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On the generation of the coefficient field of a
newform by a single Hecke eigenvalue
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Abstract

Let f be a non-CM newform of weightk ≥ 2. LetL be a subfield of the
coefficient field off . We completely settle the question of the density of the
set of primesp such that thep-th coefficient off generates the fieldL. This
density is determined by the inner twists off . As a particular case, we obtain
that in the absence of non-trivial inner twists, the densityis 1 for L equal to
the whole coefficient field. We also present some new data on reducibility
of Hecke polynomials, which suggest questions for further investigation.

Mathematics Subject Classification (2000): 11F30 (primary); 11F11,
11F25, 11F80, 11R45 (secondary).

1 Statement of the results

The principal result of this paper is the following theorem.Its corollaries below
completely resolve the question of the density of the set of primesp such that the
p-th coefficient off generates a given field.
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Theorem 1. Let f be a newform (i.e., a new normalized cuspidal Hecke eigen-
form) of weightk ≥ 2, levelN and Dirichlet characterχ which does not have
complex multiplication (CM, see [R80, p. 48]). LetEf = Q(an(f) : (n,N) = 1)

be the field of coefficients off andFf = Q
(

an(f)2

χ(n)
: (n,N) = 1

)
.

The set {
p prime : Q

(
ap(f)

2

χ(p)

)
= Ff

}

has density1.

A twist of f by a Dirichlet characterǫ is said to beinner if there exists a
(necessarily unique) field automorphismσǫ : Ef → Ef such that

ap(f ⊗ ǫ) = ap(f)ǫ(p) = σǫ(ap(f)) (1)

for almost all primesp. For a discussion of inner twists we refer the reader to
[R80, §3] and [R85,§3]. Here we give several statements that will be needed for
the sequel. Theσǫ belonging to the inner twists off form an abelian subgroupΓ
of the automorphism group ofEf . The fieldFf is the subfield ofEf fixed byΓ.
It is well-known that the coefficient fieldEf is either a CM field or totally real. In
the former case, the formula

ap(f) = χ(p)−1ap(f), (2)

which is easily derived from the behaviour of the Hecke operators under the Pe-
tersson scalar product, shows thatf has a non-trivial inner twist byχ−1 with σχ−1

being complex conjugation. IfN is square free,k = 2 and the Dirichlet character
χ of f is the trivial character, then there are no nontrivial innertwists off .

Lemma 1. The fieldFf is totally real andQ(ap(f)) containsap(f)2

χ(p)
.

Proof. Equation 2 givesap(f)
2

χ(p)
= ap(f)ap(f), whenceFf is totally real. Since

every subfield of a CM field is preserved by complex conjugation,Q(ap(f)) con-

tainsap(f), thus it also containsap(f)
2

χ(p)
.

We immediately obtain the following two results.

Corollary 1. Let f andEf be as in Theorem 1. Iff does not have any nontrivial
inner twists (e.g. ifk = 2,N is square free andχ is trivial), then the set

{p prime : Q(ap(f)) = Ef}

has density1.
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Corollary 2. Letf andFf be as in Theorem 1. The set

{p prime : Ff ⊆ Q(ap(f))}

has density1.

To any subgroupH of Γ, we associate a number fieldKH as follows. Consider
the inner twists as characters of the absolute Galois groupGal(Q/Q) and let
ǫ1, . . . , ǫr be the inner twists such thatH = {σǫ1, . . . , σǫr}. LetKH be the minimal
number field on which allǫi for 1 ≤ i ≤ r are trivial, i.e. the field such that its
absolute Galois group is the kernel of the map

Gal(Q/Q)
ǫ1,...,ǫr−−−−→ C× × · · · ×C×.

We use this field to express the density of the set of primesp such thatap(f) is
containedin a given subfield of the coefficient field.

Corollary 3. Let f , Ef andFf be as in Theorem 1. LetL be any subfield ofEf .
LetML be the set

{p prime : ap(f) ∈ L} .

