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Abstract

We give a new and self-contained proof of a theorem of Linnell and
Warhurst that d(G) − d( bG) ≤ 1 for virtually polycyclic groups G. We

also give a simple sufficient condition for equality d(G) = d( bG) when G is
virtually abelian.

Introduction

Let G be a finitely generated residually finite group. By d(G) we denote the

minimal size of a generating set for G, and by d(Ĝ) the minimal size of a

generating set for the profinite completion Ĝ of G. In other words

d(Ĝ) = max {d(G/N) | N ⊳ G, G/N < ∞} .

Polycyclic groups are one of the best understood class of groups. For example
most of the decision problems are decidable in this class, see [7].

It seems surprising therefore that it is still an open problem whether there
exists an algorithm which finds d(G) for any polycyclic group G (given by say
a set of generators and relations). This is unknown even in the case when G is
virtually abelian.

It is obvious that d(G) ≥ d(Ĝ) and when there is equality both the value of
d(G) and a minimal generating set for G can indeed be found algorithmically.
(Say by enumerating both the finite images and all possibilities for generating
sets for G).

In general d(G) − d(Ĝ) can be arbitrarily large even for metabelian groups
G, see [4]. In fact Wise [9] has proved that there exist groups G with arbitrarily

large d(G) while d(Ĝ) = 3.
Fortunately for polycyclic groups the situation is not that bad. In [3] Linnell

and Warhurst proved the following theorem using methods from commutative
algebra and lattices over orders.

∗The author was partially supported by AMS Centennial Fellowship and NSF grant

DMS 0600244.
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Theorem 1. Let G be a virtually polycyclic group. Then d(G) ≤ d(Ĝ) + 1.

Note that the inequality is sharp even for virtually abelian groups: many
examples with d(G) = d(Ĝ) + 1 are constructed in [5].

In this note we give an alternative proof of Theorem 1. While not claiming
anything new we believe that our argument is much simpler that the original one
in [3]. Moreover our result gives some sufficient condition when d(G) = d(Ĝ)
which can be verified quite easily in the case when G is virtually abelian.

Theorem 2. Let G be a group with normal finitely generated abelian subgroup
U such that G/U is finite. Let dp(G) = d(G/Up) for any prime p. Then

α = d(Ĝ) ≤ d(G) ≤ k := max {α, β + 1} ≤ d(Ĝ) + 1, (1)

where α = maxp dp(G) and β = minp dp(G).
Moreover for any integer N ∈ N there exists a generating set S for G of size

k, such that the first d(Ĝ) elements generate a subgroup of index co-prime to
N . The same result holds for finitely generated virtually nilpotent groups.

In particular if there are two primes p and q such that dp(G) 6= dq(G) then

d(G) = d(Ĝ).
Note that Theorem 2 easily implies a weaker version of Theorem 1, namely

that d(G) ≤ d(Ĝ) + 2, however obtaining the right bound d(Ĝ) + 1 is harder.
For that we need a general and somewhat technical result (Theorem 7 on lifting
generators) proved in Section 1. The proofs of Theorems 2 and 1 are then
immediate and are given in Section 2.

Notation

For elements a, b ∈ G in a group G the commutator [a, b] of a and b is aba−1b−1.

1 Lifting generators

In this section we shall prove a general result which under certain condition
produces a generating set of a group G starting from a generating set of some
quotient G/V of G. The reason for stating it in such generality is because in
the next section we shall apply it in two settings: when G a virtually abelian
group and then when G is virtually metabelian.

First recall the following result by Gaschütz ([1]).

Theorem 3. Let G be a finite group with a normal subgroup N . Let d ≥
d(G) and let a1, . . . ad be any d elements which generate G mod N , i.e., G =
N〈a1, . . . , ad〉. Then we can find elements gi ∈ aiN (i = 1, 2, . . . , d) such that
G = 〈g1, . . . , gd〉.
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Definition 4. Let G be a group and p be a prime. A normal subgroup L of
finite index in G is p-good if for any subgroup H ≤ G with HL = G we have
that [G : H ] is finite and coprime to p.

It is not difficult to see that p-good subgroups exists for any virtually poly-
cyclic group G, see Lemma 11 below.

