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A QUASI-LOCAL MASS FOR 2-SPHERES WITH

NEGATIVE GAUSS CURVATURE

XIAO ZHANG

Abstract. We extend our previous definition of quasi-local mass
to 2-spheres whose Gauss curvature is negative and prove its pos-
itivity.

1. Introduction

In [7], Liu and Yau propose a definition of quasi-local mass for any
smooth spacelike, topological 2-sphere with positive Gauss curvature.
In particular, Liu and Yau [7, 8] are able to use Shi-Tam’s result [10]
to prove its positivity. When the Gauss curvature of a 2-sphere is
allowed to be negative, Wang and Yau [14] use Pogorelov’s result [9]
to embed the 2-sphere into the hyperbolic space to generalize Liu-
Yau’s definition, and prove its positivity by using a spinor argument
of the positive mass theorem for asymptotically hyperbolic manifolds
[15, 4, 16]. Wang-Yau’s result is improved in certain sense by Shi and
Tam [11].

In attempting to resolve the decreasing monotonicity of Brown-York’s
quasi-local mass [1, 2], the author [18] propose a new quasi-local mass
and prove its positivity essentially for 2-spheres with positive Gauss
curvature. It is still open when the 2-spheres have nonnegative Gauss
curvature because the isometric embedding into R

3 in this case is only
proved to be C1,1 by Guan-Li and Hong-Zuily [5, 6]. However, we ex-
pect the C1,1 regularity is sufficient for our propose, and we address it
elsewhere.

In this note, we use the idea of Wang and Yau to extend the quasi-
local mass in [18] to the case of 2-spheres with negative Gauss cur-
vature. We embed such 2-spheres into the (spacelike) hyperbola in
the Minkowski spacetime which has the nontrivial second fundamental
form. By using the constant spinors in the Minkowski spacetime, we
can solve a boundary problem for the Dirac-Witten equation. Then,
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the method in [18] gives rise to the quasi-local mass as well as its posi-
tivity. We would like to point out that our quasi-local mass is only one
quantity, while the one defined by Wang and Yau is a 4-vectors. This
difference is due to the hyperbola in our approach goes to null infinity
in the Minkowski spacetime, and the one in Wang-Yau’s approach goes
to spatial infinity in the Anti-de Sitter spacetime, which has trivial sec-
ond fundamental form. The positive mass theorem near null infinity in
asymptotically Minkowski spacetimes was established in [16, 17].

2. Dirac-Witten equations

In this section, we will review the existences of the Dirac-Witten
equations proved in [18]. Let (N, g̃) be a 4-dimensional spacetime which
satisfies the Einstein fields equations. Let (M, g, p) be a smooth initial
data set. Fix a point p ∈M and an orthonormal basis {eα} of TpN with
e0 future-time-directed normal to M and ei tangent to M (1 ≤ i ≤ 3).

Denote by S the (local) spinor bundle of N . It exists globally over

M and is called the hypersurface spinor bundle of M . Let ∇̃ and ∇ be
the Levi-Civita connections of g̃ and g respectively, the same symbols
are used to denote their lifts to the hypersurface spinor bundle. There
exists a Hermitian inner product ( , ) on S alongM which is compatible

with the spin connection ∇̃. The Clifford multiplication of any vector

X̃ of N is symmetric with respect to this inner product. However, this
inner product is not positive definite and there exists a positive definite
Hermitian inner product defined by 〈 , 〉 = (e0· , ) on S along M .