(a) If L does not containFf , thenML has density0.

(b) If L containsFf , thenL = EH
f for some subgroupH ⊆ Γ andML has density

1/[KH : Q].

Proof. Suppose first thatL does not containFf . Thenap(f) ∈ L implies that
Ff is not a subfield ofQ(ap(f)). Thus by Corollary 2,ML is a subset of a set of
density0 and is consequently itself of density0. We now assume thatL = EH

f .
Then we have

ML = {p prime : σ(ap(f)) = ap(f) ∀σ ∈ H}
= {p prime : ap(f)ǫi(p) = ap(f) ∀i ∈ {1, . . . , r}} .

Since the set ofp with ap(f) = 0 has density0 (see for instance [S81], p. 174),
the density ofML is equal to the density of

{p prime : ǫi(p) = 1 ∀i ∈ {1, . . . , r}} = {p prime : p splits completely inKH} ,

yielding the claimed formula.
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A complete answer as to the density of the set ofp such thatap(f) generates
a given fieldL ⊆ Ef is given by the following immediate result.

Corollary 4. Let f , Ef andFf be as in Theorem 1. LetL beEH
f with H some

subgroup ofΓ. The density of the set

{p prime : Q(ap(f)) = L} .

is equal to the density of the set

{p prime : ǫi(p) = 1 ∀i ∈ {1, . . . , r} andǫj(p) 6= 1 ∀j ∈ {r + 1, . . . , s}} ,

where theǫj for j ∈ {r+1, . . . , s} are the inner twists off that belong to elements
of Γ−H.

This corollary means that the above density is completely determined by the
inner twists off . We illustrate this by giving two examples. In weight2 there is
a newform onΓ0(63) with coefficient fieldQ(

√
3). It has an inner twist by the

Legendre symbolp 7→
(
p

3

)
. Consequently, the fieldFf is Q and the set ofp such

thatap(f) ∈ Q has density1
2
.

For the next example we consider the newform of weight2 onΓ0(512) whose
coefficient field has degree4 overQ. More precisely, the coefficient fieldEf is
Q(

√
2,
√
3) andFf = Q. Hence,Γ = Z/2Z × Z/2Z = {1, σ1, σ2, σ3}. There

are thus nontrivial inner twistsǫ1, ǫ2 andǫ3, all of which are quadratic, as their
values must be contained in the totally real fieldEf . Asσ1σ2 = σ3, it follows that
ǫ1(p)ǫ2(p) = ǫ3(p). This equation already excludes the possibility that allǫi(p) 6=
1, whence there is not a singlep such thatap(f) generatesEf . Furthermore, the
set ofp such thatap generates the quadratic fieldE〈σ1〉

f is equal to the density of
{p prime : ǫ1(p) = 1 andǫ2(p) 6= 1} , which is 1

4
. Similar arguments apply to the

other two quadratic fields. The set ofp such thatap ∈ Q also has density1
4
.

In the literature there are related but weaker results concerning Corollary 1,
which are situated in the context of Maeda’s conjecture, i.e., they concern the case
of level 1 and assume that the spaceSk(1) of cusp forms of weightk and level1
consists of a single Galois orbit of newforms (see, e.g., [JO98] and [BM03]). We
now show how Corollary 1 extends the principal results of these two papers.

Let f be a newform of levelN , weightk ≥ 2 and trivial Dirichlet character
χ = 1 which neither has CM nor nontrivial inner twists. This is forinstance
true whenN = 1. Let T be theQ-algebra generated by allTn with n ≥ 1
insideEnd(Sk(N, 1)) and letP be the kernel of theQ-algebra homomorphism
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T
Tn 7→an(f)−−−−−−→ Ef . AsT is reduced, the mapTP

Tn 7→an(f)−−−−−−→ Ef is a ring isomorphism
with TP the localization ofT at P. Non canonicallyTP is also isomorphic as
a TP-module (equivalently as anEf -vector space) to itsQ-linear dual, which
can be identified with the localization atP of the Q-vector spaceSk(N, 1;Q)
of cusp forms inSk(N, 1) with q-expansion inQ[[q]]. Hence,Q(ap(f)) = Ef

precisely means that the characteristic polynomialPp ∈ Q[X ] of Tp acting on the
localization atP of Sk(N, 1;Q) is irreducible. Corollary 1 hence shows that the
set of primesp such thatPp is irreducible has density1.

