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A QUASI-LOCAL MASS FOR 2-SPHERES WITH
NEGATIVE GAUSS CURVATURE

XIAO ZHANG

ABSTRACT. We extend our previous definition of quasi-local mass
to 2-spheres whose Gauss curvature is negative and prove its pos-
itivity.

1. INTRODUCTION

In [7], Liu and Yau propose a definition of quasi-local mass for any
smooth spacelike, topological 2-sphere with positive Gauss curvature.
In particular, Liu and Yau [7], 8] are able to use Shi-Tam’s result [10]
to prove its positivity. When the Gauss curvature of a 2-sphere is
allowed to be negative, Wang and Yau [14] use Pogorelov’s result [9]
to embed the 2-sphere into the hyperbolic space to generalize Liu-
Yau’s definition, and prove its positivity by using a spinor argument
of the positive mass theorem for asymptotically hyperbolic manifolds
[15], 4, [16]. Wang-Yau’s result is improved in certain sense by Shi and
Tam [11].

In attempting to resolve the decreasing monotonicity of Brown-York’s
quasi-local mass [1, 2], the author [I8] propose a new quasi-local mass
and prove its positivity essentially for 2-spheres with positive Gauss
curvature. It is still open when the 2-spheres have nonnegative Gauss
curvature because the isometric embedding into R? in this case is only
proved to be C*! by Guan-Li and Hong-Zuily [5] 6]. However, we ex-
pect the C1! regularity is sufficient for our propose, and we address it
elsewhere.

In this note, we use the idea of Wang and Yau to extend the quasi-
local mass in [I8] to the case of 2-spheres with negative Gauss cur-
vature. We embed such 2-spheres into the (spacelike) hyperbola in
the Minkowski spacetime which has the nontrivial second fundamental
form. By using the constant spinors in the Minkowski spacetime, we
can solve a boundary problem for the Dirac-Witten equation. Then,
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the method in [I8] gives rise to the quasi-local mass as well as its posi-
tivity. We would like to point out that our quasi-local mass is only one
quantity, while the one defined by Wang and Yau is a 4-vectors. This
difference is due to the hyperbola in our approach goes to null infinity
in the Minkowski spacetime, and the one in Wang-Yau’s approach goes
to spatial infinity in the Anti-de Sitter spacetime, which has trivial sec-
ond fundamental form. The positive mass theorem near null infinity in
asymptotically Minkowski spacetimes was established in [16, 17].

2. DIRAC-WITTEN EQUATIONS

In this section, we will review the existences of the Dirac-Witten
equations proved in [I§]. Let (NN, g) be a 4-dimensional spacetime which
satisfies the Einstein fields equations. Let (M, g, p) be a smooth initial
data set. Fix a point p € M and an orthonormal basis {e, } of T, N with
eo future-time-directed normal to M and e; tangent to M (1 <1i < 3).

Denote by S the (local) spinor bundle of N. It exists globally over

M and is called the hypersurface spinor bundle of M. Let V and V be
the Levi-Civita connections of g and g respectively, the same symbols
are used to denote their lifts to the hypersurface spinor bundle. There
exists a Hermitian inner product (, ) on S along M which is compatible

with the spin connection V. The Clifford multiplication of any vector
X of N is symmetric with respect to this inner product. However, this

inner product is not positive definite and there exists a positive definite
Hermitian inner product defined by (, ) = (eg-, ) on S along M.

Define the second fundamental form of the initial data set p;; =

g(Vieo, ;). Suppose that M has boundary ¥ which has finitely many
connected components X!, --- 3! each of which is a topological 2-
sphere, endowed with its induced Riemannian and spin structures. Fix
a point p € ¥ and an orthonormal basis {e;} of T,M with e, = e,
outward normal to ¥ and e, tangent to 3 for 2 < a < 3. Let hy =

(Vaer, ep) be the second fundamental form of 3. Let H = tr(h) be its
mean curvature. Y is a future/past apparent horizon if

H=Ftr(pls) >0 (2.1)

holds on ¥. When ¥ has multi-components, we require that (2.1]) holds
(with the same sign) on each ;. The spin connection has the following
relation

~ 1 1
Vo=V, + §haber "€ ~5Paj€0 " €5 (2.2)

The Dirac-Witten operator along M is defined by D= e; - Vi. The
Dirac operator of M but acting on S is defined by D = ¢; - V,;. Denote
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by V the lift of the Levi-Civita connection of ¥ to the spinor bundle
S|s. Let D = e, -V, be the Dirac operator of ¥ but acting on S|yx.
The Weitzenbock type formula gives rise to

/M VoP + (6,T6) — | Do|?

