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Abstract

Let f be a non-CM newform of weighit > 2. Let L be a subfield of the
coefficient field off. We completely settle the question of the density of the
set of prime such that the-th coefficient off generates the field. This
density is determined by the inner twistsfofAs a particular case, we obtain
that in the absence of non-trivial inner twists, the denisityfor L equal to
the whole coefficient field. We also present some new data durcilgility
of Hecke polynomials, which suggest questions for furtheestigation.

Mathematics Subject Classification (2000): 11F30 (prigjabdF11,
11F25, 11F80, 11R45 (secondary).

1 Statement of theresults

The principal result of this paper is the following theorehs. corollaries below
completely resolve the question of the density of the setiofigsp such that the
p-th coefficient off generates a given field.
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Theorem 1. Let f be a newform (i.e., a new normalized cuspidal Hecke eigen-
form) of weightt > 2, level V and Dirichlet charactery which does not have
complex multiplication (CM, see [RBO, p. 48]). LBf = Q(a,(f) : (n,N)=1)

be the field of coefficients gfand 'y = Q (a;EfL;Q : (n,N) = 1).

The set
{p prime: Q (%) = Ff}

A twist of f by a Dirichlet character is said to beinner if there exists a
(necessarily unique) field automorphism: £; — E; such that

ap(f @ €) = a,(f)e(p) = oc(ap(f)) 1)

for almost all primes. For a discussion of inner twists we refer the reader to
[R8Q, §3] and [R85,53]. Here we give several statements that will be needed for
the sequel. The, belonging to the inner twists gf form an abelian subgroup

of the automorphism group df;. The fieldF; is the subfield oft'; fixed byT'.

It is well-known that the coefficient field is either a CM field or totally real. In
the former case, the formula

ap(f) = x(p) e, (f), 2)

which is easily derived from the behaviour of the Hecke ofmesaunder the Pe-
tersson scalar product, shows tlfdtas a non-trivial inner twist by ~* with o, -1
being complex conjugation. IV is square freek = 2 and the Dirichlet character
x of f is the trivial character, then there are no nontrivial inwésts of f.

has densityl.

. . . a 2
Lemma 1. The fieldF; is totally real andQ(a,(f)) contalns%.

Proof. Equation_ give§“’;<((—£§2 = a,(f)a,(f), whenceFy is totally real. Since
every subfield of a CM field is preserved by complex conjugat(a,(f)) con-
tainsa,(f), thus it also contain%f%. O

We immediately obtain the following two results.

Corollary 1. Let f and E; be as in Theorefnl 1. If does not have any nontrivial
inner twists (e.g. ik = 2, V is square free ang is trivial), then the set

{p prime: Q(a,(f)) = Ey}

has densityl.



Corollary 2. Let f and F; be as in Theorem| 1. The set

{p prime: Fr € Q(a,(f))}
has densityl.

To any subgroup? of I', we associate a number field; as follows. Consider
the inner twists as characters of the absolute Galois gf@lpQ/Q) and let
€1, ..., €6 betheinnertwists such that = {o.,, ..., 0., }. Let Ky be the minimal
number field on which alt; for 1 < ¢ < r are trivial, i.e. the field such that its
absolute Galois group is the kernel of the map

Gal(Q/Q) === C* x --- x C*.

We use this field to express the density of the set of primesch thaia,(f) is
containedn a given subfield of the coefficient field.

Corollary 3. Let f, E; and F'; be as in Theorerml 1. L€t be any subfield of.
Let M}, be the set

{p prime: a,(f) € L}.
(a) If L does not contaitt’;, thenM |, has density.

(b) If L containsF’, thenL = E]{f for some subgroufy C I' and M, has density
1/[Ky : Q).

Proof. Suppose first thal. does not contairf;. Thena,(f) € L implies that
Fy is not a subfield of)(a,(f)). Thus by Corollary R}, is a subset of a set of
density0 and is consequently itself of density We now assume thdi = E}f
Then we have

M, = {p prime: o(ay(f)) = a,(f) ¥or € H}
= {p prime: a,(f)e:(p) = a,(f)Vie {1,...,r}}.

