A QUASI-LOCAL MASS FOR 2-SPHERES WITH NEGATIVE GAUSS CURVATURE

XIAO ZHANG

Abstract. We extend our previous definition of quasi-local mass to 2-spheres whose Gauss curvature is negative and prove its positivity.

1. INTRODUCTION

In [\[7\]](#page-8-0), Liu and Yau propose a definition of quasi-local mass for any smooth spacelike, topological 2-sphere with positive Gauss curvature. In particular, Liu and Yau [\[7,](#page-8-0) [8\]](#page-8-1) are able to use Shi-Tam's result [\[10\]](#page-8-2) to prove its positivity. When the Gauss curvature of a 2-sphere is allowed to be negative, Wang and Yau [\[14\]](#page-9-0) use Pogorelov's result [\[9\]](#page-8-3) to embed the 2-sphere into the hyperbolic space to generalize Liu-Yau's definition, and prove its positivity by using a spinor argument of the positive mass theorem for asymptotically hyperbolic manifolds [\[15,](#page-9-1) [4,](#page-8-4) [16\]](#page-9-2). Wang-Yau's result is improved in certain sense by Shi and Tam [\[11\]](#page-8-5).

In attempting to resolve the decreasing monotonicity of Brown-York's quasi-local mass [\[1,](#page-8-6) [2\]](#page-8-7), the author [\[18\]](#page-9-3) propose a new quasi-local mass and prove its positivity essentially for 2-spheres with positive Gauss curvature. It is still open when the 2-spheres have nonnegative Gauss curvature because the isometric embedding into \mathbb{R}^3 in this case is only proved to be $C^{1,1}$ by Guan-Li and Hong-Zuily [\[5,](#page-8-8) [6\]](#page-8-9). However, we expect the $C^{1,1}$ regularity is sufficient for our propose, and we address it elsewhere.

In this note, we use the idea of Wang and Yau to extend the quasilocal mass in [\[18\]](#page-9-3) to the case of 2-spheres with negative Gauss curvature. We embed such 2-spheres into the (spacelike) hyperbola in the Minkowski spacetime which has the nontrivial second fundamental form. By using the constant spinors in the Minkowski spacetime, we can solve a boundary problem for the Dirac-Witten equation. Then,

²⁰⁰⁰ Mathematics Subject Classification. 53C27, 53C50, 83C60.

Key words and phrases. General relativity, quasi-local mass, positivity.

Partially supported by NSF of China(10421001), NKBRPC(2006CB805905) and the Innovation Project of Chinese Academy of Sciences.

the method in [\[18\]](#page-9-3) gives rise to the quasi-local mass as well as its positivity. We would like to point out that our quasi-local mass is only one quantity, while the one defined by Wang and Yau is a 4-vectors. This difference is due to the hyperbola in our approach goes to null infinity in the Minkowski spacetime, and the one in Wang-Yau's approach goes to spatial infinity in the Anti-de Sitter spacetime, which has trivial second fundamental form. The positive mass theorem near null infinity in asymptotically Minkowski spacetimes was established in [\[16,](#page-9-2) [17\]](#page-9-4).

2. Dirac-Witten equations

In this section, we will review the existences of the Dirac-Witten equations proved in [\[18\]](#page-9-3). Let (N, \tilde{g}) be a 4-dimensional spacetime which satisfies the Einstein fields equations. Let (M, g, p) be a smooth *initial data set*. Fix a point $p \in M$ and an orthonormal basis $\{e_{\alpha}\}\$ of T_pN with e_0 future-time-directed normal to M and e_i tangent to M ($1 \leq i \leq 3$).

Denote by $\mathcal S$ the (local) spinor bundle of N. It exists globally over M and is called the hypersurface spinor bundle of M. Let ∇ and $\overline{\nabla}$ be the Levi-Civita connections of \tilde{g} and g respectively, the same symbols are used to denote their lifts to the hypersurface spinor bundle. There exists a Hermitian inner product $(,)$ on $\mathbb S$ along M which is compatible with the spin connection ∇ . The Clifford multiplication of any vector X of N is symmetric with respect to this inner product. However, this inner product is not positive definite and there exists a positive definite Hermitian inner product defined by $\langle , \rangle = (e_0 \cdot , \cdot)$ on S along M.