Now let G be a finitely generated group with an abelian normal subgroup V
of finite rank. Suppose that for every prime number p we have chosen a p-good
subgroup Gp of G such that Gp ≥ V p.

Definition 5. We say that h1, . . . , hk generate G mod p if 〈h1, . . . , hk〉Gp = G.
Let dp(G) = d(G/Gp) denote the minimal size of a set of generators for G mod
p.

Definition 6. Let w = w(x1, . . . , xn) be a group word (element in the free
group F ). The Fox derivatives ∂w

∂xi
are elements in the group ring Z[F ], which

are defined by
∂xj

∂xi
= δij and

∂uv

∂xi

=
∂u

∂xi

+ u
∂v

∂xi

.

Let G be a group and V be a G-module. For any n-tuple g = (g1, . . . , gn) ∈ Gn

the Fox derivative ∂w
∂xi

naturally defines a map ∂w
∂xi

(g) : V → V .

An equivalent way to define this map is the following: Let Γ be an extension
of G by the abelian group V then

∂w

∂xi

(g)(a) = w(γ1, . . . , γi−1, aγi, γi+1, . . . , γn) · w(γ1, . . . , γn)
−1

for any lifts γi ∈ Γ of gi ∈ G.

Theorem 7. Let γ = (γ1, . . . γk) be a set of elements in G which generate G/V .
Suppose that w(x1, . . . , xk) is a word such that w(γ) ∈ V .

Assume that

1. The image of the map π : V → V defined by π(v) = ∂w
∂xk

(γ) ◦ v has finite
index M in V .

2. For any choice of elements g1 ∈ γ1V, . . . , gk−1 ∈ γk−1V the group
〈g1, . . . , gk−1〉 generated by them has finite index in G.

3. We have that dp(G) ≤ k for any prime p.

Then there exist lifts g1, . . . , gk of γ1, . . . , γk (i.e. such that gi ∈ γiV ) which
generate G.

Moreover there is an algorithm for finding gi from the γi (provided all the
objects from conditions 1,2,3 above are computable).
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Proof. We say that the element gi is a lift of γi whenever gi ∈ γiV . Note
that the Fox derivative ∂w

∂xi
(g) = ∂w

∂xi
(γ) does not depend on the choice of lifts

g = (g1, . . . , gk) of γ = (γ1, . . . , γk).

For each i = 0, 1, . . . , k let Q(i) be the following statement.

Q(i) : There exist lifts Si = {g1, . . . , gi} of γ1, . . . , γi and a finite set of prime
numbers Pi with the following property.

• For each prime p ∈ Pi there exist lifts g
(p)
j ∈ γjV , j = i + 1, . . . , k such

that Si ∪ {g
(p)
j }j>i are k generators for G mod p.

• For each prime p 6∈ Pi, there exist lifts g
(p)
j , j = i+ 1, . . . , k − 1 such that

for any lift g
(p)
k ∈ γkV we have that Si ∪ {g

(p)
j }j>i are k generators for G

mod p.

The proof of Q(i) is by induction on i.
The base case i = 0 is proved as follows: Take S0 = ∅ and choose any lifts

γ1, . . . , γk−1 of the γj . They generate a subgroup of finite index L in G, therefore
for any p 6 |L and any lift gk ∈ γkV the elements {g1, . . . , gk} generate G mod p.

Define P0 to be the set consisting of all primes which divide L orM . We only

have to show that for all p ∈ P0 there exist lifts g
(p)
1 , . . . , g

(p)
k , which generate

G mod p. Consider the k images γ̄j of γ1, . . . , γk in G/V Gp. They generate
G/V Gp (since γj generate G/V ) and also we know that G/Gp is k-generated.

By Gaschutz Theorem we can find elements g
(p)
j ∈ γjV Gp which generateG/Gp.

These can be further adjusted by elements from Gp so that g
(p)
j γ−1

j ∈ V . This
proves the base case i = 0 of the induction.

Suppose that we have already found Si and Pi. By the Chinese Remainder

Theorem there exists a lift gi+1 such that gi+1 = g
(p)
i+1(mod Gp) for all p ∈ Pi.