This extends Theorem 1 of [JO98] and Theorem 1.1 of [BM03]. Both theo-
rems restrict to the caseN = 1 and assume that there is a unique Galois orbit of
newforms, i.e., a uniqueP, so that no localization is needed. Theorem 1 of [JO98]
says that

#{p < X prime : Pp is irreducible inQ[X ]} ≫ X

logX

and Theorem 1.1 of [BM03] states that there isδ > 0 such that

#{p < X prime : Pp is reducible inQ[X ]} ≪ X

(logX)1+δ
.

Acknowledgements. The authors would like to thank the MSRI, where part of
this research was done, for its hospitality. The first authorwould like to thank his
advisor Ralph Greenberg for suggesting the problem. The second author acknowl-
edges partial support from the National Science Foundationgrant No. 0555776,
and also used [SAGE] for some calculations related to this paper. All three authors
thank Jordi Quer for useful discussions.

2 Group theoretic input

Lemma 2. Let q be a prime power andǫ a generator of the cyclic groupF×
q .

(a) The conjugacy classesc in GL2(Fq) have the following four kinds of repre-
sentatives:

Sa =

(
a 0
0 a

)
, Ta =

(
a 0
1 a

)
, Ua,b =

(
a 0
0 b

)
, Vx,y =

(
x ǫy
y x

)

wherea 6= b, andy 6= 0.
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(b) The number of elements in each of these conjugacy classesare: 1, q2−1, q2+
q, andq2 − q, respectively.

Proof. See Fulton-Harris [FH91], page 68.

We use the notation[g]G for the conjugacy class ofg in G.

Proposition 1. Let q be a prime power andr a positive integer. Let furtherR ⊆
R̃ ⊆ F×

qr be subgroups. Put
√
R̃ = {s ∈ F×

qr : s2 ∈ R̃}. Set

H = {g ∈ GL2(Fq) : det(g) ∈ R}

and let
G ⊆ {g ∈ GL2(Fqr) : det(g) ∈ R̃}

be any subgroup such thatH is a normal subgroup ofG. Then the following
statements hold.

(a) The groupG/(G ∩ F×
qr) (with F×

qr identified with scalar matrices) is either
equal toPSL2(Fq) or to PGL2(Fq). More precisely, if we let{s1, . . . , sn} be

a system of representatives for
√
R̃/R, then for allg ∈ G there isi such that

g
(

s−1

i 0

0 s−1

i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G.

(b) Letg ∈ G such thatg
(

s−1

i 0

0 s−1

i

)
∈ G ∩GL2(Fq) and

(
si 0
0 si

)
∈ G. Then

[g]G = [g
(

s−1

i
0

0 s−1

i

)
]G∩GL2(Fq)

(
si 0
0 si

)
.

(c) LetP (X) = X2 − aX + b ∈ Fqr [X ] be a polynomial. Then the inequality

∑

C

|C| ≤ 2|R̃/R|(q2 + q)

holds, where the sum runs over the conjugacy classesC ofG with character-
istic polynomial equal toP (X).

Proof. (a) The classification of the finite subgroups ofPGL2(Fq) yields that the
groupG/(G ∩ F×

qr) is eitherPGL2(Fqu) or PSL2(Fqu) for someu | r. This,
however, can only occur withu = 1, asPSL2(Fqu) is simple. The rest is only a
reformulation.