Since the set op with a,(f) = 0 has density) (see for instance [S81], p. 174),
the density ofM/;, is equal to the density of

{p prime: ¢;(p) = 1Vi € {1,...,r}} = {p prime: p splits completely inK' } ,

yielding the claimed formula. O



A complete answer as to the density of the set efich that,(f) generates
a given fieldL C Ey is given by the following immediate result.

Corollary 4. Let f, Ey and Fy be as in Theorerl 1. Lét be E{' with H some
subgroup ofl". The density of the set

{p prime: Q(a,(f)) = L}

is equal to the density of the set

{pprime: ¢(p)=1Vie {1,...,r}ande;(p) #1Vj e {r+1,...,s}},

where the; for j € {r+1, ..., s} are the inner twists of that belong to elements
of'— H.

This corollary means that the above density is completelgrdened by the
inner twists of f. We illustrate this by giving two examples. In weighthere is
a newform onl',(63) with coefficient fieldQ(+/3). It has an inner twist by the
Legendre symbagb — (g) Consequently, the field) is Q and the set op such
thata,(f) € Q has density.

For the next example we consider the newform of weigbih 'y (512) whose

coefficient field has degreeover Q. More precisely, the coefficient field, is
Q(v2,V3) andF; = Q. Hence,l' = Z/2Z x Z/2Z = {1,0,,05,03}. There
are thus nontrivial inner twists;, ¢, andes, all of which are quadratic, as their
values must be contained in the totally real figlgl As 0,09 = o3, it follows that
e1(p)e2(p) = e5(p). This equation already excludes the possibility thatall)
1, whence there is not a singlesuch that., () generates”;. Furthermore, the
set ofp such that:, generates the quadratic 1‘ielb}"1> is equal to the density of
{p prime: ¢,(p) = 1 andex(p) # 1}, which is 1. Similar arguments apply to the
other two quadratic fields. The setpfuch that, € Q also has densitj

In the literature there are related but weaker results gonug Corollary(1,
which are situated in the context of Maeda’s conjecture,they concern the case
of level 1 and assume that the spagg 1) of cusp forms of weight: and levell
consists of a single Galois orbit of newforms (see, €.9.98]@nd [BM03]). We
now show how Corollaril1l extends the principal results o§é&evo papers.

Let f be a newform of levelV, weightk > 2 and trivial Dirichlet character
x = 1 which neither has CM nor nontrivial inner twists. This is fostance
true whenN = 1. Let T be theQ-algebra generated by d&ll, with n > 1
inside End(Sk(N, 1)) and letd be the kernel of th&-algebra homomorphism
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T Ey. AsTis reduced, the mé&py M E;isaring isomorphism

with Ty the localization ofT" at 3. Non canonicallyTy is also isomorphic as
a Ty-module (equivalently as af's-vector space) to it€-linear dual, which
can be identified with the localization 8 of the Q-vector spaceS, (N, 1; Q)

of cusp forms inS, (N, 1) with g-expansion inQ[[¢]]. Hence,Q(a,(f)) = E;
precisely means that the characteristic polynomijat Q[X] of 7, acting on the
localization a3 of Si(XV, 1; Q) is irreducible. Corollary]1 hence shows that the
set of prime® such thatP, is irreducible has density.

This extends Theorem 1 df [JO98] and Theorem 1.1 of [BMO03]thBbeo-
rems restrict to the cas®€ = 1 and assume that there is a unique Galois orbit of
newforms, i.e., a uniqugs, so that no localization is needed. Theorem 1 of [JO98]
says that

Trnr—ran(f)

. . S X
#{p < X prime : P, is irreducible inQ[X]} > Tog X

and Theorem 1.1 of [BM03] states that theré is 0 such that

, : L X
#{p < X prime : P, is reducible inQ[X]} <« flog X175
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edges partial support from the National Science Foundafiant No. 0555776,
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2 Group theoretic input
Lemma 2. Letq be a prime power anda generator of the cyclic groug; .