Define the second fundamental form of the initial data set p_{ij} = $\widetilde{g}(\nabla_i e_0, e_i)$. Suppose that M has boundary Σ which has finitely many connected components $\Sigma^1, \dots, \Sigma^l$, each of which is a topological 2sphere, endowed with its induced Riemannian and spin structures. Fix a point $p \in \Sigma$ and an orthonormal basis $\{e_i\}$ of T_pM with $e_r = e_1$ outward normal to Σ and e_a tangent to Σ for $2 \le a \le 3$. Let $h_{ab} =$ $\langle \overline{\nabla}_a e_r, e_b \rangle$ be the second fundamental form of Σ . Let $H = tr(h)$ be its mean curvature. Σ is a *future/past apparent horizon* if

$$
H \mp tr(p|_{\Sigma}) \ge 0 \tag{2.1}
$$

holds on Σ . When Σ has multi-components, we require that [\(2.1\)](#page-1-0) holds (with the same sign) on each Σ_i . The spin connection has the following relation

$$
\widetilde{\nabla}_a = \nabla_a + \frac{1}{2} h_{ab} e_r \cdot e_b \cdot - \frac{1}{2} p_{aj} e_0 \cdot e_j \cdot . \tag{2.2}
$$

The Dirac-Witten operator along M is defined by $D = e_i \cdot \nabla_i$. The Dirac operator of M but acting on S is defined by $\overline{D} = e_i \cdot \overline{\nabla}_i$. Denote by ∇ the lift of the Levi-Civita connection of Σ to the spinor bundle S|_Σ. Let $D = e_a \cdot \nabla_a$ be the Dirac operator of Σ but acting on S|_Σ. The Weitzenböck type formula gives rise to

$$
\int_{M} |\widetilde{\nabla}\phi|^{2} + \langle \phi, \mathcal{T}\phi \rangle - |\widetilde{D}\phi|^{2}
$$
\n
$$
= \int_{\Sigma} \langle \phi, (e_{r} \cdot D - \frac{H}{2} + \frac{tr(p|_{\Sigma})}{2} e_{0} \cdot e_{r} \cdot - \frac{p_{ar}}{2} e_{0} \cdot e_{a} \cdot) \phi \rangle. \quad (2.3)
$$

where $\mathcal{T} = \frac{1}{2}$ $\frac{1}{2}(T_{00} + T_{0i}e_0 \cdot e_i)$. If the spacetime satisfies the *dominant energy condition*, then $\mathcal T$ is a nonnegative operator. Let

$$
P_{\pm} = \frac{1}{2}(Id \pm e_0 \cdot e_r \cdot)
$$

be the projective operators on \mathbb{S}_{Σ} . In [\[18\]](#page-9-3), we prove the following existences:

(i) If $tr_g(p) \geq 0$ and Σ is a past apparent horizon, then the following Dirac-Witten equation has a unique smooth solution $\phi \in \Gamma(\mathbb{S})$

$$
\begin{cases}\n\widetilde{D}\phi = 0 & in & M \\
P_+\phi = P_+\phi_0 & on & \Sigma_{i_0} \\
P_+\phi = 0 & on & \Sigma_i \ (i \neq i_0)\n\end{cases}
$$
\n(2.4)

for any given $\phi_0 \in \Gamma(\mathbb{S}\big|_{\Sigma})$ and for fixed i_0 ;

(ii) If $tr_q(p) \leq 0$ and Σ is a future apparent horizon, then the following Dirac-Witten equation has a unique smooth solution $\phi \in \Gamma(\mathbb{S})$

$$
\begin{cases}\n\widetilde{D}\phi = 0 & in & M \\
P_{-\phi} = P_{-\phi_0} & on & \Sigma_{i_0} \\
P_{-\phi} = 0 & on & \Sigma_i \ (i \neq i_0)\n\end{cases}
$$
\n(2.5)

for any given $\phi_0 \in \Gamma(\mathbb{S}\big|_{\Sigma})$ and for fixed i_0 .

