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Abstract

We discuss properties of a new class of p-brane models, describing intrinsically lightlike branes for

any world-volume dimension, in various gravitational backgrounds of interest in the context of black

hole physics. One of the characteristic features of these lightlike p-branes is that the brane tension

appears as an additional nontrivial dynamical world-volume degree of freedom. Codimension one

lightlike brane dynamics requires that bulk space with a bulk metric of spherically symmetric type

must possess an event horizon which is automatically occupied by the lightlike brane while its

tension evolves exponentially with time. The latter phenomenon is an analog of the well known

“mass inflation” effect in black holes.
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I. INTRODUCTION

The behavior of matter near horizons of black holes has been the subject of several

interesting investigations [1]-[5]. One particularly intriguing effect was the “mass inflation”

[4]-[5] which takes place, for example, for matter accumulating (blue shifting) near the inner

Reissner-Nordström horizon.

In the context of the problem where we consider matter living close to, or in fact on,

the horizons of black holes, the notion of lightlike branes becomes particularly relevant. Let

us recall that lightlike branes (LL-branes, for short) are of particular interest in general

relativity primarily due to their role: (i) in describing impulsive lightlike signals arising in

cataclysmic astrophysical events [6]; (ii) as basic ingredients in the so called “membrane

paradigm” theory [7] of black hole physics; (iii) in the context of the thin-wall description

of domain walls coupled to gravity [8]-[11].

More recently, LL-branes became significant also in the context of modern non-

perturbative string theory, in particular, as the so called H-branes describing quantum

horizons (black hole and cosmological) [12], as well appearing as Penrose limits of baryonic

D(=Dirichlet) branes [13].

In the original papers [8]-[11] LL-branes in the context of gravity and cosmology have

been extensively studied from a phenomenological point of view, i.e., by introducing them

without specifying the Lagrangian dynamics from which they may originate. In a recent

paper [14] brane actions in terms of their pertinent extrinsic geometry have been proposed

which generically describe non-lightlike branes, whereas the lightlike branes are treated as

a limiting case. On the other hand, we have proposed in a series of recent papers [15]-[21]

a new class of concise Lagrangian actions, among them – Weyl-conformally invariant ones,

providing a derivation from first principles of the LL-brane dynamics.

In Section 2 of the present paper we extend our previous construction (which was re-

stricted to odd world-volume dimensions) to the case of LL-brane actions for arbitrary

world-volume dimensions.

In Section 3 we discuss the properties of LL-brane dynamics moving as test brane in

generic gravitational backgrounds. The case with two extra dimensions (codimension two

LL-branes) was studied in a recent paper [22] from the point of view of “braneworld” sce-

narios [23]-[28] (for a review, see [29]-[30]). Unlike conventional braneworlds, where the
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underlying branes are of Nambu-Goto type (i.e., describing massive brane modes) and in

their ground state they position themselves at some fixed point in the extra dimensions of

the bulk space-time, our lightlike braneworlds perform in the ground state non-trivial mo-

tions in the extra dimensions – planar circular, spiral winding etc depending on the topology

of the extra dimensions. In the present paper we concentrate on the special case of codi-

mension one LL-branes which is qualitatively different and needs separate study. Here the

consistency of LL-brane dynamics as test brane moving in external gravitational fields dic-

tates that the bulk space-time with a bulk metric of spherically symmetric type (see Eq.(33)

below) must possess an event horizon which is automatically occupied by the LL-brane

(“horizon straddling” according to the terminology of ref.[10]). This is a generalization for

any (p + 1) world-volume dimensions of the results previously obtained in refs.[15]-[21] for

lightlike membranes (p = 2) in D = 4 bulk space-time.

