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Abstract. It is shown that instability of stringy matter near the event horizon of

a black hole (the spreading effect) can be characterized by the Lyapunov exponents.

The Kolmogorov-Sinai entropy is the sum of all the positive Lyapunov exponents and

equals to the inverse gravitational radius. Due to a replacement of the configuration

space of a string by its phase space at distance of order of the string scale, the relation

between the Kolmogorov-Sinai and Bekenstein-Hawking entropies is established. The

KS entropy of a black hole measures the rate at which information about the state of

a string collapsing into the black hole is lost with time as it spreads over the horizon.
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1. Introduction

It is well known that some general relativistic systems described by the Einstein

equations can exhibit chaotic behavior [1, 2]. One of the most important quantities

characterizing the chaotic behavior of a dynamical system is the Kolmogorov-Sinai

(KS) entropy, which describes the rate of change of information about the phase space

trajectories as a system evolves (a more formal definition will be given below). On the

other hand, some general relativistic systems possess thermal properties and can be

characterized by the Boltzmann, or the thermodynamical entropy. In particular, black

holes being the solutions of the Einstein equations are characterized by the Bekenstein-

Hawking (BH) entropy of just the same kind. In this connection, an important question

arises: is there a relation between the KS and BH entropies?

In this paper I propose a possible relation between the KS and BH entropies. In the

following sections we will introduce the main conceptions of chaotic dynamics and black

hole thermodynamics, demonstrate chaotic behavior of stringy matter near the event

horizon of a black hole, and establish the relation between the KS and BH entropies.

2. The main conceptions of chaotic dynamics and black hole

thermodynamics

We begin with definitions. Suppose that phase space of a dynamical system is finite,

then the KS entropy hKS is the sum of all the positive Lyapunov exponents of the system,

where the Lyapunov exponents hi characterize the rate of exponential separation of the

nearby system’s trajectories in phase space as a result of a local instability [3]

d(t) = d(0) ehit. (1)

If this leads to an increase in the phase space volume occupied by the system with time

∆Γ(t) = ∆Γ(0) ehKSt, (2)

the Boltzmann entropy increases [4]

S(t) = hKSt+ ln(∆Γ(0)). (3)

As is easily seen, the KS entropy hKS is not really an entropy but an entropy per

unit time, or entropy rate, dS/dt. Note that the linear relation between the KS and

thermodynamical entropies is not a general case [5, 6].

The BH entropy of a black hole, on the other hand,

SBH =
A

4G
=

πR2
g

l2P
, (4)

is obtained from the thermodynamical relation dE = TdS, where the energy of the

black hole is its mass M , the temperature is given by T = 1/8πGM , and the area of the

event horizon A is related with the gravitational radius Rg, Rg = 2GM , in the usual

way A = 4πR2
g. The BH entropy is defined in the reference frame of an external distant

observer at fixed static position above the horizon (an external observer).



Kolmogorov-Sinai and Bekenstein-Hawking entropies 3

Our purpose is to find a kinematic effect caused by the black hole geometry with

respect to which a system evolves as in Eqns. (1),(2) in the reference frame of an external

observer. For this purpose we repeat, for completeness, some well-known facts from [7]

concerning the behavior of matter near the horizon without proofs, thus making our

exposition self-contained.

3. A classical particle near the event horizon of a black hole

First consider a classical particle falling toward the horizon. The main fact is that the

proper time in the frame of the particle τ and the Schwarzschild time of an external

observer t are related through τ ∼ e−t/2Rg due to the redshift factor. Therefore in order

to observe the particle before it crosses the horizon, we have to do it in a time which is

exponentially small as t → ∞. In other words, an external observer sees the particle as

being slowed down with increasing powers of resolution. Moreover in the frame of the

observer, the momentum of the particle increases like ∼ et/2Rg , so that the observer sees

the particle as being flattened in the direction of motion due to Lorentz longitudinal

contraction.

The other important fact is that if the particle behaves as a conventional classical

object it will appear to have fixed transverse size on the horizon. In so doing, the phase

space volume holds its shape and remains the same; all information is conserved:

∆Γclas(t) = ∆Γclas(0). (5)

4. Chaotic behavior of a relativistic string collapsing into a black hole

My proposal rests on stringy matter having unusual kinematic properties near the event

horizon of a black hole. According to string theory, the most promising candidate for a

fundamental theory of matter, all particles are excitations of a one-dimensional object

- a string. String theory is characterized by two fundamental parameters: the string

scale, ls, and the string coupling constant g; if lP is the Planck length then lP = g ls.

An important fact is that strings behave very differently from ordinary particles. The

crucial difference is that the size and shape of a string are sensitive to the time resolution.