3. Embedding 2-spheres

Let (M, g, p) be a smooth *initial data set* where M has boundary Σ which has finitely many connected components $\Sigma_1, \dots, \Sigma_l$, each of which is a topological 2-sphere. Suppose that some Σ_{i_0} can be smoothly isometrically embedded into a smooth spacelike hypersurface \check{M}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$ and denote by \aleph the isometric embedding. Let $\check{\Sigma}_{i_0}$ be the image of Σ_{i_0} under the map \aleph . Let \check{e}_r the unit vector outward normal to $\breve{\Sigma}_{i_0}$ and \breve{h}_{ij},\breve{H} are the second fundamental form, the

mean curvature of $\check{\Sigma}_{i_0}$ respectively. Denote by $p_0 = \check{p} \circ \aleph$, $H_0 = \check{H} \circ \aleph$ the pullbacks to Σ .

The isometric embedding \aleph also induces an isometry between the (intrinsic) spinor bundles of Σ_{i_0} and $\check{\Sigma}_{i_0}$ together with their Dirac operators which are isomorphic to $e_r \cdot D$ and $\check{e}_r \cdot \check{D}$ respectively. This isometry can be extended to an isometry over the complex 2-dimensional sub-bundles of their hypersurface spinor bundles. Denote by $\check{S}^{\Sigma_{i_0}}$ this sub-bundle of $\breve{S}|_{\breve{S}_{i_0}}$. Let $\breve{\phi}$ be a constant section of $\breve{S}^{\breve{\Sigma}_{i_0}}$ and denote $\phi_0 = \check{\phi} \circ \aleph$. Denote by $\check{\Xi}$ the set of all these constant spinors $\check{\phi}$ with the unit norm. This set is isometric to S^3 .

Let \check{D} be the (induced) Dirac operator on $\check{\Sigma}_{i_0}$ which acts on the hypersurface spinor bundle \check{S} of \check{M} . Let $\check{\phi}$ be the covariant constant spinor of the trivial spinor bundle on $\mathbb{R}^{3,1}$ with unit norm taking by the positive Hermitian metric on $\tilde{\mathbb{S}}$. Then (2.2) implies

$$
\breve{\nabla}_a \breve{\phi} + \frac{1}{2} \breve{h}_{ab} \breve{e}_r \cdot \breve{e}_b \cdot \breve{\phi} - \frac{1}{2} \breve{p}_{aj} \breve{e}_0 \cdot \breve{e}_j \cdot \breve{\phi} = 0
$$

over $\check{\Sigma}_{i_0}$. Pullback to Σ_{i_0} , we obtain

$$
e_r \cdot D\phi_0 = \frac{H_0}{2}\phi_0 - \frac{1}{2}p_{0aa}e_0 \cdot e_r \cdot \phi_0 + \frac{1}{2}p_{0ar}e_0 \cdot e_a \cdot \phi_0 \tag{3.1}
$$

over Σ_{i_0} . Denote $\phi_0^{\pm} = P_{\pm} \phi_0$. Since $e_r \cdot D \circ P_{\pm} = P_{\mp} \circ e_r \cdot D$, [\(3.1\)](#page-3-0) gives rise to

$$
e_r \cdot D\phi_0^+ = \frac{H_0}{2}\phi_0^- + \frac{1}{2}p_{0aa}\phi_0^- + \frac{1}{2}p_{0ar}e_0 \cdot e_a \cdot \phi_0^+,
$$

$$
e_r \cdot D\phi_0^- = \frac{H_0}{2}\phi_0^+ - \frac{1}{2}p_{0aa}\phi_0^+ + \frac{1}{2}p_{0ar}e_0 \cdot e_a \cdot \phi_0^-.
$$

