values of the coupling constants, while the

larger mass µ2 increases as the coupling constants decrease. On the other hand, the life-time τ1 is

sensitive to the values of the coupling constants, while the life-time τ2 remains of the same order

for all values of the coupling constants.

With g1 ≃ g2 ≃ 1 we can plot the dilaton density ρ(µ) against its mass µ, which is shown in Fig.1.

Note that ρ(µ) starts from zero and approaches to the maximum value of about 1.08 × 105ρc at



13

ρd/ρc µ1 τ1 µ2 τ2

100 % 686 eV 4.85× 1033 sec 270 MeV 3.65× 1016 sec

23 % 160 eV 3.84× 1035 sec 276 MeV 3.29× 1016 sec

10 % 68.6 eV 4.85× 1036 sec 280 MeV 3.12× 1016 sec

4 % 27.4 eV 7.58× 1037 sec 284 MeV 2.93× 1016 sec

1 % 6.86 eV 4.85× 1039 sec 291 MeV 2.68× 1016 sec

0.5 % 3.43 eV 3.88× 1040 sec 294 MeV 2.59× 1016 sec

TABLE II: The dilaton mass and life-time versus the ratio ρd/ρc. Here the coupling constants g1 and g2 are

set to be 1.

µ ≃ 103 MeV, and again decreases to zero when µ goes to infinity. More importantly, ρ(µ) exceeds

the dark matter density in the range 160 eV < µ < 276 MeV. This means that when µ < 160 eV or

µ > 276 MeV, the dilaton undercloses the universe, but when 160 eV < µ < 276 MeV it overcloses

the universe. This immediately rules out the dilaton with mass range 160 eV < µ < 276 MeV.

Moreover, we have two possible mass ranges which are of particular interest, µ1 ≃ 160 eV with

life-time τ1 ≃ 3.84 × 1035 sec and µ2 ≃ 276 MeV with life-time τ2 ≃ 3.29 × 1016 sec, which makes

the dilaton the dominant matter of the universe.

So far we have assumed that the dilaton occupies all of the dark matter, about 23% of the critical

density ρc. But even when we loosen this constraint, we get similar result. Varying the ratio ρd/ρc

of the dilaton’s mass density to the critical density, we obtain the result shown in TABLE II with

g1 ≃ g2 ≃ 1. The result shows that µ1 and τ1 are sensitive to the change of ρd/ρc, but µ2 and τ2

are not much affected by that. Moreover, the generic feature of the dilaton physics remains the

same.

Now, we have to make sure that the dilaton mass should also satisfy the second constraint (37).

To check this, notice that the 160 eV dilaton is almost stable because τ1 ≃ 8.1 × 1017 t0. So the

energy density of the daughter particles must be negligible compared to the energy density of the

dilaton. This means that this dilaton can easily satisfy the second constraint (37). On the other

hand, most of the 276 MeV dilaton should have decayed by now, because τ2 ≃ 6.9 × 10−2 t0.

Indeed only 0.5 × 10−6 of the heavy dilaton survives now. So the energy density of the daughter

particles becomes much bigger than that of the dilaton. This means that the daughter particles

from the heavy dilaton overclose the universe, and thus can not satisfy the second constraint. This

effectively rules out the heavy dilaton. So only the 160 eV dilaton can be accepted as the dark

matter candidate.
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FIG. 2: The possible scale LG = 1/µ of the internal space versus the relative fine structure constant

β = α5/αg of the fifth force in (4+3)-dimensional unification with S3 compactification of the internal space.

The colored region marked by (–) is the excluded region, and the dotted line represents the constraint of

the heavy dilaton whose daughter particles overclose the universe.