H ar
C [ p T B

where 7 = %(Too + Toieo - €;+). If the spacetime satisfies the dominant
energy condition, then T is a nonnegative operator. Let

1
2

be the projective operators on S|y. In [I8], we prove the following
existences:

Py (Id+ep-e,+)

(i) If try(p) > 0 and ¥ is a past apparent horizon, then the fol-
lowing Dirac-Witten equation has a unique smooth solution

¢ € I'(S)
Dy = 0 in M
Pigp = Pigy on i (24)
Piog = 0 on % (i#1io)

for any given ¢ € F(S‘E) and for fixed i;

(ii) If try(p) < 0 and ¥ is a future apparent horizon, then the
following Dirac-Witten equation has a unique smooth solution

¢ € I'(S)
Dy = 0 in M
P.¢ = P.¢y on i (2.5)
Po = 0 on % (i+#i)

for any given ¢ € I'(S|,) and for fixed i.

3. EMBEDDING 2-SPHERES

Let (M, g,p) be a smooth initial data set where M has boundary
>} which has finitely many connected components ¥, - - -, ¥, each of
which is a topological 2-sphere. Suppose that some ¥;, can be smoothly

isometrically embedded into a smooth spacelike hypersurface M3 in the
Minkowski spacetime R*! and denote by X the isometric embedding.

Let ¥;, be the image of X, under the map XN. Let &, the unit vector
outward normal to ¥;, and h,;, H are the second fundamental form, the



4 XIAO ZHANG

mean curvature of iio respectively. Denote by pg = po XN, Hy = HoR
the pullbacks to .

The isometric embedding N also induces an isometry between the
(intrinsic) spinor bundles of ¥;, and ¥;, together with their Dirac op-

erators which are isomorphic to e,.- D and é, D respectively. This isom-
etry can be extended to an isometry over the complex 2-dimensional

sub-bundles of thelr hypersurface spinor bundles. Denote by S¥i this
. Let qu be a constant section of S¥ and denote

= gb oN. Denote by = the set of all these constant spinors gb with
the unit norm. This set is isometric to S3.

Let D be the (induced) Dirac operator on 3;, which acts on the

hypersurface spinor bundle S of M. Let qfé be the covariant constant
spinor of the trivial spinor bundle on R*! with unit norm taking by

the positive Hermitian metric on S. Then (Z.2) implies
1 1 ~
a¢ _'_ haber eb ¢ - pa960 e] ¢ =0

over 3. Pullback to X, we obtain

H 1 1

20¢ - §p0aa60 c 6 ¢0 + §p0ar60 *€q - ¢0 (31)
over ¥;,. Denote ¢3 = Pigy. Since e,- Do Py = Proe, D, [3.1) gives

rise to

r-Doo =

Hy _ 1
€r - D¢3_ - 70¢0 + 2p0aa¢0 + 2p0a7’60 €q * ¢0 3
. H 1 1 )
€r - D¢0 = 70¢8— - 2p0aa¢0 + 2p0ar€0 €q * ¢0 .