6



(b) This follows from (a), since scalar matrices are central.
(c) From (b) we get the inclusion

⊔

C

C ⊆
n⊔

i=1

⊔

D

D
(
si 0
0 si

)
,

whereC runs over the conjugacy classes ofGwith characteristic polynomial equal
toP (X) andD runs over the conjugacy classes ofG∩GL2(Fq) with characteristic
polynomial equal toX2 − as−1

i X + bs−2
i (such a conjugacy class is empty if the

polynomial is not inFq[X ]). The groupG ∩ GL2(Fq) is normal inGL2(Fq),
as it containsSL2(Fq). Hence, any conjugacy class ofGL2(Fq) either has an
empty intersection withG ∩ GL2(Fq) or is a disjoint union of conjugacy classes
of G ∩ GL2(Fq). Consequently, by Lemma 2, the disjoint union

⊔
DD

(
si 0
0 si

)
is

equal to one of

(i) [Ua,b]GL2(Fq)

(
si 0
0 si

)
,

(ii) [Vx,y]GL2(Fq)

(
si 0
0 si

)
or

(iii) [Sa]GL2(Fq)

(
si 0
0 si

)
⊔ [Ta]GL2(Fq)

(
si 0
0 si

)
.

Still by Lemma 2, the first set containsq2+q, the second setq2−q and the third one
q2 elements. Hence, the set

⊔
C C contains at most2|R̃/R|(q2 + q) elements.

3 Proof

The proof of Theorem 1 relies on the following important theorem by Ribet,
which, roughly speaking, says that the image of the modℓ Galois representation
attached to a fixed newform is as big as it can be for almost all primesℓ.

Theorem 2 (Ribet). Let f be a Hecke eigenform of weightk ≥ 2, levelN and
Dirichlet characterχ : (Z/NZ)× → C×. Suppose thatf does not have CM. Let
Ef andFf be as in Theorem 1 and denote byOEf

andOFf
the corresponding

rings of integers. For almost all prime numbersℓ the following statement holds:

Let L̃ be a prime ideal ofOEf
dividing ℓ. Put L = L̃ ∩ OFf

and
OFf

/L ∼= F. Consider the residual Galois representation

ρf, eL : Gal(Q/Q) → GL2(OEf
/L̃)
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attached tof . Then the imageρf, eL(Gal(Q/KΓ)) is equal to

{g ∈ GL2(F) : det(g) ∈ F
×(k−1)
ℓ },

whereKΓ is the field defined in Section 1.

Proof. It suffices to take Ribet [R85, Thm. 3.1] mod̃L.

Theorem 3. Let f be a non-CM newform of weightk ≥ 2, levelN and Dirichlet
characterχ. LetFf be as in Theorem 1 and letL ⊂ Ff be any proper subfield.
Then the set {

p prime :
ap(f)

2

χ(p)
∈ L

}

has density zero.

Proof. LetL ( Ff be a proper subfield andOL its integer ring. We define the set

S := {L ⊂ OFf
prime ideal: [OFf

/L : OL/(L ∩ L)] ≥ 2}.

Notice that this set is infinite. For, if it were finite, then all but finitely many
primes would split completely in the extensionFf/L, which is not the case by
Chebotarev’s density theorem.

Let L ∈ S be any prime,ℓ its residue characteristic and̃L a prime ofOEf

lying overL. PutFq = OL/(L ∩ L), Fqr = OFf
/L andFqrs = OEf

/L̃. We
haver ≥ 2. Let W be the subgroup ofF×

qrs consisting of the values ofχ mod-

ulo L̃; its size |W | is less than or equal to|(Z/NZ)×|. Let R = F
×(k−1)
ℓ be

the subgroup of(k − 1)st powers of elements in the multiplicative groupF×
ℓ and

let R̃ = 〈R,W 〉 ⊂ F×
qrs. The size ofR̃ is less than or equal to|R| · |W |. Let

H = {g ∈ GL2(Fqr) : det(g) ∈ R} andG = Gal(Q
ker ρ

f, eL/Q). By Galois the-
ory,G can be identified with the image of the residual representationρf, eL, and we
shall make this identification from now on. By Theorem 2 we have the inclusion
of groups

H ⊆ G ⊆ {g ∈ GL2(Fqrs) : det(g) ∈ R̃}
with H being normal inG.