(a) The conjugacy classesin GL.(FF,) have the following four kinds of repre-
sentatives:

_f[a 0O _(a O _(a O (T ey
Sa_<0 a)? Ta_<1 a)? Ua,b_(o b)7 %7y—(y .T)

wherea # b, andy # 0.



(b) The number of elements in each of these conjugacy classels ¢ — 1, ¢ +
q, andg¢? — q, respectively.

Proof. See Fulton-Harris [FH91], page 68. O
We use the notatiofy| for the conjugacy class afin G.

Proposition 1. Letq be a prime power and a positive integer. Let furtheR C
R C F be subgroups. Pu/R = {s € F; : s? € R}. Set

H = {g € GLy(F,) : det(g) € R}

and let N
G C {g € GLy(F,) : det(g) € R}

be any subgroup such thd is a normal subgroup ofs. Then the following
statements hold.

(@) The groupG /(G NF,.) (with F}. identified with scalar matrices) is either
equal toPSLy(F,) or to PGLy(F,). More precisely, if we lefsy, ..., s,} be

a system of representatives fo/rE/R, then for allg € G there isi such that
-1
g(% ) €GNGLyF,)and (5 ) G

0
(b) Letg € G such thaty <SZ;1 391) € GNGLy(F,) and(§ %) € G. Then

—1

gla =19 (" 2 )lonctaen (59)-
(c) LetP(X) = X? —aX + b € F,[X] be a polynomial. Then the inequality

> IC| < 2|R/RI(¢* +q)

C

holds, where the sum runs over the conjugacy classesG with character-
istic polynomial equal ta?(.X).

Proof. (a) The classification of the finite subgroupsRi&L,(F,) yields that the
group G /(G N Fy.) is eitherPGLy(Fqu) or PSLy(FF,.) for somew | r. This,
however, can only occur with = 1, asPSL,(F,.) is simple. The rest is only a
reformulation.



(b) This follows from (a), since scalar matrices are central
(c) From (b) we get the inclusion

el ().
C =1 D
whereC runs over the conjugacy classesbivith characteristic polynomial equal
to P(X) andD runs over the conjugacy classesofiGLy(F,) with characteristic
polynomial equal toX? — as; ' X + bs; % (such a conjugacy class is empty if the
polynomial is not inF,[X]). The groupG N GLy(F,) is normal inGLy(F,),
as it containsSLy(FF,). Hence, any conjugacy class GfiL,(F,) either has an
empty intersection witli N GL,(F,) or is a disjoint union of conjugacy classes
of G N GLy(F,). Consequently, by Lemnia 2, the disjoint unjolp, D (5 . ) is
equal to one of

() [Uaploray) (5 o

si 0
S;

7

),
(i) Vaylawoe,) (5 5) or
(i) [Salaracey (5 8) U [Talarae, (5 0).

Still by Lemmd 2, the first set contain$+¢, the second sef —¢ and the third one
¢* elements. Hence, the 4eft, C contains at most|R/R|(¢* + ¢) elements. O

3 Proof

The proof of Theoreni]1 relies on the following important tfeo by Ribet,
which, roughly speaking, says that the image of the mhGdhlois representation
attached to a fixed newform is as big as it can be for almostiatigs/.

Theorem 2 (Ribet). Let f be a Hecke eigenform of weight> 2, level N and
Dirichlet charactery : (Z/NZ)* — C*. Suppose thaf does not have CM. Let
E; and Fy be as in Theorerml 1 and denote Oy;, and O, the corresponding
rings of integers. For almost all prime numbetghe following statement holds:

Let £ be a prime ideal o0, dividing ¢. Put£ = £ N Oy, and
Or, /L = F. Consider the residual Galois representation

Przt Gal(Q/Q) = GLa(Op, /L)
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attached tof. Then the imagg, -(Gal(Q/Kr)) is equal to

{9 € GLy(F) : det(g) € Fy 7V},
whereK7t is the field defined in Sectionh 1.
Proof. It suffices to take Ribet [R85, Thm. 3.1] mad O

Theorem 3. Let f be a non-CM newform of weight> 2, level N and Dirichlet
charactery. Let F; be as in Theorerl 1 and Iét C F; be any proper subfield.