Therefore, using
/ <¢67€7‘D¢S_>:/ <6T'D¢aa¢8->v
Xig Zig

we obtain

/E (Ho — pon) 6112 = / (Ho + pows) |67 2. (3.2)

io ig
In this paper, we introduce the following conditions on M:

(i) try(p) >0, H|s, + tr(p|s,) > 0 for all ;
(ii) try(p) <0, H|g, — tr(p|s,) > 0 for all 4.
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Lemma 1. Let (N*'3g) be a spacetime which satisfies the dominant
energy condition. Let (M, g,p) be a smooth spacelike (orientable) hyper-
surface which has boundary > with finitely many multi-components 33;,
each of which is a topological sphere. Suppose that ¥;, can be smoothly

isometrically embedded into some spacelike hypersurface (M,ﬁ,ﬁ) m
the Minkowski spacetime R>'. Let R be the isometric embedding and

let 3y, be the image of ;. Suppose either condition (i) holds and %,
are past apparent horizons, i.e.,

H+tr(pls, ) >0,

or condition (ii) holds and iio are future apparent horizons, i.e.,

o

i~ tr(sls,) 2 0.
Let ¢ be the unique solution of (2.4) or (2.3) for some b €=. Then

/ <¢a Er D¢> S % / <¢> (HO — P0aa€0 * Er * +p0ar60 : ea')¢>'
b

2

Proof : Assume condition (i) holds and iio are past apparent hori-
zons. Let ¢ be the smooth solution of (2.4]) with the prescribed ¢q
on ¥;,. Denote ¢& = Pi¢. Denote ¢ = Pi¢y. By the boundary
condition, we have ¢t = ¢f. Thus

/E (6.6, D8) = M [ (67, DoY)

) &)

io Zig
= §R <¢_7 H0¢6 +p0aa¢a +p0ar€0 cEp ¢S_>
Si
1 _ _
< 5 [ U)o P+ 10 P)
0
+§R <¢_7p0ar€0 c€q ¢a—>
Si
1
= 5/ (Ho + Poaa) |0~ |” + (Ho — Poaa) |0 |
Zio

+§R <¢_7p0ar€0 c€q ¢+>

Zig

1
= Eijgm}ﬂﬂ¢P-%pmmﬂ¢‘P'—|¢+P>

+§R <¢_7p0ar€0 c€q ¢+>

Zig
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Note that
<¢ap0aa60 cCp ¢> = pOaa(|¢+|2 - |¢_|2)

Moreover, that eg - e, - Py = Py - €g - e, gives rise to

<¢>p0ar60 “€q ¢> = 2§R<¢_>p0ar60 *€q ¢+>

Same argument is applied under condition (7). We finally prove the
lemma. Q.E.D.

4. QUASI-LOCAL MASS

Now we use the idea of Wang and Yau [14] (see also [11]) to extend
the definition of quasi-local mass in [I8] to the case of 2-spheres with
negative Gauss curvature.

We first review the definition for 2-spheres with nonnegative Gauss
curvature in [I8]: Suppose some 3;, can be smoothly isometrically

embedded into R? in the Minkowski spacetime R*! and denote 3;, its
image. (It exists if 3;, has positive Gauss curvature.) In this case,
p=0.

Let ¢ be the unique solution of (Z4)) or (Z.5) for some ¢ € =. Denote

m(Si, d) = 8%3% . [(Hy — H)|of?
+tr(p|2i0)<¢? eo - e+ P)
—Par(Ps €0 €4 - cb)} : (4.1)
The quasi local mass of ¥;, is defined as
m(%s,) = minm(S;,, ¢). (4.2)

If all ; can be isometrically embedded into R? in the Minkowski space-
time R*!, we define the quasi local mass of ¥ as

m(%) = Z m(%;). (4.3)

If the mean curvature of 3, is further nonnegative (it is true if ¥,
has positive Gauss curvature), we can prove the positivity of the quasi-
local mass (£.2) (Theorem 1 in [18]).

Now suppose some ¥;, has negative Gauss curvature and let

Kz > —Iiz

ig —
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(k > 0) where —x? is the minimum of the Gauss curvature. (Here we
must choose the minimum of the Gauss curvature instead of arbitrary
lower bound, otherwise the quasi-local mass defined in the following
way might depend on this arbitrary lower bound.) By [9, 3], ¥;, can
be smoothly isometrically embedded into the hyperbolic space H? ,

with constant curvature —x? as a convex surface which bounds a convex
domain in H? ,. Let (¢, 21, 22, z3) be the spacetime coordinates of R*!.