Susskind has shown [8] that the mean squared radius of a string, 〈Rs〉
2 depends on the

time resolution, τr as 〈Rs〉
2 ∼ ln(1/τr) for τr ≪ 1.

Consider a string falling toward a black hole. As mentioned above, an external

observer has a time resolution that decreases like e−t/2Rg . This means that the string

approaching the event horizon spreads in the transfers directions in the reference frame of

the observer like t/2Rg (there is also a longitudinal spreading but it is rapid to balance

the Lorentz longitudinal contraction). Thus the string, in contrast to the classical

particle, will not appear to have fixed transverse size on the horizon. As we have seen,

the growth of the string is linear. But as noted by Susskind himself [7], this result was

obtained in the framework of free string theory. It doesn’t take into account such a
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nonperturbative phenomenon as string interactions; there are indications [7]-[10] that a

true growth must be exponential

〈Rs〉
2 ∼ et/Rg . (6)

This also means that close trajectories of bits of the string diverge exponentially

dbit(t) = dbit(0) e
t/2Rg . (7)

In addition, Susskind [9] and Mezhlumian, Peet and Thorlacius [10] have found

that string configuration becomes chaotic and very complicated like a fractal during the

spreading process. They have shown that as the correlation length of a string decreases

exponentially with time the number of bits of the string increases exponentially

Nbit ∼ et/2Rg . (8)

They have interpreted this as a branching diffusion process, where every bit diffuses

independently of others over the whole horizon and bifurcates into two bits and so on.

According to the authors the diffusion process should provide necessary thermalization

as the string spreads over the horizon.

But this picture also permits another interpretation. First the diffusion is a

distinctive random process. But in our case there are no real random forces. The

behavior of a string near the horizon is very well described by the Hamilton dynamics.

If there are exact equations of motion no true randomness is possible. Second the string

is a fundamental object. It is not a dissipative system. In the spreading process no

points of a string are lost and also no points are gained: the number of bits of a string is

conserved. Kinetics of the diffusion process is based on the random phase approximation,

which implies rapid decay of correlations in the system. Chaotic dynamics of a string,

on the other hand, gives the finite mixing time (see below Eqn. (13)), which just means

a finite decay time of the correlations. So chaotic dynamics ensures the important

condition of randomness that is crucial for deriving of diffusion kinetics. Therefore we

can give the following interpretation of Eqn. (8). Initially bits of a string occupy one

cell in phase space of a string. In the course of time, all bits will move to different

phase-space points, mapping the cell at time t = 0 to another cell at time t. Hence we

can interpret Eqn. (8) as an increase in the number of occupied cells

Ncell(t) = Ncell(0) e
t/2Rg . (9)

But this number is proportional to the distance between the trajectories of bits that all

initially occupy one cell (7), as required.

The spreading process begins to occur when the string reaches the horizon at

distance of order of the string scale ls from the horizon in a thin layer ∼ ls. But

in string theory at such scales the mirror symmetry should takes place [11, 12].

In general it relates the complex and Kähler structures of some manifolds. In the

simplest case for closed strings it exchanges the winding number around some circle

with the corresponding momentum quantum number (T-duality) or, roughly speaking,

coordinates with momenta. At the scales≫ ls we can always single out the configuration
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space and the phase space is its cotangent bundle. At the scales ∼ ls this is not the case:

at such scales there is a replacement of the configuration space of a string by its phase

space [12]. A similar phenomenon in quantum mechanics - a particle in magnetic field

[13]: on the distances of order of the magnetic length lmag ∼
√

~c/eH a replacement of

the configuration plane transversal to the direction of the magnetic field by the phase

plane takes place so that the number of states is A/l2mag, where A is the area of the

transversal plane.

5. The KS entropy of a black hole and its relation with the BH entropy

Hence instead Eqn. (5) we obtain

∆Γs(t) = ∆Γs(0) e
t/Rg . (10)

Then, taking into account Eqns. (6)-(10), we conclude that the spreading effect realizes

a two-dimensional flow (or map) on the horizon by means of the positive Lyapunov

exponents, hi = 1/2Rg; i = 1, 2. Thus string matter collapsing into a black hole exhibit

chaotic behavior which can be characterized by the KS entropy

hKS =
1

Rg
. (11)

Note that hKS is infinite in purely random systems [3].

Finally we can obtain the relationship between the KS and BH entropies. Since

∆Γs(t) = 4πR2
g and in the strong coupling regime (g ∼ 1, ls ∼ lP ) ∆Γs(0) = l2P (or the

same 〈dbit(t)〉
2 = 4πR2

g and 〈dbit(0)〉
2 = l2P ), we have

hKS =
d(lnSBH)

dt
, (12)

where SBH is identified with the string entropy and expressed in terms of the

characteristic time of the black hole Rg/c. Susskind has shown [14] that all black hole

states are in one-to-one correspondence with single string states. This agrees with our

identification.

