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Abstract

Several other factors, besides the intrinsic local geometry, contribute

to give a meaning to a space-time model. The simplest example comes

from comparing Minkowski’s and Milne’s model, that both have a null

Riemann tensor. We add to these two models a third one which describes

a time-dependent locally-Minkowskian spherically symmetric space-time

on which every test-particle at rest with respect to the center of symmetry

sustains a constant force. Although the model is globally grossly un-

realistic we think that it can be helpful to describe a local perturbation

of an homogeneous cosmological model. Or as a substitute to the very far

away asymptotic Minkowskian behavior usually assumed to describe the

gravitational field of compact spherical bodies.

Introduction

The main purpose of this paper is to get some insight about the meaning of
one of the main conceptual ingredients of general relativity: the principle of
general covariance. For a majority of the relativity community the principle of
general covariance means now that if the Riemann tensor is zero then there is
no gravitational field and if it is not zero then there is one. We believe that this
over-simplification is a mistake.

The simplest example that proves that this point of view is wrong is provided
by Milne’s model of the Universe. This model is too simple to fit what we
know today about our Universe, but the fascinating thing is that in the past
it was an acceptable model and this suffices to say that it makes sense, and
yet the Riemann tensor is zero. This proves that besides the Riemann tensor
other factors contribute to give a meaning to a space-time model; and among
these factors we include the specification of the differentiable manifold where
the metric is regular, the specification of a global frame of reference, and the
number and meaning of the free parameters, both essential and non essential
ones.

The first section is a short review of how one may derive Milne’s model
emphasizing the role of a distinguished global frame of reference whose time-like
congruence is a family of geodesics emanating from a single event of Minkowski’s
space-time.

The next section deals with a generalization of Milne’s model where the dis-
tinguished global frame of reference of Milne’s model is replaced by one whose
time-like world-lines have constant intrinsic curvature. This construction, which
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takes into account the three dimensions of space, follows similar lines to those
followed by Møller [1], Rindler [2], Bel [3] and Huang and Sun [4]. Our model,
whose Riemann tensor is again zero, has two un-essential parameters. It is
neither isotropic nor homogeneous and the single symmetry that is easily recog-
nized is the spherical symmetry about a center. Again the point is not whether
this model may be useful or not to describe a piece of real physics. What is
important to us is that it could be because it has a meaning and this meaning
is different from Minkowski’s and Milne’s models.

The third section deals with light propagation along radial directions to-
ward and away from the center of symmetry and the derivation of the red-shift
formulas in a variety of cases.

In the fourth section we linearize the preceding results by considering an
approximation around the present epoch and taking into account an appropriate
span of distances. And in the fifth section we describe a very simple illustrative
example that shows how our model could be falsified.

Our concluding remarks review some of the main points mentioned in this
introduction, that the main body of the paper clarifies. We hope that our model
will be useful. If not as it stands at least as a motivation for further work along
a similar direction.

1 Milne’s model of the Universe

Let us consider an event x0 of Minkowski’s space-time model:

ds2 = −dt2 + δijdx
idxj , or ds2 = −dt2 + dr2 + r2dΩ2 (1)

in Cartesian (xi) or spherical coordinates (r, θ, ϕ).
Let:

t = cosh(α)τ, xi = λi sinh(α)τ (2)

be the congruence of future pointing time-like geodesics originated at x0, with
coordinates t0 = 0, xi0 = 0, where τ is the evolution proper-time along each
of these geodesics, λi are the components of a unit space vector, and α ∈

[0,∞) is the canonical parameter of a special Lorentz transformation. λiα are
dimensionless constants and therefore they can not be considered directly as
coordinates of a physical space. This can be cured 1 if we introduce a free
parameter, say p > 0, with dimension [1/length] and define:

R =
α

p
, zi = Rλi (3)

so that in spherical coordinates the congruence defined in (2) is:

t = cosh(pR)τ, r = sinh(pR)τ, θ = θ, ϕ = ϕ (4)

Using the adapted coordinates (τ, R, θ, ϕ) the line element (1) becomes:

ds2 = −dτ2 + p2τ2(dR2 + p−2 sinh(pR)2dΩ2) (5)

1This is not usually done. See Refs. [5], [6]
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which is the line-element of Milne’s model of space-time using our preferred
radial coordinate 2 R.

Minkowski’s and Milne’s models are both locally flat. And both have priv-
ileged frames of reference with time-like world-lines that are geodesics. Why
are then different models of universes? Because the concept of relative rest has
changed. Let us consider two free test particles. In Minkowski’s universe the
two particles are at relative rest if the two geodesic world-lines are parallel. In
Milne’s model the two particles are at relative rest if the two geodesics intersect
at one prescribed event.

In the model described in the next section the concept of relative rest is
again different.