Choose any lifts gi+2, . . . gk−1. By one of the assumptions the groupH gener-
ated by {gi}

k−1
i=1 is of finite indexNi inG. Denote Pi+1 = {p | p divides Ni}∪Pi.

We want to show that Si+1 = Si ∪ {gi+1} and the set Pi+1 satisfy the
induction hypothesis.

It is very easy to check that the second part of the induction hypothesis

is satisfied for this definition of the set Pi+1 (just choose g
(p)
j = gj for j =

i + 2, . . . , k − 1). It remains to show that for all primes p ∈ Pi+1 the first
condition is satisfied. This is clearly the case if p ∈ Pi. Let p 6∈ Pi then by

the induction assumption there exist lifts {g
(p)
j }k−1

j=i which together with Si and

any lift g
(p)
k ∈ γkV generate G mod p. We will show that we can chose a lift gk

of γksuch that the group L generated by Si+1, {g
(p)
j }k−1

j=i+1 and gk contains an

element u ≡ g−1
i+1g

(p)
i+1(mod V p), which implies that these elements generate G

mod p.
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The key observation here is that for x ∈ V the elementw
(
g
(p)
1 , . . . , g

(p)
k−1, xg

(p)
k

)

is equal to (
∂w

∂xk

(γ) · x

)
w
(
g
(p)
1 , . . . , g

(p)
k−1, g

(p)
k

)
= π′(x) ∈ V

which by one of the assumptions takes any value in V/V p as x ranges over V/V p

(since p does not divide the index M of the image of ∂w
∂xk

(γ) in V ). So we can

indeed find x ∈ V such that the element π′(x) ∈ V satisfies π′(x) ≡ g−1
i+1g

(p)
i+1

mod V p.
This shows that there exist lifts gk which generate G mod p which completes

the induction step.

The statement Q(k) gives a set Sk which generates G mod p for any prime
p and therefore 〈Sk〉 = G.

It is clear that this argument in fact produces an algorithm for finding the
set Sk in a very efficient way, of course provided the various subgroup indices,
words and maps G → G/Gp involved in the induction are computable. Theorem
7 is proved.

Remark 8. A slight modification of the proof gives that for any finite set P of
primes such that dp(G) < k, we can find lifts g1, . . . , gk−1 which together with
any lift of γk generate a subgroup of index not divisible by any prime in P .

Remark 9. If γk = e then we can take the word w = xk. Its Fox derivative is
∂w
∂xk

= e and defines the identity map from V to V , which is clearly surjective.

Remark 10. If we replace the assumption that V is abelian with V nilpotent,
then all results remain valid, since a set generates a nilpotent group if and only
if it generates the abelianization of the group.

2 Applications of Theorem 7

2.1 Proof of Theorem 2

Proof. Clearly d(Ĝ) = α. Let k := max{β + 1, α}.
Take V := U q where q is a prime such that β = dq(G). Then V is q-good,

i.e., any collection of elements which generates G/V generates a subgroup of
finite index (coprime to q) in G.

Take elements γ1, . . . , γβ which generateG/V . Set γi = 1 for j = β+1, . . . , k.
It is easy to see that the group G, subgroups V , Gp = V p (for any prime p), the
elements γi above, and the word w = xk satisfy the conditions of Theorem 7.
We conclude that G can be generated by some lifts of γ1, . . . , γk and so d(G) ≤ k
as claimed.

For the second part of the theorem start with V = UN instead and with any
generating set γ1, . . . , γs for G/V and again take γj = 1, s < j ≤ k. The rest
of the argument is similar.
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2.2 Proof of Theorem 1

We begin with the following straightforward

Lemma 11. If G is a virtually polycyclic group and p is a prime then G has a
p-good subgroup L.

Proof. We use induction on the Hirsch length h(G) of G. When h(G) = 0 then
G is finite and we can simply take L = 1. Suppose that the Lemma has been
proved for all groups of Hirsch length less than h > 0. Consider a virtually
polycyclic group G with h(G) = h. Since G is infinite it has an infinite normal
abelian subgroup N . Let G = G/Np. Clearly h(G) < h and so G has a p-good
subgroup, say L = L/Np for some normal subgroup L containing Np.