In Section 4 we study several cases of “horizon straddling” solutions obtained from our

LL-brane world-volume action (1). For the inner Reissner-Nordström horizon we find a

time symmetric “mass inflation” scenario, which also holds for de Sitter horizon. In this

case the dynamical tension of the LL-brane blows up as time approaches ±∞ due to its

exponential quadratic time dependence. For the Schwarzschild and the outer Reissner-

Nordström horizons, on the other hand, we obtain “mass deflationary” scenarios where the

dynamical LL-brane tension vanishes at large positive or large negative times. Another set

of solutions with asymmetric (w.r.t. t → −t) exponential linear time dependence of the

LL-brane tension also exists. In the latter case, by fine tuning one can obtain a constant

time-independent brane tension as a special case.

II. WORLD-VOLUME ACTIONS OF LIGHTLIKE BRANES

We propose the following reparametrization invariant action describing intrinsically light-

like p-branes for any world-volume dimension (p+ 1) (for previous versions, cf.[15]-[21]):

S = −
∫

dp+1σΦ(ϕ)
[1

2
γab∂aX

µ∂bX
νGµν(X)− L

(

F 2
)

]

(1)

using notions and notations as follows:

• Alternative non-Riemannian integration measure density Φ(ϕ) (volume form) on the
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p-brane world-volume manifold:

Φ(ϕ) ≡ 1

(p + 1)!
εI1...Ip+1ε

a1...ap+1∂a1ϕ
I1 . . . ∂ap+1ϕ

Ip+1 (2)

instead of the usual
√−γ. Here

{

ϕI
}p+1

I=1
are auxiliary world-volume scalar fields; γab

(a, b = 0, 1, . . ., p) denotes the intrinsic Riemannian metric on the world-volume, and

γ = det ‖γab‖. Note that γab is independent of ϕ
I .

• Xµ(σ) are the p-brane embedding coordinates in the bulk D-dimensional space

time with bulk Riemannian metric Gµν(X); µ, ν = 0, 1, . . . , D − 1, (σ) ≡
(σ0 ≡ τ, σ1, . . . , σp), ∂a ≡ ∂

∂σa .

• Auxiliary (p− 1)-rank antisymmetric tensor gauge field Aa1...ap−1 on the world-volume

with p-rank field-strength and its dual:

Fa1...ap = p∂[a1Aa2...ap] , F ∗a =
1

p!

εaa1...ap√−γ
Fa1...ap . (3)

• L(F 2) is arbitrary function of F 2 with the short-hand notation:

F 2 ≡ Fa1...apFb1...bpγ
a1b1 . . . γapbp . (4)

Let us note the simple identity:

Fa1...ap−1bF
∗b = 0 , (5)

which will play a crucial role in the sequel.

Remark 1. For the special choice L(F 2) = (F 2)
1/p

the action (1) becomes manifestly

invariant under Weyl (conformal) symmetry: γab−→γ′
ab = ρ γab, ϕ

I −→ ϕ′ I = ϕ′ I(ϕ) with

Jacobian det
∥

∥

∥

∂ϕ′ I

∂ϕJ

∥

∥

∥
= ρ. In what follows we will consider the generic Weyl non-invariant

case.

Remark 2. In our previous papers [15]-[21] we have used a different form for the La-

grangian of the auxiliary world-volume gauge field in the brane action (1):

L(F 2) =
√

FabFcdγacγbd with Fab = ∂aAb − ∂bAa , (6)

i.e., with ordinary vector gauge field for any p. However, it has been shown in ref.[21] that

for the choice (6) the action (1) describes consistent brane dynamics only for odd (p + 1)
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world-volume dimensions. This is due to the following relation (Eq.(13) in ref.[21], which is

a consequences from the equation of motion w.r.t. γab – the counterpart of Eq.(11) below):

det ‖ (∂aX∂bX) ‖ =
(

−4L′(F 2)
)p+1

(− det ‖γab‖) (det ‖iFab‖)2 . (7)

The latter relation implies that for (p+1) =even world-volume dimensions the r.h.s. of (7) is

strictly positive (because of the Lorentzian signature of the intrinsic metric γab) contradicting

the requirement that the determinant of the induced metric in the l.h.s of (7) should be

negative conforming with the Lorentzian signatures of both world-volume and embedding

space-time metrics. Henceforth, we will employ our new action (1) with the (p − 1)-rank

auxiliary world-volume antisymmetric tensor gauge fields (3).