Define the second fundamental form of the initial data set pij =

g̃(∇̃ie0, ej). Suppose that M has boundary Σ which has finitely many
connected components Σ1, · · · ,Σl, each of which is a topological 2-
sphere, endowed with its induced Riemannian and spin structures. Fix
a point p ∈ Σ and an orthonormal basis {ei} of TpM with er = e1
outward normal to Σ and ea tangent to Σ for 2 ≤ a ≤ 3. Let hab =
〈∇aer, eb〉 be the second fundamental form of Σ. Let H = tr(h) be its
mean curvature. Σ is a future/past apparent horizon if

H ∓ tr(p|Σ) ≥ 0 (2.1)

holds on Σ. When Σ has multi-components, we require that (2.1) holds
(with the same sign) on each Σi. The spin connection has the following
relation

∇̃a = ∇a +
1

2
haber · eb · −

1

2
paje0 · ej · . (2.2)

The Dirac-Witten operator along M is defined by D̃ = ei · ∇̃i. The
Dirac operator of M but acting on S is defined by D = ei · ∇i. Denote
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by ∇ the lift of the Levi-Civita connection of Σ to the spinor bundle
S|Σ. Let D = ea · ∇a be the Dirac operator of Σ but acting on S|Σ.
The Weitzenböck type formula gives rise to

∫

M

|∇̃φ|2 + 〈φ, T φ〉 − |D̃φ|2

=

∫

Σ

〈φ, (er ·D −
H

2
+
tr(p|Σ)

2
e0 · er · −

par

2
e0 · ea·)φ〉. (2.3)

where T = 1

2
(T00 + T0ie0 · ei·). If the spacetime satisfies the dominant

energy condition, then T is a nonnegative operator. Let

P± =
1

2
(Id± e0 · er·)

be the projective operators on S|Σ. In [18], we prove the following
existences:

(i) If trg(p) ≥ 0 and Σ is a past apparent horizon, then the fol-
lowing Dirac-Witten equation has a unique smooth solution
φ ∈ Γ(S)





D̃φ = 0 in M

P+φ = P+φ0 on Σi0

P+φ = 0 on Σi (i 6= i0)
(2.4)

for any given φ0 ∈ Γ(S
∣∣
Σ
) and for fixed i0;

(ii) If trg(p) ≤ 0 and Σ is a future apparent horizon, then the
following Dirac-Witten equation has a unique smooth solution
φ ∈ Γ(S)





D̃φ = 0 in M

P−φ = P−φ0 on Σi0

P−φ = 0 on Σi (i 6= i0)
(2.5)

for any given φ0 ∈ Γ(S
∣∣
Σ
) and for fixed i0.

3. Embedding 2-spheres

Let (M, g, p) be a smooth initial data set where M has boundary
Σ which has finitely many connected components Σ1, · · · ,Σl, each of
which is a topological 2-sphere. Suppose that some Σi0 can be smoothly

isometrically embedded into a smooth spacelike hypersurface M̆3 in the
Minkowski spacetime R

3,1 and denote by ℵ the isometric embedding.
Let Σ̆i0 be the image of Σi0 under the map ℵ. Let ĕr the unit vector

outward normal to Σ̆i0 and h̆ij , H̆ are the second fundamental form, the
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mean curvature of Σ̆i0 respectively. Denote by p0 = p̆ ◦ ℵ, H0 = H̆ ◦ ℵ
the pullbacks to Σ.

The isometric embedding ℵ also induces an isometry between the
(intrinsic) spinor bundles of Σi0 and Σ̆i0 together with their Dirac op-

erators which are isomorphic to er ·D and ĕr ·D̆ respectively. This isom-
etry can be extended to an isometry over the complex 2-dimensional

sub-bundles of their hypersurface spinor bundles. Denote by S̆
Σ̆i0 this

sub-bundle of S̆|
Σ̆i0

. Let φ̆ be a constant section of S̆Σ̆i0 and denote

φ0 = φ̆ ◦ ℵ. Denote by Ξ̆ the set of all these constant spinors φ̆ with
the unit norm. This set is isometric to S3.

