A QUASI-LOCAL MASS FOR 2-SPHERES WITH NEGATIVE GAUSS CURVATURE

XIAO ZHANG

ABSTRACT. We extend our previous definition of quasi-local mass to 2-spheres whose Gauss curvature is negative and prove its positivity.

1. INTRODUCTION

In [7], Liu and Yau propose a definition of quasi-local mass for any smooth spacelike, topological 2-sphere with positive Gauss curvature. In particular, Liu and Yau [7, 8] are able to use Shi-Tam's result [10] to prove its positivity. When the Gauss curvature of a 2-sphere is allowed to be negative, Wang and Yau [14] use Pogorelov's result [9] to embed the 2-sphere into the hyperbolic space to generalize Liu-Yau's definition, and prove its positivity by using a spinor argument of the positive mass theorem for asymptotically hyperbolic manifolds [15, 4, 16]. Wang-Yau's result is improved in certain sense by Shi and Tam [11].

In attempting to resolve the decreasing monotonicity of Brown-York's quasi-local mass [1, 2], the author [18] propose a new quasi-local mass and prove its positivity essentially for 2-spheres with positive Gauss curvature. It is still open when the 2-spheres have nonnegative Gauss curvature because the isometric embedding into \mathbb{R}^3 in this case is only proved to be $C^{1,1}$ by Guan-Li and Hong-Zuily [5, 6]. However, we expect the $C^{1,1}$ regularity is sufficient for our propose, and we address it elsewhere.

In this note, we use the idea of Wang and Yau to extend the quasilocal mass in [18] to the case of 2-spheres with negative Gauss curvature. We embed such 2-spheres into the (spacelike) hyperbola in the Minkowski spacetime which has the nontrivial second fundamental form. By using the constant spinors in the Minkowski spacetime, we can solve a boundary problem for the Dirac-Witten equation. Then,

²⁰⁰⁰ Mathematics Subject Classification. 53C27, 53C50, 83C60.

Key words and phrases. General relativity, quasi-local mass, positivity.

Partially supported by NSF of China(10421001), NKBRPC(2006CB805905) and the Innovation Project of Chinese Academy of Sciences.

the method in [18] gives rise to the quasi-local mass as well as its positivity. We would like to point out that our quasi-local mass is only one quantity, while the one defined by Wang and Yau is a 4-vectors. This difference is due to the hyperbola in our approach goes to null infinity in the Minkowski spacetime, and the one in Wang-Yau's approach goes to spatial infinity in the Anti-de Sitter spacetime, which has trivial second fundamental form. The positive mass theorem near null infinity in asymptotically Minkowski spacetimes was established in [16, 17].

2. DIRAC-WITTEN EQUATIONS

In this section, we will review the existences of the Dirac-Witten equations proved in [18]. Let (N, \tilde{g}) be a 4-dimensional spacetime which satisfies the Einstein fields equations. Let (M, g, p) be a smooth *initial data set*. Fix a point $p \in M$ and an orthonormal basis $\{e_{\alpha}\}$ of T_pN with e_0 future-time-directed normal to M and e_i tangent to M $(1 \leq i \leq 3)$.

Denote by S the (local) spinor bundle of N. It exists globally over M and is called the hypersurface spinor bundle of M. Let $\widetilde{\nabla}$ and $\overline{\nabla}$ be the Levi-Civita connections of \widetilde{g} and g respectively, the same symbols are used to denote their lifts to the hypersurface spinor bundle. There exists a Hermitian inner product (,) on S along M which is compatible with the spin connection $\widetilde{\nabla}$. The Clifford multiplication of any vector \widetilde{X} of N is symmetric with respect to this inner product. However, this inner product is not positive definite and there exists a positive definite Hermitian inner product defined by $\langle , \rangle = (e_0 \cdot ,)$ on S along M.