Then the set )
{p prime: (/) € L}
x(p)

has density zero.

Proof. Let L C F; be a proper subfield an@;, its integer ring. We define the set
S = {L C Op, primeideal: (O, /L : Op/(LNL)] > 2}.

Notice that this set is infinite. For, if it were finite, ther But finitely many
primes would split completely in the extensién/L, which is not the case by
Chebotarev’s density theorem. N

Let £ € S be any prime/ its residue characteristic antia prime ofOp,
lying over L. PutF, = Op/(LN L), Fyr = Op, /L andFs = (’)Ef/Z. We
haver > 2. Let W be the subgroup dF .. consisting of the values of mod-
ulo £; its size || is less than or equal tfZ/NZ)*|. Let R = X(k Y pe
the subgroup ofk — 1)st powers of elements in the multiplicative groIE]p and
let R = (R,W) C Fys. The size ofR is less than or equal tR| - [W]. Let
H = {g € GLy(F,) : det( ) € R} andG = Gal(Q """ /Q). By Galois the-
ory, G can be identified with the image of the residual represeomatj -, and we
shall make this identification from now on. By Theorem 2 weénhthe inclusion
of groups N

H C G C{g € GLy(Fy) : det(g) € R}

with H being normal inG.
If C'is a conjugacy class @f, by Chebotarev’s density theorem the density of

{pprime: [p; z(Frob,)]e = C}



equals|C|/|G|. We consider the set

M, = Ig{p prime: [p; z(Frob,)le = C} 2 {p prime: (a;((g ) - Fq} 7

where the reduction modul6 of an element € O, is denoted by andC' runs
over the conjugacy classes 6f with characteristic polynomials equal to some
X? —aX +b € F[X] such that

a?€{t€Fys : eF,JweW t=uw}

and automatically € R. The set), has the densit§(M,) = 3", % with C' as
before. There are at mazf|1V|? - | R| such polynomials. We are now precisely in

the situation to apply Propl 1, Part (c), which yields theyinaity

o 0o L) 0(2).

where for the denominator we usge| > |H| = |R| - | SLy(F,-)|.
Sincegq is unbounded foll < S, the intersectionV/ := (), .o M. is a set
having a density and this densitylisThe inclusion

{pprime: % € L} CM

finishes the proof. 0J

Proof of Theorerl1lt suffices to apply Theorein 3 to each of the finitely many
subextension of ;. O

4 Reducibility of Hecke polynomials: questions

Motivated by a conjecture of Maeda, there has been some Igtiecuthat for
every integerk and prime numbep, the characteristic polynomial &f, acting

on Si(1) is irreducible. See, for examplé, [FJ02], which verifies thir all & <
2000 andp < 2000. The most general such speculation might be the following
guestion:if f is a non-CM newform of levéV > 1 and weightt > 2 such that
someuq,(f) generates the field; = Q(a,(f) : n > 1), do all but finitely many
prime-indexed Fourier coefficients(f) generateE;? The answer in general is
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no. An example is given by the newform in lewdland weigh® that has an inner
twist by (g) Also for non-CM newforms of weigh? without nontrivial inner
twists such thatE, : Q] = 2, we think that the answer is likely no.

Let f € Si(I'o(N)) be a newform of weight and levelN. Thedegreeof f is
the degree of the field;, and we say that is areducible newfornif a,(f) does
not generate; for infinitely many prime.

For each even weiglit < 12 and degred = 2, 3, 4, we used/[SAGE] to find
newformsf of weight £ and degreel. For each of these forms, we computed
thereducible primeg < 1000, i.e., the primes such,(f) does not generatg;.
The result of this computation is given in Table 1. Tdble 2taors the number of
reducible prime$ < 10000 for the first20 newforms of degree and weight2.
This data inspires the following question.

Question 1. If f € Sy(I'o(N)) is a newform of degree, is f necessarily re-
ducible? That is, are there infinitely many primesuch thatu,(f) € Z?

