
ar
X

iv
:0

71
1.

33
54

v2
  [

m
at

h-
ph

] 
 2

3 
N

ov
 2

00
7

The renormalization of the non commutative φ⋆4
4 field theory

Razvan Gurau(1) ∗
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Abstract

We present an overview of the different renormalization proofs of the non commutative φ⋆4

4 model.

This paper is a contribution to the MemPhys project.

1 Introduction

Modern non commutative quantum field theory has been developed over the last twenty years from several
reasons. It appears in some limit regime of string theory, so that it might be important for physics beyond
the standard model. Predicting the quantization of surface and volume it has also been related to loop
quantum gravity. It is moreover good setup to study the quantum Hall effect.

After the introduction by Grosse and Wulkenhaar (in [1]) of the renormalizable φ⋆4
4 model, it has became

clear this theory is interesting per se: It is much more manageable than string theory or quantum gravity
and allows precise mathematical proofs with a very high degree of accuracy.

2 The φ⋆4
4 model

We will allways take the space Euclidean and flat. We consider the simplest non commutative geometry, the
Moyal space. It is defined as the algebra of functions defined on the deformed R

4
θ space, defined by the non

commuting coordinates
[xµ, xν ] = iθµν , (2.1)

where the the matrix θ is

θ =









0 θ 0 0
−θ 0 0 0
0 0 0 θ
0 0 −θ 0









. (2.2)

The deformed space R4
θ can be seen as the usual R4 space endowed with the associative but non commutative

Moyal product of functions

(f ⋆ g)(x) =
1

πD| det θ|

∫

dDy dDz e−2ıyθ−1zf(x+ y) g(x+ z) . (2.3)

Using this product we take the action of a scalar field φ on a Moyal space to be

S =

∫

d4x

(

1

2
∂µφ ⋆ ∂µφ+

Ω2

2
(x̃µφ) ⋆ (x̃

µφ) +
λ

4
φ ⋆ φ ⋆ φ ⋆ φ

)

(2.4)

where x̃µ = 2(θ−1)µνx
ν .

This model does not suffer from the well known ultraviolet infrared mixing and as a consequence one has
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Theorem 2.1 The model defined by the action 2.4 is perturbatively renormalizable at all orders.

Three different proofs of this theorem are presented in the rest of this paper.

3 Renormalization in the matrix base

One can perform a change of basis (see [1] for the detailed computations) using Hermite polynomials to cast
the action (2.4) into the (pseudo-) matrix model form

S = (2πθ)2
∑

m,n,k,l∈N2

(φmnGmn,klφkl +
λ

4
φmnφnkφklφlm) , (3.1)

with

Gmn,kl = 2
1 + Ω2

θ
(n1 + n2 +m1 +m2)δn1k1δm1l1δn2k2δm2l2

− 2
1− Ω2

θ
(
√
k1l1δn1+1k1δm1+1l1 +

√
m1n1δm1−1k1δm1−1l1)δn2k2δm2l2 − (1 ↔ 2) . (3.2)

The highly nontrivial computation of the propagator (the inverse of the quadratic part of the action) has
been achieved in [1].

For a matrix model, the Feynman graphs are ribbon graphs. They are characterized by some topological
numbers, like the number of vertices N (and external vertices Ne) the number of lines L, the number of
internal faces F , the genus g and the number of boundaries B of the Riemann surface on which we can draw
the graph (see [1]). These numbers are related by some topological relations

N − L+ F = 2− 2g 4N −Ne = 2L . (3.3)

The proof of renormalizability relies on two main results: the counterterm structure (established in [1])
and the power counting (established in [2]).

The power counting is done using multiscale analysis in the matrix base. The matrix index is (almost)
conserved on the internal faces so that we have one main index to sum per internal face. This in term suggests
the use of the dual graph (the graph with all vertices replaced by faces and all faces replaced by vertices).
Choosing a tree in the dual graph adapted to the scale attribution ([2]) one proves that the superficial degree
of divergence of a graph is

ω(G) = (2− Ne

2
)− 2(2g +B − 1) . (3.4)

Consequently, only 2 or 4 point graphs with g = 0 and B = 1 can diverge. The divergent part of such graphs
is shown to exactly reproduce the terms in the initial action ([1]) and can be reabsorbed in a redefinition of
the parameters Ω and λ.

4 Renormalization in the direct space

The previous proof of renormalizability is not very satisfactory. First of all it is not valid for all values of
the parameter Ω. Second is very technical and being performed in the matrix base we lack the intuition to
understand the counterterm structure.

Due to this reasons in [3] an alternative proof is proposed, in the direct space. It is much simpler, provides
a principle of “Moyality” to replace the principle of locality in commutative field theory and is valid for all
values of Ω.