Rewriting the action (1) in the following equivalent form:

S = −
∫

dp+1σ χ
√−γ

[1

2
γab∂aX

µ∂bX
νGµν(X)− L

(

F 2
)

]

, χ ≡ Φ(ϕ)√−γ
(8)

with Φ(ϕ) the same as in (2), we find that the composite field χ plays the role of a dynam-

ical (variable) brane tension. Let us note that the notion of dynamical brane tension has

previously appeared in different contexts in refs.[31]-[33].

Before proceeding, let us mention that both the auxiliary world-volume scalars ϕI entering

the non-Riemannian integration measure density (2), as well as the intrinsic world-volume

metric γab are non-dynamical degrees of freedom in the action (1), or equivalently, in (8).

Indeed, there are no (time-)derivates w.r.t. γab, whereas the action (1) (or (8)) is linear w.r.t.

the velocities
.
ϕ
I
. Thus, (1) (or (8)) is a constrained dynamical system, i.e., a system with

gauge symmetries including the gauge symmetry under world-volume reparametrizations

(about the Hamiltonian treatment of (1), see the remarks after Eq.(11) below). On the

other hand, the dynamical brane tension χ (8), being a ratio of two world-volume scalar

densities, is itself a well-defined reparametrization-covariant world-volume scalar field.

Introducing a short-hand notation for the induced metric:

(∂aX∂bX) ≡ ∂aX
µ∂bX

νGµν . (9)

we can write the equations of motion obtained from (1) w.r.t. measure-building auxiliary

scalars ϕI and γab as:
1

2
γcd (∂cX∂dX)− L

(

F 2
)

= M , (10)
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where M is an integration constant;

1

2
(∂aX∂bX)− pL′

(

F 2
)

Faa1...ap−1γ
a1b1 . . . γap−1bp−1Fbb1...bp−1 = 0 . (11)

Since, as mentioned above, both ϕI and γab are non-dynamical degrees of freedom, both

Eqs.(10)–(11) are in fact non-dynamical constraint equations (no second-order time deriva-

tives present). Their meaning as constraint equations is best understood within the frame-

work of the Hamiltonian formalism for the action (1) (or (8)). The latter can be developed in

strict analogy with the Hamiltonian formalism for a simpler class of modified p-brane mod-

els based on the alternative non-Riemannian integration measure density (2), which was

previously proposed in [34] (for details, we refer to Sections 2 and 3 of [34]). In particular,

Eqs.(11) can be viewed as p-brane analogues of the string Virasoro constraints.

Thus, Eqs.(10)–(11) are particular manifestation in the case of (1) of the general prop-

erty in any dynamical system with gauge symmetries, i.e., a system with constraints a’la

Dirac [35]-[37] – variation of the action w.r.t. non-dynamical degrees of freedom (Lagrange

multipliers) yields non-dynamical constraint equations.

Taking the trace in (11) and comparing with (10) implies the following crucial relation

for the Lagrangian function L (F 2):

L
(

F 2
)

− pF 2L′
(

F 2
)

+M = 0 , (12)

which determines F 2 (4) on-shell as certain function of the integration constant M (10), i.e.

F 2 = F 2(M) = const . (13)

The second and most profound consequence of Eqs.(11) is due to the identity (5) which

implies that the induced metric (9) on the world-volume of the p-brane model (1) is singular

(as opposed to the induced metric in the case of ordinary Nambu-Goto branes):

(∂aX∂bX)F ∗b = 0 , i.e. (∂FX∂FX) = 0 , (∂⊥X∂FX) = 0 (14)

where ∂F ≡ F ∗a∂a and ∂⊥ are derivatives along the tangent vectors in the complement of

F ∗a.