Therefore, using

$$
\int_{\Sigma_{i_0}} \langle \phi_0^-, e_r \cdot D\phi_0^+ \rangle = \int_{\Sigma_{i_0}} \langle e_r \cdot D\phi_0^-, \phi_0^+ \rangle,
$$

we obtain

$$
\int_{\Sigma_{i_0}} (H_0 - p_{0aa}) |\phi_0^+|^2 = \int_{\Sigma_{i_0}} (H_0 + p_{0aa}) |\phi_0^-|^2.
$$
\n(3.2)

In this paper, we introduce the following conditions on M:

(i) $tr_g(p) \geq 0$, $H|_{\Sigma_i} + tr(p|_{\Sigma_i}) \geq 0$ for all *i*; (ii) $tr_g(p) \leq 0$, $H|_{\Sigma_i} - tr(p|_{\Sigma_i}) \geq 0$ for all *i*.

$\begin{tabular}{ll} \bf QUASI-LOCAL\,\,MASS \end{tabular} \begin{tabular}{ll} \bf 5 \\ \bf 5 \\ \bf 6 \\ \bf 7 \\ \bf 8 \\ \bf 9 \\ \bf 10 \\ \bf 11 \\ \bf 01 \\ \bf 02 \\ \bf 03 \\ \bf 04 \\ \bf 01 \\ \bf 02 \\ \bf 03 \\ \bf 04 \\ \bf 05 \\ \bf 08 \\ \bf 09 \\ \bf 01 \\ \bf 02 \\ \bf 03 \\ \bf 04 \\ \bf 05 \\ \bf 08 \\ \bf 09 \\ \bf 01 \\ \bf 02 \\$

Lemma 1. Let $(N^{3,1}, \tilde{g})$ be a spacetime which satisfies the dominant *energy condition. Let* (M, g, p) *be a smooth spacelike (orientable) hypersurface which has boundary* Σ *with finitely many multi-components* Σ_i , *each of which is a topological sphere. Suppose that* Σ_{i_0} *can be smoothly isometrically embedded into some spacelike hypersurface* $(M, \breve{g}, \breve{p})$ *in* the Minkowski spacetime $\mathbb{R}^{3,1}$. Let \aleph be the isometric embedding and *let* $\breve{\Sigma}_{i_0}$ *be the image of* Σ_{i_0} *. Suppose either condition* (*i*) *holds and* $\breve{\Sigma}_{i_0}$ *are past apparent horizons, i.e.,*

$$
\breve{H}+tr(\breve{p}|_{\breve{\Sigma}_{i_0}})\geq 0,
$$

or condition (*ii*) *holds* and Σ_{i_0} *are future apparent horizons, i.e.,*

$$
\breve{H} - tr(\breve{p}|_{\breve{\Sigma}_{i_0}}) \geq 0.
$$

Let ϕ *be the unique solution of [\(2.4\)](#page-2-0) or [\(2.5\)](#page-2-1) for some* $\breve{\phi} \in \breve{\Xi}$ *. Then*

$$
\int_{\Sigma_{i_0}} \langle \phi, e_r \cdot D\phi \rangle \leq \frac{1}{2} \int_{\Sigma_{i_0}} \langle \phi, (H_0 - p_{0aa}e_0 \cdot e_r \cdot + p_{0ar}e_0 \cdot e_a \cdot) \phi \rangle.
$$

Proof : Assume condition (i) holds and $\check{\Sigma}_{i_0}$ are past apparent horizons. Let ϕ be the smooth solution of [\(2.4\)](#page-2-0) with the prescribed ϕ_0 on Σ_{i_0} . Denote $\phi^{\pm} = P_{\pm} \phi$. Denote $\phi_0^{\pm} = P_{\pm} \phi_0$. By the boundary condition, we have $\phi^+ = \phi_0^+$. Thus

$$
\int_{\Sigma_{i_0}} \langle \phi, e_r \cdot D\phi \rangle = 2\Re \int_{\Sigma_{i_0}} \langle \phi^-, e_r \cdot D\phi_0^+ \rangle
$$