Define the second fundamental form of the initial data set $p_{ij} = \tilde{g}(\tilde{\nabla}_i e_0, e_j)$. Suppose that M has boundary Σ which has finitely many connected components $\Sigma^1, \dots, \Sigma^l$, each of which is a topological 2-sphere, endowed with its induced Riemannian and spin structures. Fix a point $p \in \Sigma$ and an orthonormal basis $\{e_i\}$ of T_pM with $e_r = e_1$ outward normal to Σ and e_a tangent to Σ for $2 \leq a \leq 3$. Let $h_{ab} = \langle \overline{\nabla}_a e_r, e_b \rangle$ be the second fundamental form of Σ . Let H = tr(h) be its mean curvature. Σ is a future/past apparent horizon if

$$H \mp tr(p|_{\Sigma}) \ge 0 \tag{2.1}$$

holds on Σ . When Σ has multi-components, we require that (2.1) holds (with the same sign) on each Σ_i . The spin connection has the following relation

$$\widetilde{\nabla}_a = \nabla_a + \frac{1}{2}h_{ab}e_r \cdot e_b \cdot -\frac{1}{2}p_{aj}e_0 \cdot e_j \cdot .$$
(2.2)

The Dirac-Witten operator along M is defined by $\widetilde{D} = e_i \cdot \widetilde{\nabla}_i$. The Dirac operator of M but acting on \mathbb{S} is defined by $\overline{D} = e_i \cdot \overline{\nabla}_i$. Denote

by ∇ the lift of the Levi-Civita connection of Σ to the spinor bundle $\mathbb{S}|_{\Sigma}$. Let $D = e_a \cdot \nabla_a$ be the Dirac operator of Σ but acting on $\mathbb{S}|_{\Sigma}$. The Weitzenböck type formula gives rise to

$$\int_{M} |\widetilde{\nabla}\phi|^{2} + \langle\phi, \mathcal{T}\phi\rangle - |\widetilde{D}\phi|^{2}$$
$$= \int_{\Sigma} \langle\phi, (e_{r} \cdot D - \frac{H}{2} + \frac{tr(p|_{\Sigma})}{2}e_{0} \cdot e_{r} \cdot -\frac{p_{ar}}{2}e_{0} \cdot e_{a} \cdot)\phi\rangle. \quad (2.3)$$

where $\mathcal{T} = \frac{1}{2}(T_{00} + T_{0i}e_0 \cdot e_i \cdot)$. If the spacetime satisfies the *dominant* energy condition, then \mathcal{T} is a nonnegative operator. Let

$$P_{\pm} = \frac{1}{2} (Id \pm e_0 \cdot e_r \cdot)$$

be the projective operators on $S|_{\Sigma}$. In [18], we prove the following existences:

(i) If $tr_g(p) \ge 0$ and Σ is a past apparent horizon, then the following Dirac-Witten equation has a unique smooth solution $\phi \in \Gamma(\mathbb{S})$

$$\begin{cases}
\tilde{D}\phi = 0 & in & M \\
P_{+}\phi = P_{+}\phi_{0} & on & \Sigma_{i_{0}} \\
P_{+}\phi = 0 & on & \Sigma_{i} (i \neq i_{0})
\end{cases}$$
(2.4)

for any given $\phi_0 \in \Gamma(\mathbb{S}|_{\Sigma})$ and for fixed i_0 ;

(ii) If $tr_g(p) \leq 0$ and Σ is a future apparent horizon, then the following Dirac-Witten equation has a unique smooth solution $\phi \in \Gamma(\mathbb{S})$

$$\begin{cases} \widetilde{D}\phi = 0 \quad in \quad M\\ P_{-}\phi = P_{-}\phi_{0} \quad on \quad \Sigma_{i_{0}}\\ P_{-}\phi = 0 \quad on \quad \Sigma_{i} \ (i \neq i_{0}) \end{cases}$$
(2.5)

for any given $\phi_0 \in \Gamma(\mathbb{S}|_{\Sigma})$ and for fixed i_0 .

3. Embedding 2-spheres

Let (M, g, p) be a smooth *initial data set* where M has boundary Σ which has finitely many connected components $\Sigma_1, \dots, \Sigma_l$, each of which is a topological 2-sphere. Suppose that some Σ_{i_0} can be smoothly isometrically embedded into a smooth spacelike hypersurface \check{M}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$ and denote by \aleph the isometric embedding. Let $\check{\Sigma}_{i_0}$ be the image of Σ_{i_0} under the map \aleph . Let \check{e}_r the unit vector outward normal to $\check{\Sigma}_{i_0}$ and \check{h}_{ij} , \check{H} are the second fundamental form, the

mean curvature of $\check{\Sigma}_{i_0}$ respectively. Denote by $p_0 = \check{p} \circ \aleph$, $H_0 = \check{H} \circ \aleph$ the pullbacks to Σ .