If C is a conjugacy class ofG, by Chebotarev’s density theorem the density of

{p prime : [ρf, eL(Frobp)]G = C}
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equals|C|/|G|. We consider the set

ML :=
⊔

C

{p prime : [ρ
f, eL(Frobp)]G = C} ⊇

{
p prime :

(
ap(f)2

χ(p)

)
∈ Fq

}
,

where the reduction moduloL of an elementx ∈ OFf
is denoted byx andC runs

over the conjugacy classes ofG with characteristic polynomials equal to some
X2 − aX + b ∈ Fqrs[X ] such that

a2 ∈ {t ∈ Fqrs : ∃u ∈ Fq ∃w ∈ W : t = uw}

and automaticallyb ∈ R̃. The setML has the densityδ(ML) =
∑

C
|C|
|G|

with C as

before. There are at most2q|W |2 · |R| such polynomials. We are now precisely in
the situation to apply Prop. 1, Part (c), which yields the inequality

δ(ML) ≤
4|W |3q(q2r + qr)

(q3r − qr)
= O

(
1

qr−1

)
≤ O

(
1

q

)
,

where for the denominator we used|G| ≥ |H| = |R| · | SL2(Fqr)|.
Sinceq is unbounded forL ∈ S, the intersectionM :=

⋂
L∈SML is a set

having a density and this density is0. The inclusion
{
p prime :

ap(f)
2

χ(p)
∈ L

}
⊆M

finishes the proof.

Proof of Theorem 1.It suffices to apply Theorem 3 to each of the finitely many
subextension ofFf .

4 Reducibility of Hecke polynomials: questions

Motivated by a conjecture of Maeda, there has been some speculation that for
every integerk and prime numberp, the characteristic polynomial ofTp acting
on Sk(1) is irreducible. See, for example, [FJ02], which verifies this for all k <
2000 andp < 2000. The most general such speculation might be the following
question:if f is a non-CM newform of levelN ≥ 1 and weightk ≥ 2 such that
someap(f) generates the fieldEf = Q(an(f) : n ≥ 1), do all but finitely many
prime-indexed Fourier coefficientsap(f) generateEf? The answer in general is
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no. An example is given by the newform in level63 and weight2 that has an inner
twist by

(
·
3

)
. Also for non-CM newforms of weight2 without nontrivial inner

twists such that[Ef : Q] = 2, we think that the answer is likely no.
Let f ∈ Sk(Γ0(N)) be a newform of weightk and levelN . Thedegreeof f is

the degree of the fieldEf , and we say thatf is areducible newformif ap(f) does
not generateEf for infinitely many primesp.

For each even weightk ≤ 12 and degreed = 2, 3, 4, we used [SAGE] to find
newformsf of weight k and degreed. For each of these forms, we computed
the reducible primesp < 1000, i.e., the primes suchap(f) does not generateEf .
The result of this computation is given in Table 1. Table 2 contains the number of
reducible primesp < 10000 for the first20 newforms of degree2 and weight2.
This data inspires the following question.

Question 1. If f ∈ S2(Γ0(N)) is a newform of degree2, is f necessarily re-
ducible? That is, are there infinitely many primesp such thatap(f) ∈ Z?

Tables 4–6 contain additional data about the first few newforms of given de-
gree and weight, which may suggest other similar questions.In particular, Ta-
ble 4 contains data for all primes up to106 for the first degree 2 formf with
L(f, 1) 6= 0, and for the first degree 2 formg with L(g, 1) = 0. We find that there
are 386 primes< 106 with ap(f) ∈ Z and309 with ap(g) ∈ Z.