\n
$$
= \Re \int_{\Sigma_{i_0}} \langle \phi^-, H_0\phi_0^- + p_{0aa}\phi_0^- + p_{0ar}e_0 \cdot e_r \cdot \phi_0^+ \rangle
$$

\n
$$
\leq \frac{1}{2} \int_{\Sigma_{i_0}} (H_0 + p_{0aa})(|\phi^-|^2 + |\phi_0^-|^2)
$$

\n
$$
+ \Re \int_{\Sigma_{i_0}} \langle \phi^-, p_{0ar}e_0 \cdot e_a \cdot \phi_0^+ \rangle
$$

\n
$$
= \frac{1}{2} \int_{\Sigma_{i_0}} (H_0 + p_{0aa})|\phi^-|^2 + (H_0 - p_{0aa})|\phi_0^+|^2
$$

\n
$$
+ \Re \int_{\Sigma_{i_0}} \langle \phi^-, p_{0ar}e_0 \cdot e_a \cdot \phi^+ \rangle
$$

\n
$$
= \frac{1}{2} \int_{\Sigma_{i_0}} H_0 |\phi|^2 + p_{0aa}(|\phi^-|^2 - |\phi^+|^2)
$$

\n
$$
+ \Re \int_{\Sigma_{i_0}} \langle \phi^-, p_{0ar}e_0 \cdot e_a \cdot \phi^+ \rangle.
$$

Note that

$$
\langle \phi, p_{0aa}e_0 \cdot e_r \cdot \phi \rangle = p_{0aa}(|\phi^+|^2 - |\phi^-|^2).
$$

Moreover, that $e_0 \cdot e_a \cdot P_{\pm} = P_{\mp} \cdot e_0 \cdot e_a$ gives rise to

$$
\langle \phi, p_{0ar}e_0 \cdot e_a \cdot \phi \rangle = 2\Re \langle \phi^-, p_{0ar}e_0 \cdot e_a \cdot \phi^+ \rangle.
$$

Same argument is applied under condition (ii) . We finally prove the lemma. Q.E.D.

4. Quasi-local mass

Now we use the idea of Wang and Yau [\[14\]](#page-9-0) (see also [\[11\]](#page-8-5)) to extend the definition of quasi-local mass in [\[18\]](#page-9-3) to the case of 2-spheres with negative Gauss curvature.

We first review the definition for 2-spheres with nonnegative Gauss curvature in [\[18\]](#page-9-3): Suppose some Σ_{i_0} can be smoothly isometrically embedded into \mathbb{R}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$ and denote $\check{\Sigma}_{i_0}$ its image. (It exists if Σ_{i_0} has positive Gauss curvature.) In this case, $\breve{p}=0.$

Let ϕ be the unique solution of [\(2.4\)](#page-2-0) or [\(2.5\)](#page-2-1) for some $\check{\phi} \in \check{\Xi}$. Denote

$$
m(\Sigma_{i_0}, \breve{\phi}) = \frac{1}{8\pi} \Re \int_{\Sigma_{i_0}} \left[(H_0 - H) |\phi|^2 + \frac{tr(p|\Sigma_{i_0}) \langle \phi, e_0 \cdot e_r \cdot \phi \rangle}{-p_{ar} \langle \phi, e_0 \cdot e_a \cdot \phi \rangle \right].
$$
\n(4.1)

The *quasi local mass of* Σ_{i_0} is defined as

$$
m(\Sigma_{i_0}) = \min_{\breve{\Xi}} m(\Sigma_{i_0}, \breve{\phi}). \tag{4.2}
$$

If all Σ_i can be isometrically embedded into \mathbb{R}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$, we define the *quasi local mass of* Σ as

$$
m(\Sigma) = \sum_{i} m(\Sigma_{i}). \tag{4.3}
$$

If the mean curvature of $\breve{\Sigma}_{i_0}$ is further nonnegative (it is true if Σ_{i_0} has positive Gauss curvature), we can prove the positivity of the quasilocal mass (4.2) (Theorem 1 in [\[18\]](#page-9-3)).