Let D̆ be the (induced) Dirac operator on Σ̆i0 which acts on the

hypersurface spinor bundle S̆ of M̆ . Let φ̆ be the covariant constant
spinor of the trivial spinor bundle on R

3,1 with unit norm taking by
the positive Hermitian metric on S̆. Then (2.2) implies

∇̆aφ̆+
1

2
h̆abĕr · ĕb · φ̆−

1

2
p̆aj ĕ0 · ĕj · φ̆ = 0

over Σ̆i0 . Pullback to Σi0 , we obtain

er ·Dφ0 =
H0

2
φ0 −

1

2
p0aae0 · er · φ0 +

1

2
p0are0 · ea · φ0 (3.1)

over Σi0 . Denote φ±
0 = P±φ0. Since er ·D ◦P± = P∓ ◦ er ·D, (3.1) gives

rise to

er ·Dφ
+
0 =

H0

2
φ−
0 +

1

2
p0aaφ

−
0 +

1

2
p0are0 · ea · φ

+
0 ,

er ·Dφ
−
0 =

H0

2
φ+
0 −

1

2
p0aaφ

+
0 +

1

2
p0are0 · ea · φ

−
0 .

Therefore, using
∫

Σi0

〈φ−
0 , er ·Dφ

+
0 〉 =

∫

Σi0

〈er ·Dφ
−
0 , φ

+
0 〉,

we obtain
∫

Σi0

(H0 − p0aa)|φ
+
0 |

2 =

∫

Σi0

(H0 + p0aa)|φ
−
0 |

2. (3.2)

In this paper, we introduce the following conditions on M :

(i) trg(p) ≥ 0, H|Σi
+ tr(p|Σi

) ≥ 0 for all i;
(ii) trg(p) ≤ 0, H|Σi

− tr(p|Σi
) ≥ 0 for all i.
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Lemma 1. Let (N3,1, g̃) be a spacetime which satisfies the dominant
energy condition. Let (M, g, p) be a smooth spacelike (orientable) hyper-
surface which has boundary Σ with finitely many multi-components Σi,
each of which is a topological sphere. Suppose that Σi0 can be smoothly

isometrically embedded into some spacelike hypersurface (M̆, ğ, p̆) in
the Minkowski spacetime R

3,1. Let ℵ be the isometric embedding and
let Σ̆i0 be the image of Σi0. Suppose either condition (i) holds and Σ̆i0

are past apparent horizons, i.e.,

H̆ + tr(p̆|
Σ̆i0

) ≥ 0,

or condition (ii) holds and Σ̆i0 are future apparent horizons, i.e.,

H̆ − tr(p̆|
Σ̆i0

) ≥ 0.

Let φ be the unique solution of (2.4) or (2.5) for some φ̆ ∈ Ξ̆. Then
∫

Σi0

〈φ, er ·Dφ〉 ≤
1

2

∫

Σi0

〈φ, (H0 − p0aae0 · er ·+p0are0 · ea·)φ〉.

Proof : Assume condition (i) holds and Σ̆i0 are past apparent hori-
zons. Let φ be the smooth solution of (2.4) with the prescribed φ0

on Σi0 . Denote φ± = P±φ. Denote φ±
0 = P±φ0. By the boundary

condition, we have φ+ = φ+
0 . Thus∫

Σi0

〈φ, er ·Dφ〉 = 2ℜ

∫

Σi0

〈φ−, er ·Dφ
+
0 〉

= ℜ

∫

Σi0

〈φ−, H0φ
−
0 + p0aaφ

−
0 + p0are0 · er · φ

+
0 〉

≤
1

2

∫

Σi0

(H0 + p0aa)(|φ
−|2 + |φ−

0 |
2)

+ℜ

∫

Σi0

〈φ−, p0are0 · ea · φ
+
0 〉

=
1

2

∫

Σi0

(H0 + p0aa)|φ
−|2 + (H0 − p0aa)|φ

+
0 |

2

+ℜ

∫

Σi0

〈φ−, p0are0 · ea · φ
+〉

=
1

2

∫

Σi0

H0|φ|
2 + p0aa(|φ

−|2 − |φ+|2)

+ℜ

∫

Σi0

〈φ−, p0are0 · ea · φ
+〉.
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Note that

〈φ, p0aae0 · er · φ〉 = p0aa(|φ
+|2 − |φ−|2).