The KS entropy hKS of a dynamical system measures the rate at which information

about the state of the system is lost with time. We can determine the average time over

which the state of a string (or any body made of strings) can be predicted. Since the

entire accessible phase space of the string is bounded by the horizon area, the trajectories

of bits (7) mix together. This occurs when

tmix ∼ Rg. (13)

At this time the string spreads over the entire horizon and can no longer expand due to

the nonperturbative effects [7, 8, 9]. The result is crucial for the relaxation of the string

to statistical equilibrium: to reach a statistical equilibrium in a finite time we should

have the finite time of mixing (13). After the time tmix all information contained in the

string will be lost and we will able only to make statistical predictions. This time is

comparable to the characteristic time of a black hole Rg but is smaller than the black
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hole lifetime ∼ R3
g. Thus the KS entropy hKS of a black hole measures the rate at which

information about the state of a string (or any body made of strings) collapsing into

the black hole is lost with time as it spreads over the horizon.

We have demonstrated a relation between the KS and BH entropies for a string

spreading over the event horizon of a black hole. It is widely believed, however, that

the spreading effect is not a peculiar feature of a special (still hypothetical) kind of

matter. In the framework of the so-called infrared/ultraviolet connection [7] it is a

general property of all matter at energies above the Planck scale. If we want to study

progressively smaller and smaller objects we must, according to conventional physics, to

use higher and higher energy probes. But once gravity is involved that rule is changed

radically. Since at energies above the Planck scale black holes are created, it follows [7]

that as we raise the energy we probe larger and larger distances. In other words very

high frequency is related to large size scale, ∆x ∆τ ∼ l2P . Then, taking into account the

redshift factor, we can obtain the exponential growth of the transverse size of matter

similar to Eqn. (6), as required.

In conclusion, let us turn to the form of the relation between the KS and BH

entropies (12). It is interesting, to what extent it is special and can one obtain a similar

relation from the general reasoning? For this purpose let us express the Boltzmann

entropy not in terms of phase volume (2) but in terms of a distribution function f(x, t)

S = −

∫

f ln f dΓ. (14)

Now suppose that near equilibrium f(x, t) can be presented in the form [1, 15]

f(x, t) = feq + (f0(x)− feq)e
−h(t)t. (15)

By differentiating Eqn. (14) with respect to t and using Eqn. (15) we obtain

∂S

∂t
=

∫

h (f(x, t)− feq) ln f dΓ. (16)

For short times f ≪ feq and Eqn. (16) reduces to

∂S

∂t
= Seq

∫

h(x) dΓ. (17)

Then, since hKS =
∫

h(x) dΓ we have

hKS =
1

Seq

∂S

∂t
≈

(

∂ lnS

∂t

)

S≃Seq

, (18)

as required.

6. The KS entropy of other spaces with the event horizon

Of course, besides the black holes there are other general relativistic systems, which

possess thermal properties, and de Sitter space is the most known of them. As is well
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known, it is a thermodynamical system with the Gibbons-Hawking (GH) entropy given

by

SGH =
A

4l2P
=

π

H2l2P
, (19)

where H is the Hubble constant, and the area of the event horizon A is related with

the radius of de Sitter space RdS, RdS = H−1, in the usual way A = 4πR2
dS. We can

repeat our experiment with a string by throwing it toward the event horizon of de Sitter

space. Obviously, the result will be the same: the string spreads over the horizon. Thus,

repeating the previous arguments, we can obtain the KS entropy of de Sitter space

hKS = H, (20)

and the relationship between the KS and GH entropies

hKS =
d(lnSGH)

dt
. (21)

7. Conclusions

In this paper we have shown that stringy matter near the event horizon of a black hole

with the gravitational radius Rg exhibits instability (the spreading effect), which can

be characterized by the Lyapunov exponents. The Kolmogorov-Sinai entropy is the

sum of all the positive Lyapunov exponents, hKS = 1/Rg. Due to a replacement of

the configuration space of a string by its phase space at distance of order of the string

scale, the relation between the Kolmogorov-Sinai and Bekenstein-Hawking entropies is

established, hKS = ∂(lnSBH)/∂t, where the black hole entropy is identified with the

string entropy and expressed in terms of the characteristic time of the black hole Rg/c.

The KS entropy of a black hole measures the rate at which information about a string

(or any body made of strings) collapsing into a black hole is lost as the string (the

body) spreads over the horizon. Since the mixing time is finite ∼ Rg, the system reach

a statistical equilibrium in a finite time.
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