The dark matter dilaton has the following characteristics. With the mass µ ≃ 160 eV, the

possible decay channels of the dilaton are the γγ and three νν processes. But with life-time

τ ≃ 8.1× 1017 t0 this dilaton is almost stable. To see whether this can be hot or cold dark matter,

we should estimate the free-streaming distance λFS of the dilaton first. The dilaton in this case

becomes nonrelativistic at TNR ≃ µ/3 ≃ 53.3 eV well before the matter-radiation equilibrium

era tEQ ≃ 4.36 × 1010(Ω0h
2)−2 sec ≃ 1.82 × 1011 sec. The time tNR when the dilaton becomes

nonrelativistic is given by [23]

tNR ≃ 1.2 × 107
(

keV

µ

)2(
TNR
Tγ

)2

sec = 1.2 × 107
(

keV

µ

)2(
g∗NR
g∗D

)2/3

sec,

tEQ
tNR

=
[ µ/eV

17(Ω0h2)(TNR/Tγ)

]2
, (39)

where Tγ is the temperature of the photon at tNR, g∗NR is the total relativistic degrees of freedom

when the dilaton becomes non-relativistic. So the free-streaming distance λFS is given by [12, 23],

λFS ≃ 0.2Mpc

(

µ

keV

)−1(TNR
Tγ

)

[

ln

(

tEQ
tNR

)

+ 2
]

= 0.2Mpc

(

µ

keV

)−1(g∗NR
g∗D

)1/3 [

ln

(

tEQ
tNR

)

+ 2
]

. (40)
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Now, with g∗D ≃ 106.75 and g∗NR ≃ 3.91 we get tNR ≃ 5.17 × 107 sec and λFS ≃ 4.2 Mpc.

Comparing the latter with the typical structure formation scale λEQ ≃ 13(Ω0h
2)−1 ≃ 18.6 Mpc,

we may conclude that the 160 keV dilaton becomes a warm dark matter.

In comparison the dilaton with mass µ ≃ 276 MeV becomes non-relativistic at TNR ≃ µ/3 ≃
92 MeV. The decay channels available here are γγ, νν, e+e−, µ+µ− processes. Among them, only

the µ+µ− process is comparable to the γγ process since the mass of the muon mµ ≃ 106 MeV is

around 0.32 × µ2. With life-time τ ≃ 6.9 × 10−2 t0, only a fraction of the dilatons have survived

up to now. In this case we have g∗NR ≃ 19.5 since only photon, three neutrinos, electron, and

muon could be in thermal equilibrium at t = tNR. With this value, we get tNR ≃ 5.07 × 10−5 sec

and λFS ≃ 1.55 × 10−5 Mpc ≪ λEQ ≃ 18.6 Mpc. So this dilaton could have been an excellent

candidate for cold dark matter. But of course, this dilaton is not acceptable because the daughter

particles overclose the universe.

As we have shown there are two constraints on the dilaton mass, the experimental constraint

from the fifth force and the theoretical constraint from cosmology. Clearly these constraints restricts

the allowed scale of the internal space. Putting the two constraints together we obtain Fig.2, which

shows the allowed regions of the scale of the internal space versus the relative fine structure constant

β = α5/αg of the fifth force. Notice that the cosmological constraint tells that the scale of the

internal space can not be smaller than 10−9 m.

V. DILATON DETECTION EXPERIMENT

So far, we have tried to estimate the dilaton mass based on the conjecture that the dilaton is

the dark matter of the universe. Now an important question is how to detect the relic dilaton and

confirm such conjecture. Clearly one could try to establish the existence of the dilaton measuring

the dilatonic fifth force [11, 15]. But the above analysis implies that, if indeed the dilaton is the

dark matter of the universe, it’s detection by the fifth force experiments would be almost impossible

because such dilaton generates an extremely short ranged fifth force.

In this section we propose a totally different type of experiment based on two photon decay of the

relic dilaton. Of course, one might try to detect the two photon decay of the relic dilaton directly,

searching for the mono-energetic x-ray signals from the sky [12]. Here we propose another type of

experiment, a Sikivie-type experiment which detects the dilaton conversion to one photon in strong

electromagnetic background. In this type of experiment the dilaton conversion rate can be greatly
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enhanced by two factors, first by the strong electromagnetic background and secondly by the large

dilaton density of halo. It is clear that the conversion rate is enhanced by the strong background,

because the conversion amplitude is proportional to the background field strength. Moreover, just

as in the axion detection experiment, we can assume that our galaxy halo is made of the relic dilaton

if the dark matter is the dilaton. In this case the conversion rate will be enhanced by a factor 105,

because the average energy density of the relic dilaton 0.23 × 10.5 h2 keV cm−3 ≃ 1.18 keV cm−3

in the present universe can be replaced by the galaxy halo density ρhalo ≃ 0.3 GeVcm−3 [9]. In the

following we estimate the power of dilaton conversion to one photon in strong magnetic background,

assuming that our galaxy halo is made of dilaton.