Moreover, that e0 · ea · P± = P∓ · e0 · ea· gives rise to

〈φ, p0are0 · ea · φ〉 = 2ℜ〈φ−, p0are0 · ea · φ
+〉.

Same argument is applied under condition (ii). We finally prove the
lemma. Q.E.D.

4. Quasi-local mass

Now we use the idea of Wang and Yau [14] (see also [11]) to extend
the definition of quasi-local mass in [18] to the case of 2-spheres with
negative Gauss curvature.

We first review the definition for 2-spheres with nonnegative Gauss
curvature in [18]: Suppose some Σi0 can be smoothly isometrically

embedded into R
3 in the Minkowski spacetime R

3,1 and denote Σ̆i0 its
image. (It exists if Σi0 has positive Gauss curvature.) In this case,
p̆ = 0.

Let φ be the unique solution of (2.4) or (2.5) for some φ̆ ∈ Ξ̆. Denote

m(Σi0 , φ̆) =
1

8π
ℜ

∫

Σi0

[
(H0 −H)|φ|2

+tr(p|Σi0
)〈φ, e0 · er · φ〉

−par〈φ, e0 · ea · φ〉
]
. (4.1)

The quasi local mass of Σi0 is defined as

m(Σi0) = min
Ξ̆

m(Σi0 , φ̆). (4.2)

If all Σi can be isometrically embedded into R3 in the Minkowski space-
time R

3,1, we define the quasi local mass of Σ as

m(Σ) =
∑

i

m(Σi). (4.3)

If the mean curvature of Σ̆i0 is further nonnegative (it is true if Σi0

has positive Gauss curvature), we can prove the positivity of the quasi-
local mass (4.2) (Theorem 1 in [18]).

Now suppose some Σi0 has negative Gauss curvature and let

KΣi0
≥ −κ2



QUASI-LOCAL MASS 7

(κ > 0) where −κ2 is the minimum of the Gauss curvature. (Here we
must choose the minimum of the Gauss curvature instead of arbitrary
lower bound, otherwise the quasi-local mass defined in the following
way might depend on this arbitrary lower bound.) By [9, 3], Σi0 can
be smoothly isometrically embedded into the hyperbolic space H

3
−κ2

with constant curvature −κ2 as a convex surface which bounds a convex
domain in H

3

−κ2 . Let (t, x1, x2, x3) be the spacetime coordinates of R3,1.

Then H
3

−κ2 is one-fold of the spacelike hypersurfaces

{
(t, x1, x2, x3)

∣∣t2 − x21 − x22 − x23 =
1

κ2

}
.

The induced metric of H3

−κ2 is

ğH3

−κ2
=

1

1 + κ2r2
dr2 + r2(dθ2 + sin2 θdψ2)

It has the second fundamental form p̆+
H

3

−κ2

= κğH3

−κ2
for the upper-fold

{t > 0} and p̆−
H3

−κ2

= −κğH3

−κ2
for the lower-fold {t < 0} with respect

to the future-time-directed normal. Denote also Σ̆i0 its image.

Let φ be the unique solution of (2.4) or (2.5) for some φ̆ ∈ Ξ̆. Denote

m̂±(Σi0 , φ̆) =
1

8π
ℜ

∫

Σi0

[
(H0 −H)|φ|2

−
(
tr(p0|Σi0

)− tr(p|Σi0
)
)
〈φ, e0 · er · φ〉

+(p0ar − par)〈φ, e0 · ea · φ〉
]

(4.4)

where

p0 =





pullback of p̆+
H

3

−κ2

: if Σi0 is isometrically embedded into

the upper-fold {t > 0},
pullback of p̆−

H
3

−κ2

: if Σi0 is isometrically embedded into

the lower-fold {t < 0}.