Now suppose some Σ_{i_0} has negative Gauss curvature and let

$$
K_{\Sigma_{i_0}} \geq -\kappa^2
$$

QUASI-LOCAL MASS 7

 $(\kappa > 0)$ where $-\kappa^2$ is the minimum of the Gauss curvature. (Here we must choose the minimum of the Gauss curvature instead of arbitrary lower bound, otherwise the quasi-local mass defined in the following way might depend on this arbitrary lower bound.) By [\[9,](#page-8-3) [3\]](#page-8-10), Σ_{i_0} can be smoothly isometrically embedded into the hyperbolic space $\mathbb{H}^3_{-\kappa^2}$ with constant curvature $-\kappa^2$ as a convex surface which bounds a convex domain in $\mathbb{H}^3_{-\kappa^2}$. Let (t, x_1, x_2, x_3) be the spacetime coordinates of $\mathbb{R}^{3,1}$. Then $\mathbb{H}^3_{-\kappa^2}$ is one-fold of the spacelike hypersurfaces

$$
\{(t, x_1, x_2, x_3)|t^2 - x_1^2 - x_2^2 - x_3^2 = \frac{1}{\kappa^2}\}.
$$

The induced metric of $\mathbb{H}^3_{-\kappa^2}$ is

$$
\breve{g}_{\mathbb{H}^{3}_{-\kappa^{2}}} = \frac{1}{1+\kappa^{2}r^{2}}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\psi^{2})
$$

It has the second fundamental form $\check{p}^+_{\mu\nu}$ $\mathbb{H}^3_{-\kappa^2} = \kappa \breve{g}_{\mathbb{H}^3_{-\kappa^2}}$ for the upper-fold $\{t>0\}$ and $\tilde{p}_{\mathbb{H}^3_{-\kappa^2}}^{\mathbb{Z}} = -\kappa \tilde{g}_{\mathbb{H}^3_{-\kappa^2}}$ for the lower-fold $\{t<0\}$ with respect to the future-time-directed normal. Denote also $\check{\Sigma}_{i_0}$ its image.

Let ϕ be the unique solution of [\(2.4\)](#page-2-0) or [\(2.5\)](#page-2-1) for some $\phi \in \Xi$. Denote

$$
\hat{m}_{\pm}(\Sigma_{i_0}, \check{\phi}) = \frac{1}{8\pi} \Re \int_{\Sigma_{i_0}} \left[(H_0 - H) |\phi|^2 - (tr(p_0 |_{\Sigma_{i_0}}) - tr(p |_{\Sigma_{i_0}})) \langle \phi, e_0 \cdot e_r \cdot \phi \rangle \right. \\ \left. + (p_{0ar} - p_{ar}) \langle \phi, e_0 \cdot e_a \cdot \phi \rangle \right] \tag{4.4}
$$

where

$$
p_0 = \left\{\begin{array}{ll} \mbox{pullback of $\check{p}^+_{\mathbb{H}^3_{-{\kappa}^2}}$: if Σ_{i_0} is isometrically embedded into the upper-fold $\{t > 0\}$,}\\ \mbox{ pullback of $\check{p}^-_{\mathbb{H}^3_{-{\kappa}^2}}$: if Σ_{i_0} is isometrically embedded into the lower-fold $\{t < 0\}$.} \end{array}\right.
$$

It is easy to see that $tr(p_0|_{\Sigma_{i_0}}) = \pm 2$, thus

$$
\hat{m}_{\pm}(\Sigma_{i_0}, \check{\phi}) = \frac{1}{8\pi} \Re \int_{\Sigma_{i_0}} \left[(H_0 - H) |\phi|^2 + \frac{tr(p|_{\Sigma_{i_0}}) \langle \phi, e_0 \cdot e_r \cdot \phi \rangle}{-p_{ar} \langle \phi, e_0 \cdot e_a \cdot \phi \rangle} \right] \n= \frac{\kappa}{4\pi} \int_{\Sigma_{i_0}} \langle \phi, e_0 \cdot e_r \cdot \phi \rangle.
$$

Now we define the quasi local mass of Σ_{i_0} under conditions (i) , (ii) which are introduced in the previous section.