Thus, we arrive at the following important conclusion: every point on the surface of the

p-brane (1) moves with the speed of light in a time-evolution along the vector-field F ∗a which

justifies the name LL-brane (Lightlike-brane) model for (1).
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Before proceeding let us point out that we can add [22] to the LL-brane action (1) natural

couplings to bulk Maxwell and Kalb-Ramond gauge fields. The latter do not affect Eqs.(10)

and (11), so that the conclusions about on-shell constancy of F 2 (13) and the lightlike nature

(14) of the p-branes under consideration remain unchanged.

The remaining equations of motion w.r.t. auxiliary world-volume gauge field Aa1...ap−1

and Xµ produced by the action (1) read:

∂[a
(

F ∗cγb]c χL
′(F 2)

)

= 0 ; (15)

∂a
(

χ
√−γγab∂bX

µ
)

+ χ
√−γγab∂aX

ν∂bX
λΓµ

νλ(X) = 0 (16)

Here χ is the dynamical brane tension as in (8),

Γµ
νλ =

1

2
Gµκ (∂νGκλ + ∂λGκν − ∂κGνλ) (17)

is the Christoffel connection for the external metric, and L′(F 2) denotes derivative of L(F 2)

w.r.t. the argument F 2.

Invariance under world-volume reparametrizations allows to introduce the standard syn-

chronous gauge-fixing conditions:

γ0i = 0 (i = 1, . . . , p) , γ00 = −1 . (18)

Also, in what follows we will use a natural ansatz for the auxiliary world-volume gauge

field-strength:

F ∗i = 0 (i = 1, . . ., p) , i.e. F0i1...ip−1 = 0 , (19)

the only non-zero component of the dual field-strength being:

F ∗0 =
1

p!

εi1...ip
√

γ(p)
Fi1...ip , (20)

γ(p) ≡ det ‖γij‖ (i, j = 1, . . . , p) , F 2 = p!
(

F ∗0
)2

= const .

According to (14) the meaning of the ansatz (19) is that the lightlike direction F ∗a∂a ≃
∂0 ≡ ∂τ , i.e., it coincides with the brane proper-time direction. Biancchi identity ∇aF

∗a = 0

together with (19)–(20) implies:

∂0Fi1...ip = 0 −→ ∂0
√

γ(p) = 0 . (21)
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Using (18) and (19) the equations of motion (11), (15) and (16) acquire the form, respec-

tively:

(∂0X ∂0X) = 0 , (∂0X ∂iX) = 0 , (∂iX ∂jX)− 2a0 γij = 0 (22)

(Virasoro-like constraints), where the M-dependent constant a0:

a0 ≡ F 2L′(F 2)
∣

∣

F 2=F 2(M)
(23)

must be strictly positive;

∂iχ = 0 ; (24)

−
√

γ(p)∂0 (χ∂0X
µ) + ∂i

(

χ
√

γ(p)γij∂jX
µ
)

+χ
√

γ(p)
(

−∂0X
ν∂0X

λ + γkl∂kX
ν∂lX

λ
)

Γµ
νλ = 0 . (25)

III. LIGHTLIKE BRANE DYNAMICS IN GRAVITATIONAL BACKGROUNDS

Let us split the bulk space-time coordinates as:

(Xµ) = (xa, yα) ≡
(

x0 ≡ t, xi, yα
)

(26)

a = 0, 1, . . . , p , i = 1, . . . , p , α = 1, . . . , D − (p+ 1)

and consider background metrics Gµν of the form:

ds2 = −A(t, y)(dt)2 + C(t, y)gij(~x)dx
idxj +Bαβ(t, y)dy

αdyβ . (27)

Here we will discuss the simplest non-trivial ansatz for the LL-brane embedding coordi-

nates:

Xa ≡ xa = σa , Xp+α ≡ yα = yα(τ) , τ ≡ σ0 . (28)

With (27) and (28), the constraint Eqs.(22) yield:

−A+Bαβ

.
y
α .
y
β
= 0 , Cgij − 2a0γij = 0 , (29)

where
.
y
α≡ d

dτ
yα. Second Eq.(29) together with the last relation in (21) implies:

d

dτ
C(y(τ)) =

(

∂tC+
.
y
α ∂C

∂yα

)