The propagator of the model in the direct space from a point x to a point y is given by the Mehler kernel
(see [3] and references therein)

C(x, y) =

∫ ∞

0

Ω̃dα

[2π sinh(α)]2
e−

Ω̃
4 coth(α

2 )(x−y)2− Ω̃
4 tanh(α

2 )(x+y)2 , (4.1)
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with Ω̃ = Ω/(2θ)
Using the explicit form (2.3) of the Moyal product, the vertex of of the action (2.4) becomes in the direct

space:

δ(xV
1 − xV

2 + xV
3 − xV

4 )e
2i

P

1≤i<j≤4(−1)i+j+1xV
i θ−1xV

j (4.2)

where xV
1 , . . . , x

V
4 are the 4−vectors of the positions of the 4 fields incident to the respective vertex V . The

δ function in the above equation sets the fields in the corners of a paralelogram and the oscillating term is
related to the area of the paralelogram. For all lines we change variables to “short” u and “long” v variables,
equal to the sum and difference of its two endpoints.

The sliced propagator is bounded by

Ci ≤ M2ie−Mi|u|−Mi|v| . (4.3)

All vertices are weighted on average by two propagators, thus a M4i factor, and we need to integrate two
long and two short variables. We use the δ function to integrate one of the longs variables. We get a M−8i

factor for the short integrations and M4i for the long. Thus the power counting for a vertex is neutral.
This naive argument combined with the use of the oscillating factors provides the power counting (see

[3] for the detailed proof). We note that strictu sensu we do not recover the complete power counting as a
function of genus and broken faces. We get only a sufficient bound stating that if a graph is non planar or
has more than one broken face it is convergent.

To prove the “Moyality” of the counterterms, we rewrite the amplitude of a graph using two topological
operations, see [3]. This topological operations are changes of variables adapted to the graph. They are
similar to the momentum routing. Thus, using a particular tree in the graph, its oscillating factor can be
rewritten in terms of the rosette of the graph, that is the graph with all tree lines contracted, as

Lemma 4.1 The rosette contribution after a complete first Filk reduction is exactly:

δ(s1 − s2 + · · · − s2n+2 +
∑

l∈T

ul)e
i

P

0≤i<j≤r(−1)i+j+1siθ
−1sj

e−i
P

l≺l′ ulθ
−1ul′ e−i

P

l ǫ(l)
ulθ

−1vl
2 ei

P

l,i≺l(−1)isiθ
−1ul+i

P

l,i≻l ulθ
−1(−1)isi , (4.4)

where ǫ(l) is −1 if the tree line l is oriented towards the root and +1 if it is not.

For a planar one broken face graph we have further

Lemma 4.2 The vertex contribution for a planar regular graph is exactly:

δ(
∑

i

(−1)i+1xi +
∑

l∈T∪L

ul)e
ı

P

i,j(−1)i+j+1xiθ
−1xj

eı
P

l∈T∪L, l≺j ulθ
−1(−1)jxj+ı

P

l∈T∪L, l≻j(−1)jxjθ
−1ul

e−ı
P

l,l′∈T∪L, l≺l′ ulθ
−1ul′−ı

P

l∈T

ulθ
−1vl
2 ǫ(l)−ı

P

l∈L

ulθ
−1wl
2 ǫ(l)

e−ı
P

l∈L, l′∈L∪T ; l′⊂l ul′θ
−1wlǫ(l) . (4.5)

We are now into the position to understand the “Moyality” principle. The divergent part of such a factor
is obtained by setting all the shirt u variables to zero. Thus the first two lines of the above lemma hold
precisely the form of the Moyal kernel. As such, this divergence can be reabsorbed in the redefinition of the
parameters in the initial Lagragian (again, the details are presented in [3]).

5 Dimensional regularization and renormalization

The last renormalization scheme discussed in this paper is the dimensional regularization and renormaliza-
tion. Although it is not obvious how this procedure can be extended to hold the complete construction of a
model, it is by far the most well known as it allows for the perturbative renormalization of gauge theories

3



without braeking the gauge invariance. This procedure relies on the parametric representation of NCQFT
introduced in [4]. Note that for technical reasons we restrict our attention only to the complex model.

We define the (L × 4)-dimensional incidence matrix εV for each of the vertices V

εVℓi = (−1)i+1, if the line ℓ hooks to the vertex V at corner i.