The isometric embedding \aleph also induces an isometry between the (intrinsic) spinor bundles of Σ_{i_0} and $\check{\Sigma}_{i_0}$ together with their Dirac operators which are isomorphic to $e_r \cdot D$ and $\check{e}_r \cdot \check{D}$ respectively. This isometry can be extended to an isometry over the complex 2-dimensional sub-bundles of their hypersurface spinor bundles. Denote by $\check{\mathbb{S}}^{\check{\Sigma}_{i_0}}$ this sub-bundle of $\check{\mathbb{S}}|_{\check{\Sigma}_{i_0}}$. Let $\check{\phi}$ be a constant section of $\check{\mathbb{S}}^{\check{\Sigma}_{i_0}}$ and denote $\phi_0 = \check{\phi} \circ \aleph$. Denote by $\check{\Xi}$ the set of all these constant spinors $\check{\phi}$ with the unit norm. This set is isometric to S^3 .

Let \check{D} be the (induced) Dirac operator on $\check{\Sigma}_{i_0}$ which acts on the hypersurface spinor bundle \check{S} of \check{M} . Let $\check{\phi}$ be the covariant constant spinor of the trivial spinor bundle on $\mathbb{R}^{3,1}$ with unit norm taking by the positive Hermitian metric on \check{S} . Then (2.2) implies

$$\breve{\nabla}_a \breve{\phi} + \frac{1}{2} \breve{h}_{ab} \breve{e}_r \cdot \breve{e}_b \cdot \breve{\phi} - \frac{1}{2} \breve{p}_{aj} \breve{e}_0 \cdot \breve{e}_j \cdot \breve{\phi} = 0$$

over $\check{\Sigma}_{i_0}$. Pullback to Σ_{i_0} , we obtain

$$e_r \cdot D\phi_0 = \frac{H_0}{2}\phi_0 - \frac{1}{2}p_{0aa}e_0 \cdot e_r \cdot \phi_0 + \frac{1}{2}p_{0ar}e_0 \cdot e_a \cdot \phi_0$$
(3.1)

over Σ_{i_0} . Denote $\phi_0^{\pm} = P_{\pm}\phi_0$. Since $e_r \cdot D \circ P_{\pm} = P_{\mp} \circ e_r \cdot D$, (3.1) gives rise to

$$e_r \cdot D\phi_0^+ = \frac{H_0}{2}\phi_0^- + \frac{1}{2}p_{0aa}\phi_0^- + \frac{1}{2}p_{0ar}e_0 \cdot e_a \cdot \phi_0^+,$$

$$e_r \cdot D\phi_0^- = \frac{H_0}{2}\phi_0^+ - \frac{1}{2}p_{0aa}\phi_0^+ + \frac{1}{2}p_{0ar}e_0 \cdot e_a \cdot \phi_0^-.$$

Therefore, using

$$\int_{\Sigma_{i_0}} \langle \phi_0^-, e_r \cdot D\phi_0^+ \rangle = \int_{\Sigma_{i_0}} \langle e_r \cdot D\phi_0^-, \phi_0^+ \rangle,$$

we obtain

$$\int_{\Sigma_{i_0}} (H_0 - p_{0aa}) |\phi_0^+|^2 = \int_{\Sigma_{i_0}} (H_0 + p_{0aa}) |\phi_0^-|^2.$$
(3.2)

In this paper, we introduce the following conditions on M:

(i) $tr_g(p) \ge 0$, $H|_{\Sigma_i} + tr(p|_{\Sigma_i}) \ge 0$ for all i; (ii) $tr_g(p) \le 0$, $H|_{\Sigma_i} - tr(p|_{\Sigma_i}) \ge 0$ for all i.

QUASI-LOCAL MASS

Lemma 1. Let $(N^{3,1}, \tilde{g})$ be a spacetime which satisfies the dominant energy condition. Let (M, g, p) be a smooth spacelike (orientable) hypersurface which has boundary Σ with finitely many multi-components Σ_i , each of which is a topological sphere. Suppose that Σ_{i_0} can be smoothly isometrically embedded into some spacelike hypersurface $(\check{M}, \check{g}, \check{p})$ in the Minkowski spacetime $\mathbb{R}^{3,1}$. Let \aleph be the isometric embedding and let $\check{\Sigma}_{i_0}$ be the image of Σ_{i_0} . Suppose either condition (i) holds and $\check{\Sigma}_{i_0}$ are past apparent horizons, i.e.,