If condition (*i*) holds, we embed Σ_{i_0} into upper-fold $\{t > 0\}$. Since $\check{\Sigma}_{i_0}$ is convex, we have

$$
\breve{H}+tr(\breve{p}|_{\breve{\Sigma}_{i_0}})>0.
$$

If condition (*ii*) holds, we embed Σ_{i_0} into lower-fold $\{t < 0\}$. We have

$$
\breve{H} - tr(\breve{p}|_{\breve{\Sigma}_{i_0}}) > 0
$$

in this case.

The *quasi local mass* of Σ_{i_0} is defined as

$$
\hat{m}(\Sigma_{i_0}) = \begin{cases}\n\min_{\tilde{\Xi}} \hat{m}_+(\Sigma_{i_0}, \check{\phi}) : \text{ if condition } (i) \text{ holds,} \\
\min_{\tilde{\Xi}} \hat{m}_-(\Sigma_{i_0}, \check{\phi}) : \text{ if condition } (ii) \text{ holds.}\n\end{cases} \tag{4.5}
$$

Note that it might have two different values via embedding to the upper-fold and to the lower-fold respectively when $tr(p) = 0$. However, since $\widetilde{D}\phi = 0$, $\widetilde{D}(e_0 \cdot \phi) = -tr_q(p)\phi = 0$, we have

$$
\int_{\Sigma} \langle e_r \cdot \phi, e_0 \cdot \phi \rangle = \int_M \langle \widetilde{D}\phi, e_0 \cdot \phi \rangle - \langle \phi, \widetilde{D}(e_0 \cdot \phi) \rangle = 0.
$$

This implies $\hat{m}_+(\Sigma_{i_0}, \check{\phi}) = \hat{m}_-(\Sigma_{i_0}, \check{\phi})$. Hence $\hat{m}(\Sigma_{i_0})$ is unique in this case. Furthurmore, [\(4.5\)](#page-7-0) approaches [\(4.2\)](#page-5-0) when $\kappa \to 0$.

If $\Sigma_1, \cdots, \Sigma_{l_0}$ can be isometrically embedded into \mathbb{R}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$, and $\Sigma_{l_0+1},\cdots,\Sigma_l$ can be isometrically embedded into $\mathbb{H}^3_{-\kappa_{l_0+1}^2}, \cdots, \mathbb{H}^3_{-\kappa_l^2}$ in the Minkowski spacetime $\mathbb{R}^{3,1}$ respectively, we define the *quasi local mass of* Σ as

$$
\hat{m}(\Sigma) = \sum_{1 \le i \le l_0} m(\Sigma_i) + \sum_{l_0 + 1 \le i \le l} \hat{m}(\Sigma_i).
$$
 (4.6)

Theorem 1. Let (N, \tilde{g}) be a spacetime which satisfies the dominant *energy condition. Let* (M, g, p) *be a smooth initial data set with the* $boundary \Sigma$ which has finitely many multi-components Σ_i , each of which *is topological 2-sphere. Suppose that some* Σ_{i_0} *has negative Gauss curvature and let* $K_{\Sigma_{i_0}} \geq -\kappa^2$ ($\kappa > 0$) where $-\kappa^2$ is the minimum of the *Gauss curvature. If either condition* (i) *or condition* (ii) *holds, then*

- $(1) \hat{m}(\Sigma_{i_0}) \geq 0;$
- (2) that $\hat{m}(\Sigma_{i_0}) = 0$ implies the energy-momentum of spacetime *satisfies*

$$
T_{00} = |f||\phi|^2, \quad T_{0i} = f\langle \phi, e_0 \cdot e_i \cdot \phi \rangle
$$