Tabled 4Eb contain additional data about the first few naw$oof given de-
gree and weight, which may suggest other similar questidmsarticular, Ta-
ble[4 contains data for all primes up t6° for the first degree 2 forny with
L(f,1) # 0, and for the first degree 2 formwith L(g, 1) = 0. We find that there
are 386 primes< 10¢ with a,,(f) € Z and309 with a,(g) € Z.

Question 2. If f € Sy(I'o(N)) is a newform of degree, can the asymptotic
behaviour of the function

N(z):=#{pprime: p < z,a,(f) € Z}
be described as a function o?

The authors intend to investigate these questions in a qubaepaper.
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Table 1: Counting Reducible Characteristic Polynomials

991

k | d| N | reduciblep < 1000
2 | 2|23]|13,19,23,29,43,109, 223, 229, 271, 463, 673, 677, 883,
2 |3|41|17,41
2 | 4|47 47
4 21111
4 | 3|17 |17
4 | 42323
6 |27 |7
6 |3|11|11
6 |4]|17|17
8 |2|5 |5
8 |3|17]|17
8 |4]11|11
10|25 |5
10|37 |7
10| 4] 13|13
12|25 |5
12137 |7
1214121 3,7

Table 2: First 20 Newforms of Degree 2 and Weight 2
k|d| N | #{reduciblep < 10000} | | k| d | N | #{reduciblep < 10000}
21223 47 22|65 43
21229 42 22|65 90
21231 78 22|67 51
21235 48 22|67 19
22|39 71 22|68 53
22|43 43 22|69 47
22|51 64 22|73 43
22|55 95 22|73 55
22|62 77 22|74 52
2| 2| 63| 622 (innertwistby(;)) | |2|2]|74 21
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Table 3: Newforms 23a and 67b: values/dfr) = #{reduciblep < z - 10°}

kEld|N/|ram]| 1 2 3 4 5 6 7 8 9 | 10
21223 0 |127|180|210| 243|277| 308| 331 | 345| 360 | 386
212167 1 |111|159| 195|218 | 240| 257 | 276 | 288 | 301 | 309
Table 4: First 5 Newforms of Degrees 3, 4 and Weight 2
k| d| N | reduciblep < 10000 k| d| N |reduciblep < 10000
2(341|17,41 24|47 |47
2(13]53]|13,53 214|195 |5,19
23|61 61,2087 214|197 |97
213|71]23,31,71,479, 214|109 109,4513
647,1013, 3181 214|111 3,37
23|71]13,71,509, 3613
Table 5: First 5 Newforms of Degrees 2, 3 and Weight 4
k| d| N | reduciblep < 1000 k| d| N | reduciblep < 1000
4121111 4113|1717
4112|1313 4113|1919
412(21|3,7 413|35|5,7
4 2 27 3,7,13,19,31,37,43,61, 67, 73,79, 97, 103, 4 3 39 3, 13
109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 4 3 41 41
223,229,241, 271, 277, 283, 307, 313, 331, 33|
349, 367, 373, 379, 397, 409, 421, 433, 439, 437,
463, 487,499, 523, 541, 547, 571,577, 601, 647,
613, 619, 631, 643, 661, 673, 691, 709, 727, 733,
739, 751, 757, 769, 787, 811, 823, 829, 853, 859,
877, 883,907, 919, 937, 967, 991, 997
(has inner twists)
4122929
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Table 6: Newforms o'y (389) of Weight2

o

d | N | reduciblep < 10000

NN

N DN

1 | 389 | none (degree 1 polynomials are all irreducible)
2 389 5,11, 59,97, 157, 173, 223, 389, 653, 739, 859, 947, 1033,12819, 1667, 2207, 2417, 2909, 3121, 4337,

5431, 5647, 5689, 5879, 6151, 6323, 6373, 6607, 6763, 7583, B363, 9013, 9371, 9767

3 |389)| 7,13, 389,503, 1303, 1429, 1877, 5443
6 | 389 19, 389
20| 389| 389
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