∣

∣

∣

∣

t=τ,y=y(τ)

= 0 . (30)
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The second-order Eqs.(25) for X0 ≡ t and Xp+α ≡ yα yield accordingly:

∂τχ +
χ

A

[1

2
∂tA+

.
y
α ∂A

∂yα
+

1

2

.
y
α .
y
β
∂tBαβ +

p a0

C

.
y
α ∂C

∂yα

]

∣

∣

∣

∣

t=τ,y=y(τ)

= 0 , (31)

∂τ

(

χ
.
y
α
)

+ χ
[

Bαβ
(1

2

∂A

∂yα
+

.
y
γ
∂tBβγ +

p a0

C

∂C

∂yβ

)

+
.
y
β .
y
γ
Γα
βγ

]

∣

∣

∣

∣

t=τ,y=y(τ)

= 0 , (32)

where Γα
βγ is the Christoffel connection for the metric Bαβ in the extra dimensions (cf. (27)).

LL-brane equations (29)–(32) for codimension two (i.e., for D − (p + 1)= 2) have been

studied in ref.[22] from the braneworld point of view. The case of codimension one LL-branes

moving in gravitational backgrounds (i.e., for D = p+2) is qualitatively different and is the

subject of the discussion in what follows.

In the latter case the metric (27) acquires the form of a general spherically symmetric

metric:

ds2 = −A(t, y)(dt)2 + C(t, y)gij(~θ)dθ
idθj +B(t, y)(dy)2 , (33)

where ~x ≡ ~θ are the angular coordinates parametrizing the sphere Sp.

Eqs.(29)–(31) now take the form:

−A +B
.
y
2
= 0 , i.e.

.
y= ±

√

A

B
, ∂tC+

.
y ∂yC = 0 (34)

∂τχ+ χ
[

∂t ln
√
AB ± 1√

AB

(

∂yA+ p a0∂y lnC
)]

= 0 , (35)

whereas Eq.(32) becomes a consequence of the above ones.

In what follows we will consider the following subclasses of background metrics (33):

(i) Static spherically symmetric metrics in standard coordinates:

A = A(y) , B(y) = A−1(y) , C(y) = y2 , (36)

where y ≡ r is the radial-like coordinate. In the case of (36), Eqs.(34) imply:

.
y= 0 , i.e. y(τ) = y0 = const , A(y0) = 0 . (37)

In other words, the equations of motion of the LL-brane require that the latter positions itself

on a spherical-like hypersurface (second Eq.(37)) in the bulk space-time which in addition

must be a horizon of the background metric (last Eq.(37), cf. (33)).

The next Eq.(35) reduces in the case of (36) to:

∂τχ± χ
(

∂yA
∣

∣

y=y0
+
2p a0
y0

)

= 0 (38)
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with the obvious solution:

χ(τ) = χ0 exp
{

∓τ
(

∂yA
∣

∣

y=y0
+
2p a0
y0

)}

, χ0 = const . (39)

Thus, we find a time-asymmetric solution for the dynamical brane tension which (upon

appropriate choice of the signs (∓) depending on the sign of the constant factor in the

exponent on the r.h.s. of (39)) exponentially “inflates” for large times. In the particular

case of fine tuning of parameters:

∂yA
∣

∣

y=y0
+
2p a0
y0

= 0 (40)

we obtain a constant solution χ = χ0.

(ii) Spherically symmetric metrics in Kruskal-like coordinates:

A = B , A = A
(

y2 − t2
)

, C = C
(

y2 − t2
)

, (41)

where (t, y) play the role of Kruskal’s (v, u) coordinates for Schwarzschild metrics [38]-[39].