Then L is p-good forG: SupposeH ≤ G withHL = G. ThenHL = G where
H = HNp/Np and so the index [G : HNp] is finite and coprime to p. Therefore
HN = HNp (since N/Np is a power of p while [HN : HNp] must be coprime
to p) and so H1N

p = N where H1 = H ∩ N . The last equality implies that
[N : H1] is finite and coprime to p and hence so is [G : H ] = [G : NH ][N : H1].

Notice that the p-good subgroup L we found contains Np.

Lemma 11 raises the following natural

Problem 1. Which groups G possess a subgroup N of finite index such that
NH = G for a subgroup H < G implies that [G : H ] < ∞?

The purpose of the following three Lemmas is to ensure the existence of
suitable word w, subgroup V and elements g1, . . . gk in a virtually metabelian
and polycyclic group G which meet the conditions of Theorem 7.

Lemma 12. Let G be a virtually metabelian and polycyclic group. Then there
exist normal subgroups G0 ⊲ V of G such that

1. G/G0 is finite, V is a torsion free abelian group,

2. if H is a subgroup of G such that HG0 = G then H is of finite index in
G,

3. G0/V is a nilpotent group which acts commutatively on V , i.e., G0/CG0
(V )

is abelian, and

4. Q ⊗ V is a perfect Q[G0/V ] module, i.e., (G0 − 1) · V has finite index in
V .

Proof. Let A < B be normal subgroups of G such that A and B/A are torsion
free abelian and [G : B] is finite. Let L be a p-good subgroup of G for some
prime p and take G0 = B ∩ L. Then G0 also a p-good subgroup of G and item
2 follows.

Let W = A ∩ G0. We have that W and G0/W are torsion free abelian
groups and W is a module for Ḡ0 = G0/W . Consider the chain of submodules
W ≥ (G0 − 1)W ≥ (G0 − 1)2W ≥ · · · . This is a chain of subgroups of the
finitely generated abelian group W , so let V be the first module in that series

6



such that (G0 − 1)V has finite index in V . Clearly G0/V is a nilpotent group
(since G0 acts nilpotently on W/V ). Item 4 is clear since [V : (G0 − 1)V ] is
finite while item 3 follows since CG0

(V ) ≥ W and G0/W is abelian.

Lemma 13. Let Γ0 be a finitely generated torsion free abelian group and let
V be a finitely generated torsion free Z[Γ0] module such that VQ = V ⊗ Q is a
perfect Q[Γ0]-module. Then there exists an integer N such that for any subgroup
Γ < Γ0 of index co-prime to N we have that VQ is a perfect Q[Γ]-module.

Further when this happens then we can find an integer M ∈ N (depending
on Γ), integers si and group elements hi ∈ Γ such that

∑
si(1 − hi) = M · id

as operators on V .

Proof. Let χ be a irreducible character (over C) of Γ0. We will call χ a character
of finite order if all values of χ are roots of 1, in this case the order of χ is the
least integer n such that all its values are n-th roots of 1.

Since V is a perfect Q[Γ0] module it does not contain a trivial submodule.
Let N be the gcd of all orders of irreducible characters which appears in CV .
If Γ ≤ Γ0 is a subgroup of index co-prime to N then the restriction of any
irreducible characters in V to Γ is non trivial. Therefore CV is a perfect C[Γ]
module, which implies that VQ = Q⊗ V is perfect Q[Γ] module.

For the second part, let I be the augmentation ideal of QΓ. Since VQ = IVQ

and VQ is a finite dimensional vector space over Q we have by Nakayama’s
lemma that id+ T annihilates VQ for some T ∈ I.

Expressing T in the basis of I and clearing the common denominator M of
the rational coefficients gives the integers si and the elements hi ∈ G.

Lemma 14. Let Γ be a group with an abelian normal subgroup V such that
[Γ′, V ] = 1 and Γ/V is nilpotent of class d. Let g1, . . . , gk−1 ∈ Γ.