$$\check{H} + tr(\check{p}|_{\check{\Sigma}_{i_0}}) \ge 0,$$

or condition (ii) holds and $\breve{\Sigma}_{i_0}$ are future apparent horizons, i.e.,

$$\check{H} - tr(\check{p}|_{\check{\Sigma}_{i_0}}) \ge 0$$

Let ϕ be the unique solution of (2.4) or (2.5) for some $\check{\phi} \in \check{\Xi}$. Then

$$\int_{\Sigma_{i_0}} \langle \phi, e_r \cdot D\phi \rangle \le \frac{1}{2} \int_{\Sigma_{i_0}} \langle \phi, (H_0 - p_{0aa}e_0 \cdot e_r \cdot + p_{0ar}e_0 \cdot e_a \cdot)\phi \rangle.$$

Proof: Assume condition (*i*) holds and $\check{\Sigma}_{i_0}$ are past apparent horizons. Let ϕ be the smooth solution of (2.4) with the prescribed ϕ_0 on Σ_{i_0} . Denote $\phi^{\pm} = P_{\pm}\phi$. Denote $\phi^{\pm}_0 = P_{\pm}\phi_0$. By the boundary condition, we have $\phi^+ = \phi_0^+$. Thus

$$\begin{split} \int_{\Sigma_{i_0}} \langle \phi, e_r \cdot D\phi \rangle &= 2\Re \int_{\Sigma_{i_0}} \langle \phi^-, e_r \cdot D\phi_0^+ \rangle \\ &= \Re \int_{\Sigma_{i_0}} \langle \phi^-, H_0 \phi_0^- + p_{0aa} \phi_0^- + p_{0ar} e_0 \cdot e_r \cdot \phi_0^+ \rangle \\ &\leq \frac{1}{2} \int_{\Sigma_{i_0}} (H_0 + p_{0aa}) (|\phi^-|^2 + |\phi_0^-|^2) \\ &\quad + \Re \int_{\Sigma_{i_0}} \langle \phi^-, p_{0ar} e_0 \cdot e_a \cdot \phi_0^+ \rangle \\ &= \frac{1}{2} \int_{\Sigma_{i_0}} (H_0 + p_{0aa}) |\phi^-|^2 + (H_0 - p_{0aa}) |\phi_0^+|^2 \\ &\quad + \Re \int_{\Sigma_{i_0}} \langle \phi^-, p_{0ar} e_0 \cdot e_a \cdot \phi^+ \rangle \\ &= \frac{1}{2} \int_{\Sigma_{i_0}} H_0 |\phi|^2 + p_{0aa} (|\phi^-|^2 - |\phi^+|^2) \\ &\quad + \Re \int_{\Sigma_{i_0}} \langle \phi^-, p_{0ar} e_0 \cdot e_a \cdot \phi^+ \rangle. \end{split}$$

Note that

$$\langle \phi, p_{0aa} e_0 \cdot e_r \cdot \phi \rangle = p_{0aa} (|\phi^+|^2 - |\phi^-|^2).$$

Moreover, that $e_0 \cdot e_a \cdot P_{\pm} = P_{\mp} \cdot e_0 \cdot e_a \cdot$ gives rise to

$$\phi, p_{0ar}e_0 \cdot e_a \cdot \phi \rangle = 2\Re \langle \phi^-, p_{0ar}e_0 \cdot e_a \cdot \phi^+ \rangle.$$

Same argument is applied under condition (ii). We finally prove the lemma. Q.E.D.

4. Quasi-local mass

Now we use the idea of Wang and Yau [14] (see also [11]) to extend the definition of quasi-local mass in [18] to the case of 2-spheres with negative Gauss curvature.

We first review the definition for 2-spheres with nonnegative Gauss curvature in [18]: Suppose some Σ_{i_0} can be smoothly isometrically embedded into \mathbb{R}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$ and denote $\check{\Sigma}_{i_0}$ its image. (It exists if Σ_{i_0} has positive Gauss curvature.) In this case, $\check{p} = 0$.