Consider a rectangular cavity with three edges Lx, Ly, Lz and volume V = LxLyLz made of a

perfect conductor, which has a strong magnetic background ~Bext(~x) = Bext(~x) ẑ in the z-direction

inside, and consider the halo dilaton conversion in the cavity described by the interaction

Lσγγ = −α1σ̂F
2
µν = 2α1σ̂( ~E

2 − ~B2), α1 =
1

4
g1
√
16πG. (41)

In this case the induced photon is described by TE mode (the magnetic wave) ~B(~x) = B(~x) ẑ, and

the differential cross-section dσ of the dilaton conversion in the cavity is given by

dσ~k,λ = 2πδ(k0 − p0)
1

2p0v

d3~k

(2π)32k0
|M |2,

M = −i4α1
~B(~x) · ~Bext(~q) = −i4α1k

0(ǫ̂(~k, λ)× k̂) · ~Bext(~q), (42)

where pµ and kµ are the 4-momenta of the dilaton and the induced photon, M is the Feynman

reduced matrix element, ǫ̂(~k, λ = ±1) and k̂ are the 3-dimensional photon polarization vector and

the unit vector in the direction of the photon momentum ~k, ~q = ~k − ~p is the spatial momentum

transfer, and ~Bext(~q) is the Fourier transform of ~Bext(~x). Note that in the classical background

only energy is conserved, and the δ(k0 − p0) term represents this fact. Then the total cross-section

σ in the continuum limit is given as follows,

σ =
∑

λ=±1

2π

∫

d3~k δ(k0 − p0)
1

2p0v

1

(2π)32k0
|M |2

=
α2
1

π2v

∑

λ=±1

∫

d3~kδ(k0 − p0)|B̂(~k, λ) · ~Bext(~q)|2, (43)

where B̂(k, λ) = ǫ̂(~k, λ)× k̂ is the unit vector in the direction of the induced magnetic field ~B.

Let the wave vector of the photon be ~k = (nxπ/Lx, nyπ/Ly, nzπ/Lz) where (nx, ny, nz) are

arbitrary integers. For TE modes, the boundary condition

B (z = 0, Lz) = 0 ,
∂B

∂x
(x = 0, Lx) = 0 ,

∂B

∂y
(y = 0, Ly) = 0, (44)
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requires the induced magnetic field to assume the form

B = A cos

(

nxπx

Lx

)

cos

(

nyπy

Ly

)

sin

(

nzπz

Lz

)

, (45)

where A is a normalization constant. Notice that nx and ny cannot be zero simultaneously, and

nz must be a non-zero integer [25].

Now, we have

∑

λ=±1

|B̂(~k, λ) · ~Bext(~q)|2 = |k̂ ×Bext(~q)ẑ|2 =
k2x + k2y

(k0)2
|Bext(~q)|2,

~Bext(~q) =

∫

V
ei~q·~x ~Bext(~x) d

3~x =

∫

V
ei~q·~xBext(~x)ẑ d

3~x = Bext(~q)ẑ, (46)

so that, changing the integration into summation as follows

d3~k = dkxdkydkz =
π

Lx

π

Ly

π

Lz
dnxdnydnz =

π3

V
, (47)

we get the following cross-section

σ =
∑

~k

πα2

V v

(k2x + k2y)

(k0)2
δ(k0 − p0)|Bext(~q)|2. (48)

To proceed, we let

~Bext(~x) = B0 cos(Qx)ẑ, (49)

and approximate ~q = (~k − ~p) ∼ ~k since the incoming halo dilaton is highly non-relativistic (with

v ∼ 10−3c) [9]. In this case we have

|Bext(~q)|2 = |
∫

V
d3~xei~q·~xB0 cos(Qx)|2

= B2
0L

2
xL

2
yL

2
z

sin2(
kyLy
2

)