In the case of (41), Eqs.(34) xyield:

.
y= ±1 , i.e. y(τ) = ±τ ,

(

y2 − t2
)
∣

∣

t=τ,y=y(τ)
= 0 , (42)

i.e., again the LL-brane locates itself automatically on the horizon. Eq.(35) reduces accord-

ingly to:

∂τχ+ τ
2p a0C

′(0)

A(0)C(0)
χ = 0 , (43)

i.e. χ(τ) = χ0 exp
{

−τ 2
p a0C

′(0)

A(0)C(0)

}

(44)

Thus, we find a time-symmetric “inflationary” or “deflationary” solution for the dynamical

brane tension depending on the sign of the constant factor in the exponent on the r.h.s. of

(44).

(iii) “Cosmological”-type metrics:

A = 1 , B = S2(t) , C = S2(t) f 2(y) , (45)

i.e.:

ds2 = −(dt)2 + S2(t)
[

(dy)2 + f 2(y)gij(~θ)dθ
idθj

]

(46)
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with θi parametrizing the p-dimensional sphere Sp. In this case Eqs.(34) give:

.
y= ± 1

S(τ)
, C

∣

∣

t=τ,y=y(τ)
≡ S2(τ) f 2(y(τ)) =

1

c20
, c0 = const , (47)

implying:
.
y= c0f(y(τ)) . (48)

Eq.(35) reduces in the case of (45) to:

∂τχ+ χ
∂τS

S
(1− 2p a0) = 0 → χ(τ) = χ0

(

S(τ)
)2p a0−1

. (49)

Here again, for the special choice of the integration constant M (10) such that the constant

a0 (23) is fine-tuned as a0 =
1
2p
, we obtain a constant solution χ = χ0.

IV. EXAMPLES

As a first example of lightlike brane tension’s “inflation”/“deflation” (44) let us consider

de Sitter embedding space metric in Kruskal-like (Gibbons-Hawking) coordinates [40]:

ds2 = A(y2 − t2)
[

−(dt)2 + (dy)2
]

+R2(y2 − t2)gij(~θ)dθ
idθj , (50)

A(y2 − t2) =
4

K(1 + y2 − t2)2
, R(y2 − t2) =

1√
K

1− (y2 − t2)

1 + y2 − t2
. (51)

Substituting:

A(0) =
4

K
, C(0) ≡ R2(0) =

1

K
, C ′(0) ≡ 2R(0)R′(0) = − 4

K
(52)

into expression (44) we get for the dynamical brane tension (recall that the cosmological

constant K from (51) and the constant a0 (23) are strictly positive):

χ(τ) = χ0 exp
{

τ 2 p a0K
}

, (53)

i.e., exponential “inflation” at τ → ±∞ for the brane tension of lightlike branes occupying

de Sitter horizon.

The second example is Schwarzschild background metric in Kruskal coordinates [38]-

[39],[41] (here we take D = p+ 2 = 4, i.e., i, j = 1, 2):

ds2 = A(y2 − t2)
[

−(dt)2 + (dy)2
]

+R2(y2 − t2)gij(~θ)dθ
idθj , (54)

A =
4R3

0

R
exp

{

− R

R0

}

,
( R

R0
− 1

)

exp
{ R

R0

}

= y2 − t2 , R0 ≡ 2GNm (55)
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Calculating A(0) , C(0) ≡ R2(0) and C ′(0) ≡ 2R(0)R′(0) from (55) we obtain for (44):

χ(τ) = χ0 exp
{

−τ 2
a0

R2
0

}

, (56)

i.e., exponential “deflation” at τ → ±∞ for the brane tension of lightlike branes sitting on

the Schwarzschild horizon.