2 Generalization of Milne’s model

Let us consider an event x0 of Minkowski’s space-time model as in the preceding
section and let ~eα be an orthonormal frame of reference at x0.

Let us consider a time-like world-line of constant curvature outgoing from
x0 and being tangent to ~e0. Its parametric equations can be written:

xi =
1

a
λi(cosh(aτ)− 1), t =

1

a
sinh(aτ) (6)

where a is the constant acceleration:

a2 = δij ẍ
iẍj − ẗ2 (7)

a dot meaning a derivative with respect to the parameter τ , and λi being the
unit vector in the direction of the space velocity:

ẋi = λi sinh(aτ), ṫ = cosh(aτ), δij ẋ
iẋj − ṫ2 = −1 (8)

as well as the direction of the space acceleration:

ẍi = aλi cosh(aτ), ẗ = a sinh(aτ) (9)

With varying values of λi we obtain thus a 2-parameter congruence that
can be extended to a 3-parameter one considering all the world lines that can
be derived from any of the preceding ones by a special Lorentz transformation
with canonical parameter α. We obtain then a congruence C defined by the
parametric equations:

xi =
λi

a
(cosh(α)(cosh(aτ) − 1) + sinh(α) sinh(aτ)) (10)

t =
1

a
(cosh(α) sinh(aτ) + sinh(α)(cosh(aτ) − 1)) (11)

or equivalently:

2In [5] and [6] a different radial coordinate is used
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xi =
λi

a
(cosh(α+ aτ)− cosh(α)) (12)

t =
1

a
(sinh(α+ aτ)− sinh(α)) (13)

Defining as in (3) the adapted coordinates zi and R, Eqs. (10) and (11) become:

xi =
zi

aR
(cosh(pR + aτ)− cosh(pR)) (14)

t =
1

a
(sinh(pR+ aτ)− sinh(pR)) (15)

and from the first of these we get:

r =
1

a
(cosh(pR+ aτ) − cosh(pR)) (16)

so that using spherical coordinates (R, θ, ϕ) we obtain the following model of
space-time locally homeomorphic with Minkowski’s one:

dS2 = −dτ2 +
2p2

a2
(cosh(aτ) − 1)dR2 +

2p

a
(cosh(aτ)− 1)dRdτ + r2dΩ2 (17)

This line-element is neither isotropic nor homogeneous. It is time dependent
and spherically symmetric, the center of symmetry being the world-line R = 0,
and its limit when the parameter a tends to zero is Milne’s line-element (5)

Let u be the unit time-like vector field tangent to the world-lines with con-
stant R, θ, ϕ coordinates and variable τ . Its dual 1-form is:

ψ0 = −dτ +
p

a
(cosh aτ − 1)dR (18)

that together with:

ψ̂1 =
p

a
sinh(aτ)dR, ψ̂2 = rdθ, ψ̂3 = r sin θdϕ (19)

completes an orthonormal decomposition of (17):

dS2 = −(ψ0)2 + (ψ̂1)2 + (ψ̂2)2 + (ψ̂3)2 (20)

We have:

dψ0 = p sinh(aτ)dτ ∧ dR = −aψ0 ∧ ψ̂1 (21)

from where it follows that:

dψ0 ∧ ψ0 = 0, i(u) dψ0 = −aψ̂1 (22)

where ∧ is the exterior product symbol, i(u) the interior product one and d the
exterior differential operator.

The first result means that the congruence defined by u is orthogonal to a
family of hypersurfaces, that can be proved to be:
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U = exp(pR) exp

(

tanh
(aτ

2

)

−1
)

= const. (23)

The use of a time coordinate proportional to U would diagonalize the line-
element (17) but we shall not use it.

The second result (22) means that the intrinsic curvature for every world-
line of the congruence is a in the radial direction, a property that was built
in the model of space-time from the very beginning. Equivalently, we can see
using the geodesic equations that when a free falling has zero velocity at some
R = R1, then:

(

d2R

dτ2

)

1

= −
a2

p
sinh(aτ)−1 (24)

The line-element (17) is regular for any value of τ 6= 0 and any value of R.
But it has a defaults at R = 0: the coefficient of dΩ2 is:

r2 =
1

a2
(cosh(aτ) − 1)2 (25)

and therefore R = 0 can not be identified with a point.
To solve this difficulty we could generalize this model using instead of a

constant a an appropriate function a(R). One of the simplest would be:

a(R) =
aR2

b2 +R2
(26)

where b is a new parameter with dimensions [length]. With this function we
should have for small enough values of R:

a(R) =
a

b2
R2 (27)

and for large values of R we should recover the line-element(17).
More precisely the line-element that we should obtain for small values of R

is:

dS2 = −dτ2 + pτ2
(

p+ 2
a

b2
τR

)

dR2 +
pa

b2
τ2R2dRdτ + pτ2

(

p+
a

b2
τR

)

R2dΩ2

(28)
Our initial model therefore may be considered as being asymptotic to a more

elaborate one that in fact we shall not need in the sequel of this paper.