Let ϕ be the unique solution of (2.4) or (2.5) for some $\check{\phi} \in \check{\Xi}$. Denote

$$m(\Sigma_{i_0}, \breve{\phi}) = \frac{1}{8\pi} \Re \int_{\Sigma_{i_0}} \left[(H_0 - H) |\phi|^2 + tr(p|_{\Sigma_{i_0}}) \langle \phi, e_0 \cdot e_r \cdot \phi \rangle - p_{ar} \langle \phi, e_0 \cdot e_a \cdot \phi \rangle \right].$$

$$(4.1)$$

The quasi local mass of Σ_{i_0} is defined as

$$m(\Sigma_{i_0}) = \min_{\check{\Xi}} m(\Sigma_{i_0}, \check{\phi}).$$
(4.2)

If all Σ_i can be isometrically embedded into \mathbb{R}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$, we define the *quasi local mass of* Σ as

$$m(\Sigma) = \sum_{i} m(\Sigma_i). \tag{4.3}$$

If the mean curvature of $\check{\Sigma}_{i_0}$ is further nonnegative (it is true if Σ_{i_0} has positive Gauss curvature), we can prove the positivity of the quasilocal mass (4.2) (Theorem 1 in [18]).

Now suppose some Σ_{i_0} has negative Gauss curvature and let

$$K_{\Sigma_{i_0}} \ge -\kappa^2$$

6

QUASI-LOCAL MASS

 $(\kappa > 0)$ where $-\kappa^2$ is the minimum of the Gauss curvature. (Here we must choose the minimum of the Gauss curvature instead of arbitrary lower bound, otherwise the quasi-local mass defined in the following way might depend on this arbitrary lower bound.) By [9, 3], Σ_{i_0} can be smoothly isometrically embedded into the hyperbolic space $\mathbb{H}^3_{-\kappa^2}$ with constant curvature $-\kappa^2$ as a convex surface which bounds a convex domain in $\mathbb{H}^3_{-\kappa^2}$. Let (t, x_1, x_2, x_3) be the spacetime coordinates of $\mathbb{R}^{3,1}$. Then $\mathbb{H}^3_{-\kappa^2}$ is one-fold of the spacelike hypersurfaces

$$\{(t, x_1, x_2, x_3) | t^2 - x_1^2 - x_2^2 - x_3^2 = \frac{1}{\kappa^2} \}.$$

The induced metric of $\mathbb{H}^3_{-\kappa^2}$ is

$$\breve{g}_{\mathbb{H}^{3}_{-\kappa^{2}}} = \frac{1}{1+\kappa^{2}r^{2}}dr^{2} + r^{2}(d\theta^{2} + \sin^{2}\theta d\psi^{2})$$

It has the second fundamental form $\breve{p}^+_{\mathbb{H}^3_{-\kappa^2}} = \kappa \breve{g}_{\mathbb{H}^3_{-\kappa^2}}$ for the upper-fold $\{t > 0\}$ and $\breve{p}^-_{\mathbb{H}^3_{-\kappa^2}} = -\kappa \breve{g}_{\mathbb{H}^3_{-\kappa^2}}$ for the lower-fold $\{t < 0\}$ with respect to the future-time-directed normal. Denote also $\breve{\Sigma}_{i_0}$ its image.

Let ϕ be the unique solution of (2.4) or (2.5) for some $\check{\phi} \in \check{\Xi}$. Denote

$$\hat{m}_{\pm}(\Sigma_{i_0}, \breve{\phi}) = \frac{1}{8\pi} \Re \int_{\Sigma_{i_0}} \left[(H_0 - H) |\phi|^2 - \left(tr(p_0|_{\Sigma_{i_0}}) - tr(p|_{\Sigma_{i_0}}) \right) \langle \phi, e_0 \cdot e_r \cdot \phi \rangle + (p_{0ar} - p_{ar}) \langle \phi, e_0 \cdot e_a \cdot \phi \rangle \right]$$

$$(4.4)$$

where

$$p_{0} = \begin{cases} \text{pullback of } \breve{p}_{\mathbb{H}^{3}_{-\kappa^{2}}}^{+} : \text{ if } \Sigma_{i_{0}} \text{ is isometrically embedded into} \\ & \text{the upper-fold } \{t > 0\}, \\ \text{pullback of } \breve{p}_{\mathbb{H}^{3}_{-\kappa^{2}}}^{-} : \text{ if } \Sigma_{i_{0}} \text{ is isometrically embedded into} \\ & \text{the lower-fold } \{t < 0\}. \end{cases}$$