Next, we consider Reissner-Nordström background metric in two different Kruskal-like

coordinate systems of the general form (here again we take D = p+ 2 = 4, i.e., i, j = 1, 2):

ds2 = A(y2 − t2)
[

−(dt)2 + (dy)2
]

+R2(y2 − t2)gij(~θ)dθ
idθj . (57)

The first one is appropriate for the region around the outer Reissner-Nordström horizon

R = R(+), i.e., for R > R(−), the latter being the inner R = R(−) Reissner-Nordström

horizon:

y2 − t2 =
R− R(+)

(R− R(−))
R2

(−)
/R2

(+)

exp
{

R
R(+) − R(−)

R2
(+)

}

, (58)

A(y2 − t2) =
4R4

(+)(R− R(−))
1+R2

(−)
/R2

(+)

(R(+) −R(−))2R2
exp

{

−R
R(+) − R(−)

R2
(+)

}

. (59)

Accordingly, the second Kruskal-like coordinate system is appropriate for the region around

the inner Reissner-Nordström horizon R = R(−), i.e., for R < R(+):

y2 − t2 =
R− R(−)

(R− R(+))
R2

(+)
/R2

(−)

exp
{

R
R(−) − R(+)

R2
(−)

}

, (60)

A(y2 − t2) =
4R4

(−)(R(+) − R)
1+R2

(+)
/R2

(−)

(R(−) −R(+))2R2
exp

{

−R
R(−) − R(+)

R2
(−)

}

. (61)

Formula (44) for the brane tension in the case of (58)–(59) specializes to:

χ(τ) = χ0 exp
{

−τ 2
a0

R2
(+)

(

1− R(−)

R(+)

)}

, (62)

i.e., we find exponentially “deflating” tension for a lightlike brane sitting on the outer

Reissner-Nordström horizon – a phenomenon similar to the case of lightlike brane sitting on

Schwarzschild horizon (56). In the case of (60)–(61) formula (44) becomes:

χ(τ) = χ0 exp
{

τ 2
a0

R2
(−)

(R(+)

R(−)
− 1

)}

, (63)

i.e., we obtain exponentially “inflating” tension for a lightlike brane occupying the inner

Reissner-Nordström horizon – an effect similar to the exponential brane tension “inflation”
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on de Sitter horizon (53). In the case of extremal Reissner-Nordström horizon, i.e. when

R(+) = R(−), where both “deflating” (62) and “inflating” (63) solutions should match, the

only solution for the brane tension is the constant one χ = χ0.

Finally, as an example for “inflation”/“deflation” behavior of the dynamical lightlike

brane tension χ in cosmological-type embedding space-time (46) let us consider Friedman-

Robertson-Walker metrics, i.e., background metrics of the form (46), where (see e.g. [42]):

f(y) = y , f(y) = sin y , f(y) = sinh y . (64)

Solving Eqs.(47)–(48) yields for each choice (64) of f(y) correspondingly:

f(y) = y → y(τ) = y0e
c0τ , S(t) = ± 1

c0 y0
e−c0 t , (65)

f(y) = sin y → y(τ) = 2 arctan
(

ec0(τ+τ0)
)

, S(t) = ± 1

c0
cosh (c0(t+ τ0)) , (66)

f(y) = sinh y → y(τ) = ln
1 + e−c0(τ+τ0)

1− e−c0(τ+τ0)
, c0 > 0 , S(t) = ∓ 1

c0
sinh (c0(t + τ0)) , (67)

where y0, τ0 = const. Inserting the expressions (65)–(67) for S(t) into Eq.(49) yields a time-

asymmetric “inflation”/“deflation” of the brane tension χ at τ → ±∞, except for the “fine

tuned” case a0 =
1
2p

where we get a constant χ = χ0.

Let us recall that the metrics (46) with any of the three choices (64) for f(y) and the

corresponding expressions for S(t) given by (65)–(67) represents de Sitter space-time in var-

ious coordinatizations different from the Gibbons-Hawking one (50)–(51) (here |c0| = K

with c0 and K from (65)–(67) and (51), respectively). Let us also stress the qualitative

difference between the solutions for the brane tension of lightlike branes occupying de Sit-

ter horizons: time-asymmetric “inflation”/“deflation” behavior (49) with exponential linear

time dependence in Friedman-Robertson-Walker coordinates versus strictly “inflationary”

behavior (53) with exponential quadratic time dependence in Gibbons-Hawking (Kruskal-

like) coordinates.