(
kyLy
2

)2

sin2(
kzLz
2

)

(
kzLz
2

)2
× 1

4

([sin(kx −Q)Lx
(kx −Q)Lx

+
sin(kx +Q)Lx
(kx +Q)Lx

]2

+
[1− cos(kx −Q)Lx

(kx −Q)Lx
+

1− cos(kx +Q)Lx
(kx +Q)Lx

]2)

. (50)

As we can see, |Bext(~q)|2 has the maximum value

|Bext(~q)|2max =
B2

0L
2
xL

2
yL

2
z

π2
, (51)

when

kx = ±Q, kzLz = ±π , kyLy = 0 . (52)
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Note that |Bext(~q)|2max would be highly suppressed without the external sinusoidal background,

which is why we choose the sinusoidal external magnetic field (49).

We are interested in the dilaton with the mass range µ >∼ 0.1 keV whose Compton wave-length is

of order smaller than 2×10−7 cm. Considering the typical detector length scale Lx, Ly, Lz ≃ 1 m

and (k0)2 = k2x + k2y + k2z ≃ µ2, we have kx ≃ k0 ≫ Max (ky, kz) since µLx, µLy ≫ 1 in the

resonance case. Thus we can use the following approximation

k0dk0 = kxdkx + kydky + kzdkz ≃ kxdkx ⇒ dk0 =
kx
k0
dkx ≃ dkx . (53)

On the other hand, the number of additional modes due to the differential spread dk0 around

k0 = p0 is

dnx =
Lx
π
dkx ≃ Lx

π
dk0, δ(k0 − p0)dnx =

Lx
π

. (54)

Combining these relations, we finally obtain

σ =
∑

~k

πα2
1

V v

(k2x + k2y)

(k0)2
δ(k0 − p0)|Bext(~q)|2 ≃ 4πα2

1

V v

(k0)2

(k0)2
δ(k0 − p0)dnx × |Bext(~q)|2max

=
16πα2

1

V v

Lx
π

× |Bext(~q)|2max =
4α2

1

π2V v
B2

0L
2
xL

2
yL

2
zLx =

4α2
1

π2v
B2

0V Lx, (55)

and the following detection power P

P = µ ndvσ =

(

4α2
1

π2

)

ρdB
2
0LxV, (56)

where nd is the dilaton number density and ρd is the dilaton energy density. Notice that the

detection power depends on the energy density, not the mass, of dilaton.

This agrees with that of the axion detection power except for the numerical factor of order

unity which comes from the different axion-photon coupling constant. In the case of the axion, the

axion-photon interaction Lagrangian and axion detection power are given as follows [2],

Laγγ = −αγ a Fµν F̃µν = 4αγ a ~E · ~B,

Pa = 2α2
γρaB

2
0LxV. (57)

As we have mentioned there are two types of axion, the popular axion from strong interaction

and the gravitational axion proposed as a pseudoscalar graviton [6, 8]. The difference is that for

the popular axion the coupling constant αγ is given by gγα/4πfa, where gγ is a model-dependent

dimensionless coupling constant of order one, α is the electromagnetic fine-structure constant, and
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fa is the UPQ(1) symmetry breaking scale. But for the gravitational axion αγ is similar to our α1

because this axion is the pseudoscalar partner of the dilaton. Other than this they are virtually

identical.

We can compare the axion detection power with the dilaton detection power. Consider the

popular axion first. Since fa is related to the axion mass ma by ma ≃ 6 eV× 106 GeV/fa, and the

educated guess of the axion mass is around 10−6 eV or so, we have fa ≃ 6 × 1012 GeV [2, 9]. So

we have

P

Pa
≃ 1.9× 106 × (

g1
gγ

)2(
fa
mp

)2 ≃ 4.7× 10−7. (58)

This is a small number, but this is because α1 is smaller than αγ due to the fact that fa is much

bigger than the Planck mass. Indeed, with ρd ≃ ρhalo ≃ 0.5 × 10−24 g/cm3 ≃ 0.3 GeV/cm3 and

B0 = 10 Tesla, Lx = Ly = Lz ≃ 1 m, we get the dilaton detection power P ≃ 1.42× 10−31 W with

g1 ≃ 1. This is 10−5 times smaller than the axion detection power in current experiments [2, 9].