It is easy to see that tr(p0|Σi0
) = ±2, thus

m̂±(Σi0 , φ̆) =
1

8π
ℜ

∫

Σi0

[
(H0 −H)|φ|2

+tr(p|Σi0
)〈φ, e0 · er · φ〉

−par〈φ, e0 · ea · φ〉
]

∓
κ

4π

∫

Σi0

〈φ, e0 · er · φ〉.
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Now we define the quasi local mass of Σi0 under conditions (i), (ii)
which are introduced in the previous section.

If condition (i) holds, we embed Σi0 into upper-fold {t > 0}. Since

Σ̆i0 is convex, we have

H̆ + tr(p̆|
Σ̆i0

) > 0.

If condition (ii) holds, we embed Σi0 into lower-fold {t < 0}. We have

H̆ − tr(p̆|
Σ̆i0

) > 0

in this case.

The quasi local mass of Σi0 is defined as

m̂(Σi0) =

{
min

Ξ̆
m̂+(Σi0 , φ̆): if condition (i) holds,

min
Ξ̆
m̂−(Σi0 , φ̆): if condition (ii) holds.

(4.5)

Note that it might have two different values via embedding to the
upper-fold and to the lower-fold respectively when tr(p) = 0. However,

since D̃φ = 0, D̃(e0 · φ) = −trg(p)φ = 0, we have
∫

Σ

〈er · φ, e0 · φ〉 =

∫

M

〈D̃φ, e0 · φ〉 − 〈φ, D̃(e0 · φ)〉 = 0.

This implies m̂+(Σi0 , φ̆) = m̂−(Σi0 , φ̆). Hence m̂(Σi0) is unique in this
case. Furthurmore, (4.5) approaches (4.2) when κ→ 0.

If Σ1, · · · ,Σl0 can be isometrically embedded into R3 in the Minkowski
spacetime R

3,1, and Σl0+1, · · · ,Σl can be isometrically embedded into
H

3

−κ2
l0+1

, · · · ,H3

−κ2
l

in the Minkowski spacetime R3,1 respectively, we de-

fine the quasi local mass of Σ as

m̂(Σ) =
∑

1≤i≤l0

m(Σi) +
∑

l0+1≤i≤l

m̂(Σi). (4.6)

Theorem 1. Let (N, g̃) be a spacetime which satisfies the dominant
energy condition. Let (M, g, p) be a smooth initial data set with the
boundary Σ which has finitely many multi-components Σi, each of which
is topological 2-sphere. Suppose that some Σi0 has negative Gauss cur-
vature and let KΣi0

≥ −κ2 (κ > 0) where −κ2 is the minimum of the
Gauss curvature. If either condition (i) or condition (ii) holds, then

(1) m̂(Σi0) ≥ 0;
(2) that m̂(Σi0) = 0 implies the energy-momentum of spacetime

satisfies

T00 = |f ||φ|2, T0i = f〈φ, e0 · ei · φ〉
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along M , where f is a real function, φ is the unique solution of
(2.4) or (2.5) for some φ̆ ∈ Ξ̆.

(3) Furthermore, if pij = 0, then m̂(Σi0) = 0 implies that M is
flat with connected boundary; if pij = ±κgij, then m̂(Σi0) = 0
implies that M has constant curvature −κ2.

Proof : By Lemma 1, statements (1), (2) and the first part of state-
ment (3) can be proved by the same argument as the proof of Theorem
1 in [18]. For the proof of the second part of the statement (3), the
vanishing quasi local mass implies

∇iφ±
κ

2
e0 · ei · φ = 0.

Since ∇i(e0 · φ) = e0 · ∇iφ, we find the M has constant Ricci curvature
with the scalar curvature −6κ2. Therefore M has constant curvature
−κ2 because the dimension is 3. Q.E.D.

Acknowledgements. The author is indebted to J.X. Hong for some valuable
conversations.
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