It is easy to see that $tr(p_0|_{\Sigma_{i_0}}) = \pm 2$, thus

$$\hat{m}_{\pm}(\Sigma_{i_0}, \breve{\phi}) = \frac{1}{8\pi} \Re \int_{\Sigma_{i_0}} \left[(H_0 - H) |\phi|^2 + tr(p|_{\Sigma_{i_0}}) \langle \phi, e_0 \cdot e_r \cdot \phi \rangle - p_{ar} \langle \phi, e_0 \cdot e_a \cdot \phi \rangle \right]$$
$$= \frac{\kappa}{4\pi} \int_{\Sigma_{i_0}} \langle \phi, e_0 \cdot e_r \cdot \phi \rangle.$$

Now we define the quasi local mass of Σ_{i_0} under conditions (i), (ii)which are introduced in the previous section.

If condition (i) holds, we embed Σ_{i_0} into upper-fold $\{t > 0\}$. Since Σ_{i_0} is convex, we have

$$\check{H} + tr(\check{p}|_{\check{\Sigma}_{i_0}}) > 0.$$

If condition (*ii*) holds, we embed Σ_{i_0} into lower-fold $\{t < 0\}$. We have

$$\check{H} - tr(\check{p}|_{\check{\Sigma}_{i_0}}) > 0$$

in this case.

The quasi local mass of Σ_{i_0} is defined as

$$\hat{m}(\Sigma_{i_0}) = \begin{cases} \min_{\Xi} \hat{m}_+(\Sigma_{i_0}, \bar{\phi}): \text{ if condition } (i) \text{ holds,} \\ \min_{\Xi} \hat{m}_-(\Sigma_{i_0}, \bar{\phi}): \text{ if condition } (ii) \text{ holds.} \end{cases}$$
(4.5)

Note that it might have two different values via embedding to the upper-fold and to the lower-fold respectively when tr(p) = 0. However, since $D\phi = 0$, $D(e_0 \cdot \phi) = -tr_q(p)\phi = 0$, we have

$$\int_{\Sigma} \langle e_r \cdot \phi, e_0 \cdot \phi \rangle = \int_M \langle \widetilde{D}\phi, e_0 \cdot \phi \rangle - \langle \phi, \widetilde{D}(e_0 \cdot \phi) \rangle = 0.$$

This implies $\hat{m}_+(\Sigma_{i_0}, \breve{\phi}) = \hat{m}_-(\Sigma_{i_0}, \breve{\phi})$. Hence $\hat{m}(\Sigma_{i_0})$ is unique in this case. Furthurmore, (4.5) approaches (4.2) when $\kappa \to 0$.

If $\Sigma_1, \dots, \Sigma_{l_0}$ can be isometrically embedded into \mathbb{R}^3 in the Minkowski spacetime $\mathbb{R}^{3,1}$, and $\Sigma_{l_0+1}, \dots, \Sigma_l$ can be isometrically embedded into $\mathbb{H}^3_{-\kappa^2_{l_0+1}}, \dots, \mathbb{H}^3_{-\kappa^2_l}$ in the Minkowski spacetime $\mathbb{R}^{3,1}$ respectively, we define the quasi local mass of Σ as

$$\hat{m}(\Sigma) = \sum_{1 \le i \le l_0} m(\Sigma_i) + \sum_{l_0 + 1 \le i \le l} \hat{m}(\Sigma_i).$$
(4.6)

Theorem 1. Let (N, \tilde{g}) be a spacetime which satisfies the dominant energy condition. Let (M, q, p) be a smooth initial data set with the boundary Σ which has finitely many multi-components Σ_i , each of which is topological 2-sphere. Suppose that some Σ_{i_0} has negative Gauss cur-vature and let $K_{\Sigma_{i_0}} \ge -\kappa^2$ ($\kappa > 0$) where $-\kappa^2$ is the minimum of the Gauss curvature. If either condition (i) or condition (ii) holds, then

- (1) $\hat{m}(\Sigma_{i_0}) \ge 0;$ (2) that $\hat{m}(\Sigma_{i_0}) = 0$ implies the energy-momentum of spacetime satisfies

$$T_{00} = |f||\phi|^2, \quad T_{0i} = f\langle \phi, e_0 \cdot e_i \cdot \phi \rangle$$

8

QUASI-LOCAL MASS

along M, where f is a real function, ϕ is the unique solution of (2.4) or (2.5) for some $\check{\phi} \in \check{\Xi}$.