For the gravitation axion, however, we expect α1 ≃ αγ so that Pa becomes as small as P . So in

this case the axion detection power becomes smaller than the popular axion detection power, and

becomes comparable to the dilaton detection power.

Notice that, due to the pseudoscalar coupling, the axion produces TM modes (the electric wave)

rather than TE modes. Another notable difference between the dilaton and the axion is that for

the dilaton the photon polarization is perpendicular to the external magnetic field, whereas for the

axion the photon polarization is parallel to the external magnetic field.

Now, a few remarks are in order. First, the above result holds when we have the resonance, Q ≃
µ. But it seems very difficult to make static magnetic field of wavelength of order µ−1 <∼ 10−7 cm

with the current technology. However we may be able to set up x-ray range electromagnetic

waves with ωext = Q ≃ µ. In that case, the only change needed is to replace δ(k0 − p0) by

δ(k0 − p0 ± p0) in the above calculation, which will make the detection power P twice as big.

Second, the dilaton detection power appears too small to be considered realistic at present. On

the other hand, we notice that the relevant technologies are developing fast [9], so that it may

be possible to detect the halo dilaton in the near future. Third, we have used the magnetic

background in the above calculation. With an electric background the detection power would have

been proportional to the electric field energy density. In terms of the field energy density, 1 Tesla

corresponds to 300 MV/m since E = cB in the MKS unit system. But the strongest magnetic

field and electric fields currently available are around 50 Tesla and 40 MV/m [26], respectively.
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So at present a magnetic background can give us larger detection power. Moreover, in the air the

electric breakdown happens when the electric field is about 3 MV/m. This is why we have used the

magnetic background in our calculation. And this is why one hardly uses an electric background

in particle creation or annihilation experiments in laboratories.

VI. DISCUSSION

The Newton’s constant in Einstein’s theory has always been a mystery. The Einstein’s theory

has a dimensional coupling constant, the Newton’s constant, because the source of gravity is the

energy-momentum tensor. The problem is that in mass scale, this coupling constant is absurdly

bigger than the ordinary elementary particle mass scale. In this paper we have shown how the

dilaton from higher-dimensional unification can naturally resolve this mystery. First, the dilaton

makes the Newton’s constant a space-time dependent parameter. This changes the hierarchy

problem from a fundamental problem to a space-time dependent artifact. Moreover, it reduces the

Planck mass down to the ordinary mass scale when the internal space becomes larger than the

Planck size. This is because the dilaton mass is fixed by the curvature of the internal space. So it

can be small even though the unit of the curvature is set by the Planck mass. When the internal

space becomes larger, it becomes flatter and the curvature becomes smaller. This means that the

dilaton mass can be much smaller than the Planck mass when the size of the internal space is big

enough. This is how the Kaluza-Klein dilaton resolves the hierarchy problem [27].

As the scalar graviton the dilaton couples to all matters, so that it creates the fifth force which

modifies Einstein’s gravity. This is why the fifth force experiments have been used to detect the

dilaton. On the other hand the dilaton coupling to matter fields is very weak. This means that

the dilaton can easily survive to present universe. This makes the dilaton an excellent candidate

of dark matter. Our analysis tells that there is practically only one mass range, µ ≃ 160 eV, for

which the dilaton can be the dark matter. This cosmological constraint of dilaton mass implies

that detecting the dilaton by the fifth force experiments would be futile, because the fifth force is

too short ranged to be detected in the near future.

In this paper we have proposed a totally different type of experiment to detect the dilaton,

based on the dilaton photon conversion in strong magnetic background. Although the detection

power of dilaton is still very small, we hope that this type of experiment could help us to detect

the dilaton.
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