For any integers t ∈ N, si and group elements hi ∈ 〈g1, . . . , gk−1〉 (i =
1, . . . , t) there exists a word w on x1, . . . , xk such that

• w(g1, . . . , gk−1, g) ∈ V for any g ∈ Γ

• The action of Fox derivative ∂w
∂xk

(g1, . . . , gk−1, g) on x ∈ V is given by

x 7→

(
t∑

i=1

si(1− hi)

)d

· x.

Proof. Consider the word w′(g1, . . . , gk−1, g) =
∏
[g, hi]

si where hi are expressed
as words on g1, . . . , gk−1. A direct computation gives that the Fox derivative ∂w

∂xk

at (g1, . . . , gk−1, g) with respect to the last variable acts on V as multiplication
by
∑

si(1 − hi) ∈ Z[Γ/V ] (use that [ag, hi] = a[g, hi](
hia)−1 = (1−hi)a · [g, hi]

and each [g, hi] acts trivially on V ).

7



Iterating the map g → w′(g1, . . . , gk−1, g) d times gives a word w:

w(x1, . . . , xk) = w′

(
x1, . . . , xk−1, w

′
(
x1, . . . , xk−1, w(· · ·w

′(x1, . . . , xk−1, xk) . . .
))

.

The Fox derivative of w with respect to xk is
(∑

si(1 − hi)
)d
, because substi-

tution of words corresponds to multiplication of Fox derivatives. The word w
always evaluates to one on Γ/V , because the group Γ/V is nilpotent of class
d.

We now have all the ingredients to prove Theorem 1. It will follow from the
corresponding result for metabelian groups:

Theorem 15. Let G be a virtually metabelian polycyclic group. Then

d(Ĝ) ≤ d(G) ≤ d(Ĝ) + 1.

Proof. Let k = d(Ĝ) + 1. Let G0 and V are the subgroups provided by
Lemma 12. Now Lemma 13 applied to the group G0/[G0, G0]V acting on V ,
gives us an integer N such than any subgroup of index co-prime to N in G0/V
acts perfectly on V (as a rational module).

By Lemma 2 there exists a generating set S = {γ1, . . . , γk} of G/V such
that γk ∈ G0 and the subgroup Γ = 〈γ1, . . . , γk−1〉V ∩ G0 has index [G0 : Γ]
co-prime to N . Therefore V is a perfect rational Q[Γ/V ]-module and for some
integer M and element T in the augmentation ideal of Z[Γ/V ] we have that T
acts on V as multiplication by M .

For each prime p pick a p-good subgroup Gp of G containing V p. (In fact by
replacing Gp with a normal subgroup of G of finite index we may even assume
Gp ∩ V = V p.)

Now apply Lemma 14 to Γ and V with γi = gi, (i = 1, . . . , k − 1), g = γk
and si ∈ N, hi ∈ 〈γ1, . . . , γk−1〉 chosen so that T ≡

∑
i si(1 − hi) in Z[Γ/V ].

We conclude that there is a word w(x1, . . . , xk) such that w(γ) ∈ V and ∂w
∂xk

(γ)

acts on V as multiplication by Md where d is the nilpotency class of Γ/V .
We can now apply Theorem 7 to G with these choices of w, V,Gp and γj .

The conditions 1,2 and 3 are satisfied by the construction of the subgroups G0

and V , the word w and the definition of the number k. So by Theorem 7 we
can find lifts ai ∈ γiV such that G = 〈a1, . . . , ak〉. Theorem 15 is proved.

Remark 16. If we have that d(G/V ) < d(Ĝ) then the argument above gives

that d(G) = d(Ĝ).

Proof of Theorem 1. In general a virtually polycyclic group G is virtually nilpo-
tent by abelian, i.e., it has normal subgroups G1 > G2 such that G/G1 is finite,
G1/G2 is abelian while G2 is nilpotent. (See Theorem 2, Chapter 2 in [6]).

Now every group which generates H = G/G′

2 generates G and so we have

d(G) = d(H), d(Ĝ) = d(Ĥ). Thus Theorem 1 becomes a corollary of Theorem

8



15. Moreover its proof gives an efficient algorithm for generating a polycyclic
group G with d(Ĝ) + 1 elements, even with d(Ĝ) elements if the condition of
Remark 16 holds.
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