3 Radial light propagation

Let us consider two points with coordinates (R1, θ1, ϕ1) and (R2, θ2, ϕ2).
We consider three cases: in the first case (i) we assume that R1 > R2, θ1 =
θ2, ϕ1 = ϕ2; in the second case (ii) we assume that R1 < R2, θ1 = θ2, ϕ1 = ϕ2;
and in the third case (iii) we assume that θ1 = π − θ2 ϕ1 = ϕ2 + π.

When light travels from R1 to R2 its coordinate speed:

V =
dR

dτ
(29)
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must be a solution of the quadratic equation:

− 1 +
2p2

a2
(cosh(aτ) − 1)V 2 +

2p

a
(cosh(aτ) − 1)V = 0 (30)

The two solutions of this equation are:

V1 = −
a exp(aτ)

p(exp(aτ)− 1)
, V2 =

a

p(exp(aτ) − 1)
, (31)

with a mean value of the speed:

Vm =
1

2
(V2 − V1) =

a

2p

exp(aτ) + 1

exp(aτ) − 1
(32)

In case (i) above R decreases when τ increases and therefore, assuming that
a and p are both positives, we have V = V1, while in case (ii) we have V = V2.
In case (iii) we have V = V1 when light goes from R1 to the center of symmetry
R = 0 and V = V2 when light travels from the center of symmetry to R2

Integrating the Eq. (29) from τ1 to τ2 in the case (i) we have:

R1 −R2 = −

∫ τ2

τ1

a exp(aτ) dτ

p(exp(aτ) − 1)
=

1

p
ln

exp(aτ2)− 1

exp(aτ1)− 1
(33)

or:

exp(p(R1 −R2)) =
exp(aτ2)− 1

exp(aτ1)− 1
. (34)

Differentiating this equation with respect to τ1, keeping fixed R1−R2, we obtain:

dτ2

dτ1
=

(exp(aτ2)− 1)(exp(aτ1)

(exp(aτ1)− 1)(exp(aτ2)
; (35)

and solving this same equation (34) for τ1 we get:

exp(aτ1) =
exp(p(R1 −R2))− 1 + exp(aτ2)

exp(p(R1 −R2))
(36)

We obtain thus substituting this expression in the above equation (35):

z = exp(−aτ2) (exp(p(R1 −R2))− 1) (37)

where:

z =
dτ2

dτ1
− 1 (38)

is the red-shift of the light emitted from R1 at time τ1 when received at R2 at
time τ2.

A similar calculation in the case (ii) leads to the following results:

z = exp(aτ2)(exp(p(R2 −R1))− 1) (39)

Finally, to calculate the red-shift in the case (iii) we proceed as follows: we
use (35) with τ2 = τ∗ where τ∗ is the arrival time at the center of symmetry
R = 0. Then we use the corresponding formula in the case (ii) with τ1 = τ∗; we
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multiply both expressions and write the result as a function of the arrival time
only, getting:

z =
exp(pR1)(exp(pR2 + aτ2) + 1− exp(aτ2))

2

exp(pR2 + aτ2)

−
(1− exp(aτ2))(exp(pR2 + aτ2) + 1− exp(aτ2))

exp(pR2 + aτ2)
− 1 (40)

4 The linear approximation

We proceed in this section to linearize the line-element (17) around a prescribed
epoch τ0. Let us change the origin of the time coordinate so that:

τ = T + τ0 (41)

Keeping only terms linear in aT we get the following approximation:

dS2 = dS2

0 + dS2

1 (42)

where:

dS2

0 = −
(

dT +
p

a
(cosh(aτ0)− 1)dR

)2

+
p2

a2
sinh(aτ0)

2dR2 + r20dΩ
2, (43)

with:

r0 =
1

a
(cosh(pR+ aτ0)− cosh(pR)) (44)

and:
dS2

1 = 2 sinh(aτ0)pTdRdT + 2
p

a
sinh(aτ0)pTdR

2 + 2r0r1dΩ
2 (45)

with:

r1 = sinh(pR + aτ0)T (46)

With the linear coordinate transformation:

T ← T +
p

a
(cosh(aτ0)− 1)R (47)

we obtain:

dS2

0 = −dT 2 +
p2

a2
sinh(aτ0)