ηVℓi = |εVℓi|, V = 1, . . . , n, ℓ = 1, . . . , L and i = 1, . . . , 4. (5.1)

The ”short” u and ”long” v variables are

vℓ =
1√
2

∑

V

∑

i

ηVℓix
V
i , uℓ =

1√
2

∑

V

∑

i

εVℓix
V
i . (5.2)

Using (4.1), (4.2) and (5.2) we write the amplitude AG,V̄ of the graph G (with the marked root V̄ ) in
terms of the non-commutative polynomials HUG,V̄ and HVG,V̄ as (see [4] for details)

AG,V̄ (xe, pV̄ ) =

(

Ω̃

2
D
2 −1

)L
∫ ∞

0

L
∏

ℓ=1

[dtℓ(1− t2ℓ)
D
2 −1]

e
−

HVG,V̄ (tℓ,xe,pv̄)

HUG,V̄ (t)

HUG,V̄ (t)
D
2

, (5.3)

with xe the external positions of the graph and tℓ = tanhαℓ

2 , ℓ = 1, . . . , L, where αℓ are the Schwinger
parameters of the lines. We proved in [4] that HU and HV are polynomials in the set of variables t.

To write the first polynomial (see [4]), let I and resp. J be two subsets of {1, . . . , L}, of cardinal |I|
and |J |. Furthermore, let kI,J = |I| + |J | − L − F + 1 , and nIJ , an integer number (computed in [4]) and

s = 2/(θΩ̃) = 1/Ω. We have

HUG,V̄ (t) =
∑

I,J

s2g−kI,J n2
I,J

∏

ℓ 6∈I

tℓ
∏

ℓ′∈J

tℓ′ . (5.4)

In [4], non-zero leading terms (i.e. terms with the smallest global degree in the t variables) were identified.
They are dominant in the UV regime. Some of them correspond to subsets I = {1, . . . , L} and J admissible,
that is

• J contains a tree T̃ in the dual graph,

• the complement of J contains a tree T in the direct graph.

Associated to such I and J one has n2
I,J = 22g.

Using this representation the power counting translate in the proof of meromorphy of the function (5.3) in
the space-time dimension D (see [5] for the detailed proof). In order to prove the meromorhpy one introduces
Hepp sectors σ defined as

0 ≤ t1 ≤ . . . ≤ tL , (5.5)

and performs the change of variables

tℓ =

L
∏

j=ℓ

x2
j , ℓ = 1, . . . , L. (5.6)

We denote by Gi the subgraph composed by the lines t1 to ti. As before, we denote L(Gi) = i the number
of lines of Gi, g(Gi) its genus, F (Gi) its number of faces, etc.. The amplitude is

AG,V̄ =
( Ω̃

2(D−4)/2

)L
∫ 1

0

L
∏

i=1



1− (

L
∏

j=i

x2
j )

2





D
2 −1

dxi

L
∏

i=1

x
2L(Gi)−1
i

e
−

HV
G,V̄

(x2)

HUG,V̄ (x2)

HUG,V̄ (x
2)

. (5.7)
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In the above equation we factor out in HUG,V̄ the monomial with the smallest degree in each variable xi

AG,V̄ (xe, pv̄) =

(

Ω̃

2
D
2

)L
∫ 1

0

L
∏

ℓ=1

dxℓ



1− (
L
∏

j=ℓ

x2
j )

2





D
2 −1

x
2L(Gi)−1−Db′(Gi)
i

e
−

HVG,V̄
HUG,V̄

(asb + F (x2))
D
2

. (5.8)

The last term in the above equation is always bounded by a constant. Divergences can arise only in the
region xi close to zero (it is well known that this theory does not have an infrared problem, even at zero
mass). The integer b′(Gi) is given by the topology of Gi. It is

b′(Gi) =























≤ L(Gi)− [n(Gi)− 1]− 2g(Gi) if g(Gi) > 0

≤ L(Gi)− n(Gi) if g(Gi) = 0 and B(Gi) > 1

= L(Gi)− [n(Gi)− 1] if g(Gi) = 0 and B(Gi) = 1

. (5.9)

To prove this formula one uses the leading terms in the polynomial HU . Taking individually the integral
over each xi we see that only planar one broken face subgraphs with two or four external legs are divergent.

In this context the Moyality is replaced by the following factorization property (proved in [5])

e
−

HVG(ρ)

HUG(ρ)

HUG(ρ)D/2
=

1

[HU
l(ρ)
S ]D/2

(1 + ρ2OS)
e
−

HVG/S
HUG/S

HU
D/2
G/S

. (5.10)

of the amplitude of a graph under rescaling by ρ of the parameters of a subgraph. The pole subtraction is
done by the usual Taylor operator (again see [5] for details).

6 Conclusions

Renormalizable non commutative quantum field theories are today a well established field. Most of the
techniques of commutative field theories can be generalized to RNCQFT. The main renormalization proofs
of the latter have been presented in this paper. The structure of RNCQFT is more topological than that of
usual QFT’s and might be more adapted to the analysis of background independent theories.
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