Question 2. If f ∈ S2(Γ0(N)) is a newform of degree2, can the asymptotic
behaviour of the function

N(x) := #{p prime : p < x, ap(f) ∈ Z}

be described as a function ofx?

The authors intend to investigate these questions in a subsequent paper.
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Table 1: Counting Reducible Characteristic Polynomials

k d N reduciblep < 1000
2 2 23 13, 19, 23, 29, 43, 109, 223, 229, 271, 463, 673, 677, 883, 991
2 3 41 17, 41
2 4 47 47
4 2 11 11
4 3 17 17
4 4 23 23
6 2 7 7
6 3 11 11
6 4 17 17
8 2 5 5
8 3 17 17
8 4 11 11
10 2 5 5
10 3 7 7
10 4 13 13
12 2 5 5
12 3 7 7
12 4 21 3, 7

Table 2: First 20 Newforms of Degree 2 and Weight 2

k d N #{reduciblep < 10000}
2 2 23 47
2 2 29 42
2 2 31 78
2 2 35 48
2 2 39 71
2 2 43 43
2 2 51 64
2 2 55 95
2 2 62 77
2 2 63 622 (inner twist by

(
·
3

)
)

k d N #{reduciblep < 10000}
2 2 65 43
2 2 65 90
2 2 67 51
2 2 67 19
2 2 68 53
2 2 69 47
2 2 73 43
2 2 73 55
2 2 74 52
2 2 74 21
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Table 3: Newforms 23a and 67b: values ofψ(x) = #{reduciblep < x · 105}
k d N ran 1 2 3 4 5 6 7 8 9 10
2 2 23 0 127 180 210 243 277 308 331 345 360 386
2 2 67 1 111 159 195 218 240 257 276 288 301 309

Table 4: First 5 Newforms of Degrees 3, 4 and Weight 2

k d N reduciblep < 10000
2 3 41 17, 41
2 3 53 13, 53
2 3 61 61, 2087
2 3 71 23, 31, 71, 479,

647, 1013, 3181
2 3 71 13, 71, 509, 3613

k d N reduciblep < 10000
2 4 47 47
2 4 95 5, 19
2 4 97 97
2 4 109 109, 4513
2 4 111 3, 37

Table 5: First 5 Newforms of Degrees 2, 3 and Weight 4

k d N reduciblep < 1000
4 2 11 11
4 2 13 13
4 2 21 3, 7
4 2 27 3, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103,

109, 127, 139, 151, 157, 163, 181, 193, 199, 211,

223, 229,241, 271, 277, 283, 307, 313, 331, 337,

349, 367, 373, 379, 397, 409, 421, 433, 439, 457,

463, 487, 499, 523, 541, 547, 571, 577, 601, 607,

613, 619, 631, 643, 661, 673, 691, 709, 727, 733,

739, 751, 757, 769, 787, 811, 823, 829, 853, 859,

877, 883, 907, 919, 937, 967, 991, 997

(has inner twists)
4 2 29 29

k d N reduciblep < 1000
4 3 17 17
4 3 19 19
4 3 35 5, 7
4 3 39 3, 13
4 3 41 41
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Table 6: Newforms onΓ0(389) of Weight2

k d N reduciblep < 10000
2 1 389 none (degree 1 polynomials are all irreducible)
2 2 389 5, 11, 59, 97, 157, 173, 223, 389, 653, 739, 859, 947, 1033, 1283, 1549, 1667, 2207, 2417, 2909, 3121, 4337,

5431, 5647, 5689, 5879, 6151, 6323, 6373, 6607, 6763, 7583, 7589, 8363, 9013, 9371, 9767

2 3 389 7, 13, 389, 503, 1303, 1429, 1877, 5443
2 6 389 19, 389
2 20 389 389
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