QUASI-LOCAL MASS 9

along M *, where* f *is a real function,* ϕ *is the unique solution of* (2.4) *or* (2.5) *for some* $\phi \in \Xi$ *.*

(3) *Furthermore, if* $p_{ij} = 0$ *, then* $\hat{m}(\Sigma_{i_0}) = 0$ *implies that* M *is flat with connected boundary; if* $p_{ij} = \pm \kappa g_{ij}$ *, then* $\hat{m}(\Sigma_{i_0}) = 0$ *implies that* M *has constant curvature* $-\kappa^2$ *.*

Proof : By Lemma [1,](#page-4-0) statements (1), (2) and the first part of statement (3) can be proved by the same argument as the proof of Theorem 1 in [\[18\]](#page-9-3). For the proof of the second part of the statement (3), the vanishing quasi local mass implies

$$
\overline{\nabla}_i \phi \pm \frac{\kappa}{2} e_0 \cdot e_i \cdot \phi = 0.
$$

Since $\overline{\nabla}_i(e_0 \cdot \phi) = e_0 \cdot \overline{\nabla}_i \phi$, we find the *M* has constant Ricci curvature with the scalar curvature $-6\kappa^2$. Therefore M has constant curvature $-\kappa^2$ because the dimension is 3. Q.E.D.

Acknowledgements. The author is indebted to J.X. Hong for some valuable conversations.

REFERENCES

- [1] J.D. Brown and J.W. York, Quasilocal energy in general relativity, Mathematical aspects of classical field theory (Seattle, WA, 1991), 129-142, Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992.
- [2] J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. $D(3)$ 47, 1407-1419 (1993).
- [3] M.P. do Carmo and F.W. Warner, Rigidity and convexity of hypersurfaces in spheres, J. Diff. Geom. 4, 133-144 (1970).
- [4] P. Chrusciel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math., 212, 231-264 (2003).
- [5] F. Guan and Y.Y. Li, The Weyl problem with nonnegative Gauss curvature, J. Diff. Geom., 39, 331-342 (1994).
- [6] J.X. Hong and C. Zuily, Isometric embedding of the 2-sphere with nonnegative curvature in R 3 , Math. Z., 219, 323-334 (1995).
- [7] C-C.M. Liu and S.T. Yau, *Positivity of quasilocal mass*, Phys. Rev. Lett. 90, 231102 (2003).
- [8] C-C.M. Liu and S.T. Yau, *Positivity of quasilocal mass II*, J. Amer. Math. Soc. 19, 181 (2006).
- [9] A.V. Pogorelov, Some results on surface theory in the large, Adv. Math. 1, 191-264 (1964).
- [10] Y. Shi and L-F. Tam, Positive mass theorem and the boundary behavior of compact manifolds with nonnegative scalar curvature, J.Diff.Geom. 62, 79 (2002).
- [11] Y. Shi and L-F. Tam, Boundary behaviors and scalar curvature of compact manifolds, [math/0611253.](http://arxiv.org/abs/math/0611253)
- [12] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65, 45-76 (1979).

- [13] R. Schoen, S.T. Yau, Proof of the positive mass theorem. II, Commun. Math. Phys. 79, 231-260 (1981).
- [14] M.T. Wang and S.T. Yau, A generalization of Liu-Yau's quasi-local mass, [math.DG/0602321.](http://arxiv.org/abs/math/0602321)
- [15] X. Wang, The mass of asymptotically hyperbolic manifolds, J. Diff. Geom., 57, 273-299 (2001).
- [16] X.Zhang, A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds I, Commun. Math. Phys., 249, 529- 548 (2004).
- [17] X. Zhang, The positive mass theorem near null infinity, Proceedings of ICCM 2004, December 17-22, Hong Kong (eds. S.T. Yau, etc.), AMS/International Press, Boston, to appear, [math/0604154.](http://arxiv.org/abs/math/0604154)
- [18] X. Zhang, A new quasi-local mass and positivity, Acta Mathematica Sinica, English Series, to appear.

Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China

E-mail address: xzhang@amss.ac.cn