2dR2 + r20dΩ
2, (48)

and :

dS2

1 =
2p

a
sinh(aτ0) (aT + pR(cosh(aτ0)− 1))dRdT

+
2p2

a2
sinh(aτ0) cosh(aτ0) (aT + pR(cosh(aτ0)− 1)) dR2 + 2r0r1dΩ

2 (49)
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The next approximation that can be useful to consider will be to keep only
linear terms of pR. In which case Eqs. and (44)and (46)become:

r0 =
1

a
(cosh(aτ0)− 1 + sinh(aτ0)pR) (50)

r1 = (sinh(aτ0) + cosh(aτ0)pR)T (51)

and the red-shift formulas of the preceding section:

z = exp(−aτ0)p(R1 −R2) (52)

in the case (i);

z = exp(aτ0)p(R2 −R1) (53)

in the case (ii); and:

z = exp(aτ0)pR2 + exp(−aτ0)pR1 (54)

in the case (iii), where τ0 is the epoch at the reception time of the light.
Notice that at this approximation p plays the role of the Hubble constant as

in Milne’s model but with this generalized model this constant is modulated by
factors that depend on the epoch and the case which is considered.

5 Example

To figure out what sort of information our model could provide to falsify it we
consider below a very speculative example.

We imagine that the Solar system, as any other concentration of matter, can
locally perturb the background cosmological Universe, or modify our description
of it, to a degree that depends of its mass. More precisely we assume below that
our model is adequate to deal with either case assuming that the Sun is at the
center of symmetry. We ignore for simplicity the gravitational field of the Sun,
but otherwise we use local physics as we know at the present epoch.

In this case Eqs. (48) and (32) suggest us to define the present epoch by the
value of aτ0 such that:

p

a
= 1,

1

2
(V2 − V1) =

a

2p

exp(aτ0) + 1

exp(aτ0)− 1
= 1 (55)

These conditions yield the following results:

aτ0 = 1.1 (56)

From (37) we see that for a solar system observer the Hubble law will be:

z = 0.33 pR (57)

and from (24) it follows that he will observe an “anomalous” acceleration of free
falling particles toward the center given by:

d2R

dT 2
= −0.75 a (58)

8



Concluding remarks

Minkowski’s, Milne’s and the model that we have described in this paper have
a common property: the Riemann tensor is zero, and yet each has a differ-
ent meaning. Minkowski’s model is totally unacceptable as a description of an
evolving universe while Milne’s model is adequate to describe the basic fact of
Cosmology, i.e the feature which is usually called the expansion of the Universe;
and our model will or will not have a future in Cosmology but what is important
is that it could have one, introducing new features that had not been antici-
pated until recently: as the acceleration of the expansion of the Universe or
the manifestation of anomalous forces, as suggested by the so-called Pioneer’s
anomaly.

The variety of meanings depends on three main factors. The first one is the
manifold that supports the Riemannian metrics. The second is the number and
the role of distinguished frames of reference, from which depend the concept of
relative rest. And the third is the number, the role and of course the value of
the parameters on which depend the corresponding line-elements.

The differential manifolds V4 of the three models are different. In Minkowski’s
model V4 = R4; in both Milne’s and our model V4 is homeomorphic to the in-
terior of any future-pointing null cone of Minkowski’s space-time.

Minkowski’s model has a 3-parameter family of distinguished global frames
of reference: the Galilean ones. On the contrary, Milne’s and our model have
each a single distinguished global frame of reference. The corresponding time-
like congruences are a family of geodesics for Milne’s model and a family of
constant acceleration world-lines for our model.

Minkowski’s model does not contain any parameter. Milne’s model contains
one that we have called p and our model contains two: p and a. Or three
if the the neighborhood of R = 0 is regularized as indicated at the end the
Sect. 2. They are “un-essential locally because they can be eliminated with
the coordinate transformation inverse to that that we used to derive them. But
they are essential in the sense that the meaning of each model depends on them.
If p = 0 then Milne’s model is Minkowski’s model. If a = 0 then our model is
Milne’s model.

The role of p in deriving Milne’s and our model is crucial. In both cases the
quantity α is an adapted coordinate of the corresponding distinguished frame of
reference but it is a dimensionless quantity, when a space coordinate should have
dimension [length]. This is the reason why the formula (3), which introduces the
parameter p with dimension [1/length], and defines the variable R is necessary.
The role of a is also crucial because the new features of our model depend on
it.

Our model is not isotropic nor homogeneous and has a center. Therefore it
can not describe a real Universe which is isotropic and does not have anything
that we could call its center. But our real Universe certainly does not have
these properties at any scale, even if we still can assume that there is a scale at
which it does have these properties. Therefore our model could still be useful to
describe large perturbations of isotropy or homogeneity as they could be caused
by the Great attractor or the Shapley concentration. Or it could maybe be
useful also as a substitute to the Minkowskian behavior at large distances of
those gravitational fields with central sources.
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