(3) Furthermore, if $p_{ij} = 0$, then $\hat{m}(\Sigma_{i_0}) = 0$ implies that M is flat with connected boundary; if $p_{ij} = \pm \kappa g_{ij}$, then $\hat{m}(\Sigma_{i_0}) = 0$ implies that M has constant curvature $-\kappa^2$.

Proof: By Lemma 1, statements (1), (2) and the first part of statement (3) can be proved by the same argument as the proof of Theorem 1 in [18]. For the proof of the second part of the statement (3), the vanishing quasi local mass implies

$$\overline{\nabla}_i \phi \pm \frac{\kappa}{2} e_0 \cdot e_i \cdot \phi = 0.$$

Since $\overline{\nabla}_i(e_0 \cdot \phi) = e_0 \cdot \overline{\nabla}_i \phi$, we find the *M* has constant Ricci curvature with the scalar curvature $-6\kappa^2$. Therefore *M* has constant curvature $-\kappa^2$ because the dimension is 3. Q.E.D.

Acknowledgements. The author is indebted to J.X. Hong for some valuable conversations.

References

- J.D. Brown and J.W. York, *Quasilocal energy in general relativity*, Mathematical aspects of classical field theory (Seattle, WA, 1991), 129-142, Contemp. Math., 132, Amer. Math. Soc., Providence, RI, 1992.
- [2] J.D. Brown and J.W. York, Quasilocal energy and conserved charges derived from the gravitational action, Phys. Rev. D(3) 47, 1407-1419 (1993).
- [3] M.P. do Carmo and F.W. Warner, *Rigidity and convexity of hypersurfaces in spheres*, J. Diff. Geom. 4, 133-144 (1970).
- [4] P. Chruściel, M. Herzlich, The mass of asymptotically hyperbolic Riemannian manifolds, Pacific J. Math., 212, 231-264 (2003).
- [5] F. Guan and Y.Y. Li, The Weyl problem with nonnegative Gauss curvature, J. Diff. Geom., 39, 331-342 (1994).
- [6] J.X. Hong and C. Zuily, Isometric embedding of the 2-sphere with nonnegative curvature in ℝ³, Math. Z., 219, 323-334 (1995).
- [7] C-C.M. Liu and S.T. Yau, *Positivity of quasilocal mass*, Phys. Rev. Lett. 90, 231102 (2003).
- [8] C-C.M. Liu and S.T. Yau, Positivity of quasilocal mass II, J. Amer. Math. Soc. 19, 181 (2006).
- [9] A.V. Pogorelov, Some results on surface theory in the large, Adv. Math. 1, 191-264 (1964).
- [10] Y. Shi and L-F. Tam, Positive mass theorem and the boundary behavior of compact manifolds with nonnegative scalar curvature, J.Diff.Geom. 62, 79 (2002).
- [11] Y. Shi and L-F. Tam, Boundary behaviors and scalar curvature of compact manifolds, math/0611253.
- [12] R. Schoen, S.T. Yau, On the proof of the positive mass conjecture in general relativity, Commun. Math. Phys. 65, 45-76 (1979).

- [13] R. Schoen, S.T. Yau, Proof of the positive mass theorem. II, Commun. Math. Phys. 79, 231-260 (1981).
- [14] M.T. Wang and S.T. Yau, A generalization of Liu-Yau's quasi-local mass, math.DG/0602321.
- [15] X. Wang, The mass of asymptotically hyperbolic manifolds, J. Diff. Geom., 57, 273-299 (2001).
- [16] X.Zhang, A definition of total energy-momenta and the positive mass theorem on asymptotically hyperbolic 3-manifolds I, Commun. Math. Phys., 249, 529-548 (2004).
- [17] X. Zhang, The positive mass theorem near null infinity, Proceedings of ICCM 2004, December 17-22, Hong Kong (eds. S.T. Yau, etc.), AMS/International Press, Boston, to appear, math/0604154.
- [18] X. Zhang, A new quasi-local mass and positivity, Acta Mathematica Sinica, English Series, to appear.

INSTITUTE OF MATHEMATICS, ACADEMY OF MATHEMATICS AND SYSTEMS SCIENCE, CHINESE ACADEMY OF SCIENCES, BEIJING 100080, CHINA

E-mail address: xzhang@amss.ac.cn

10