Then H? , is one-fold of the spacelike hypersurfaces

{(t,[lﬁ'l,l’g,l’g)‘t2 — l’% — [)j'g — x% — ?}

The induced metric of H? , is

1
Jue Tdr + r?(d6” + sin® Ody)?)
It has the second fundamental form ﬁﬁg = Kgys , for the upper-fold
— K2 —K

{t >0} and py; = —kgys , for the lower-fold {t < 0} with respect
— k2 —K
to the future-time-directed normal. Denote also Y, its image.

Let ¢ be the unique solution of () or (Z3F) for some ¢ € =. Denote

(S, 9) = éR/ (Ho — H)lo|*
—(tr( 21-0) — tr(pls,,)) (¢, €0 er - @)
+(Poar — Par) (s €0 " €a - ¢>] (4.4)
where
pullback of ﬁﬁi S . if 3, is isometrically embedded into
Do = the upper-fold {¢ > 0},

pullback of p; : if ¥, is isometrically embedded into
2
the lower-fold {t < 0}.

21.0) = :|:2 thus

It is easy to see that tr(

v

(S d) = o0 [ [(Ho— )l

8T S,
+t7’(p|2io)<¢, €0 € ¢>
—Par ¢> €o - €q - Qﬁ)}

—/ ¢€0 € - >
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Now we define the quasi local mass of ¥;, under conditions (i), (i7)
which are introduced in the previous section.

If condition (i) holds, we embed ¥;, into upper-fold {¢ > 0}. Since
Y, 1s convex, we have
H+ tr(f)|ii0) > 0.
If condition (i7) holds, we embed 3;, into lower-fold {¢ < 0}. We have

9

H—tr(p

5,) > 0
in this case.

The quasi local mass of ¥;, is defined as

(i) = {

ming 7m4 (2, @): if condition (i) holds, (4.5)
minz 7m_(%;,, ¢): if condition (ii) holds. '

Note that it might have two different values via embedding to the
upper-fold and to the lower-fold respectively when ¢r(p) = 0. However,

since D¢ = 0, 5(60 - ¢) = —try,(p)¢ = 0, we have
[erv.e0-0)= [ (Bo.co0) (0. Dleo - 6)) = .
b M

This implies 7 (i, @) = (S, ¢). Hence m(;,) is unique in this
case. Furthurmore, (4.5]) approaches (4.2)) when x — 0.

If 3, -+, can be isometrically embedded into R? in the Minkowski
spacetime R*!, and ¥, .1, -, can be isometrically embedded into

H? , H? , in the Minkowski spacetime R*' respectively, we de-
lo+1 1

fine the quasi local mass of ¥ as

) =Y mE)+ > m(S). (4.6)

1<i<lp lo+1<:i<]

)

Theorem 1. Let (N,g) be a spacetime which satisfies the dominant
energy condition. Let (M, g,p) be a smooth initial data set with the
boundary X which has finitely many multi-components ¥;, each of which
is topological 2-sphere. Suppose that some ¥;, has negative Gauss cur-

vature and let Ky, > —r* (k> 0) where —k? is the minimum of the
Gauss curvature. If either condition (i) or condition (ii) holds, then

(1) (%) > 0;
(2) that m(3;,) = 0 implies the energy-momentum of spacetime
satisfies

Too = |fllo1*  Toi = f{¢.e0- € o)
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along M, where f is a real function, ¢ is the unique solution of

(24) or (2.3) for some ¢ € =.

(3) Furthermore, if p;; = 0, then m(%;,) = 0 implies that M is
flat with connected boundary; if p;; = £kKg;;, then m(X;,) =0
implies that M has constant curvature —k?2.

Proof : By Lemma[Il statements (1), (2) and the first part of state-
ment (3) can be proved by the same argument as the proof of Theorem
1 in [I8]. For the proof of the second part of the statement (3), the
vanishing quasi local mass implies

vz¢ig€0€z¢:0

Since V(eg- @) = e - Vi, we find the M has constant Ricci curvature
with the scalar curvature —6x2. Therefore M has constant curvature
—k?% because the dimension is 3. Q.E.D.
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