V. DISCUSSION AND CONCLUSIONS

In the present paper we presented a systematic Lagrangian formulation of lightlike p-

branes in arbitrary (p + 1) world-volume dimensions, whose brane tension becomes an ad-

ditional nontrivial dynamical degree of freedom. Further, we have shown that codimension
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one lightlike branes can move in gravitational backgrounds of spherically symmetric type

provided the latter possess event horizons and, moreover, these horizons are automatically

occupied (“straddled”) by the lightlike branes.

For more conventional type of matter, a process known as “mass inflation” [4]-[5] leads

to matter accumulation on certain horizons (like the inner Reissner-Nordström horizon)

and, therefore, is somewhat similar to the phenomenon of automatic positioning of lightlike

branes on black hole or cosmological horizons. For the standard “mass inflation” one defines

a mass function (not related to the external mass of the black hole) which grows without

bound as the matter focuses on the horizon. The natural analog of the mass function in

the case of lightlike branes appears to be the dynamical brane surface tension. We study

the time dependence of the dynamical brane tension of lightlike branes occupying diverse

horizons.

Employing appropriate ansätze for various sets of Kruskal-like coordinates (Gibbons-

Hawking coordinates [40] in the case of de Sitter space) we find solutions for the lightlike

branes of (1) located at the inner Reissner-Nordström horizon or at the de Sitter cosmological

horizon, respectively, such that the dynamical brane tension undergoes time-reflection sym-

metric “mass inflation”, i.e., it approaches exponentially arbitrary large values for τ → ±∞.

Although the present result for dynamical brane tension “inflation” at the inner Reissner-

Nordström horizon parallels (except for the time-reflection symmetry here obtained) the

known “mass inflation” phenomenon for standard matter, the accompanying result about

brane tension “inflation” at de Sitter space horizon represents something totally new with

no analog within the standard matter “mass inflation” and, therefore, it is a unique feature

of lightlike branes.

In contrast, using the same ansätze with Kruskal-like coordinates, we find that lightlike

branes undergo “mass deflation”, i.e., their dynamical brane tension going to zero for τ →
±∞ when they are located at the outer Reissner-Nordström or the Schwarzschild horizon.

Other types of ansätze natural for standard coordinates show that for all kinds of horizons

there are time-asymmetric “mass inflation” or “mass deflationary” solutions for the dynam-

ical lightlike brane tension and, for a fine tuning – also solutions with constant brane tension

do exist. In particular, for de Sitter horizon in cosmological (Friedman-Robertson-Walker)

coordinates we obtain time-asymmetric “inflation”/“deflation” with exponential linear time

dependence in contrast to the strict “mass inflation” at Sitter horizon in Gibbons-Hawking
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(Kruskal-like) coordinates with exponential quadratic time dependence.

Let us stress that in the present paper we have discussed the properties of LL-brane

dynamics as test branes moving in various gravitational backgrounds, i.e., we have not taken

into account the back-reaction of LL-branes on the geometry and the physical properties

of the embedding space-time. In a forthcoming paper we are studying the important is-

sue of self-consistent solutions for bulk gravity-matter systems (e.g., Einstein-Maxwell-type)

coupled to lightlike branes, i.e., accounting for its back-reaction, where the latter: (i) serve

as a source for gravity and electromagnetism, (ii) dynamically produce space-varying cos-

mological constant, and (iii) trigger non-trivial matching of two different geometries of de-

Sitter/black-hole type across common horizon spanned by the lightlike brane itself. In fact,

we have already started the above study in our previous papers [15],[19]-[21] in the simplest

case of horizon matching of two different spherically-symmetric space-times where the perti-

nent lightlike brane occupying the common horizon has constant dynamical tension (“static

soldering” in the terminology of ref.[10]). One of the physically interesting cases is a solution

with de Sitter interior region with dynamically generated cosmological constant through the

coupling to the LL-brane, and an outer region with Schwarzschild or Reissner-Nordström

geometry, i.e., a non-singular black hole.
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