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Abstract

We give a new and self-contained proof of a theorem of Linnell and

-~

Warhurst that d(G) — d(G) < 1 for virtually polycyclic groups G. We

also give a simple sufficient condition for equality d(G) = d(G) when G is
virtually abelian.

Introduction

Let G be a finitely generated residually finite group. By d(G) we denote the
minimal size of a generating set for G, and by d(G) the minimal size of a
generating set for the profinite completion G of G. In other words

~

d(G) =max{d(G/N) | N < G, G/N < co}.

Polycyclic groups are one of the best understood class of groups. For example
most of the decision problems are decidable in this class, see [7].

It seems surprising therefore that it is still an open problem whether there
exists an algorithm which finds d(G) for any polycyclic group G (given by say
a set of generators and relations). This is unknown even in the case when G is
virtually abelian. R

It is obvious that d(G) > d(G) and when there is equality both the value of
d(G) and a minimal generating set for G can indeed be found algorithmically.
(Say by enumerating both the finite images and all possibilities for generating
sets for G).

In general d(G) — d(@) can be arbitrarily large even for metabelian groups
G, see [4]. In fact Wise [9] has proved that there exist groups G with arbitrarily
large d(G) while d(G) = 3.

Fortunately for polycyclic groups the situation is not that bad. In [3] Linnell
and Warhurst proved the following theorem using methods from commutative
algebra and lattices over orders.
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Theorem 1. Let G be a virtually polycyclic group. Then d(G) < d(G) + 1.

Note that the inequality is sharp even for virtually abelian groups: many
examples with d(G) = d(G) + 1 are constructed in [5].

In this note we give an alternative proof of Theorem [II While not claiming
anything new we believe that our argument is much simpler that the original one

in [3]. Moreover our result gives some sufficient condition when d(G) = d(G)
which can be verified quite easily in the case when G is virtually abelian.

Theorem 2. Let G be a group with normal finitely generated abelian subgroup
U such that G/U is finite. Let d,(G) = d(G/UP) for any prime p. Then

a=d(G) <d(G) < k:=max{a, B+ 1} < d(G) + 1, (1)

where o = maxy, dp(G) and § = min, d,(G).

Moreover for any integer N € N there exists a generating set S for G of size
k, such that the first d(G) elements generate a subgroup of index co-prime to
N. The same result holds for finitely generated virtually nilpotent groups.

In particular if there are two primes p and ¢ such that d,(G) # dq(G) then

d(G) = d(@).

Note that Theorem [ easily implies a weaker version of Theorem 0, namely
that d(G) < d(G) 4 2, however obtaining the right bound d(G) 4 1 is harder.
For that we need a general and somewhat technical result (Theorem [7 on lifting
generators) proved in Section I The proofs of Theorems ] and [ are then

immediate and are given in Section

Notation

For elements a,b € G in a group G the commutator [a, b] of a and b is aba~'b~1.

1 Lifting generators

In this section we shall prove a general result which under certain condition
produces a generating set of a group G starting from a generating set of some
quotient G/V of G. The reason for stating it in such generality is because in
the next section we shall apply it in two settings: when G a virtually abelian
group and then when G is virtually metabelian.

First recall the following result by Gaschiitz ([1]).

Theorem 3. Let G be a finite group with a normal subgroup N. Let d >
d(G) and let ay,...aq be any d elements which generate G mod N, i.e., G =
N{ai,...,aq). Then we can find elements g; € a;N (i = 1,2,...,d) such that

G={91,---,94)-



Definition 4. Let G be a group and p be a prime. A normal subgroup L of
finite index in G is p-good if for any subgroup H < G with HL = G we have
that [G : H] is finite and coprime to p.

It is not difficult to see that p-good subgroups exists for any virtually poly-
cyclic group G, see Lemma [T1] below.

Now let G be a finitely generated group with an abelian normal subgroup V'
of finite rank. Suppose that for every prime number p we have chosen a p-good
subgroup G, of G such that G, > V?.

Definition 5. We say that hi,..., hy generate G mod p if (hq,...,hy)G, = G.
Let dp(G) = d(G/Gp) denote the minimal size of a set of generators for G mod

p.

Definition 6. Let w = w(xy,...,z,) be a group word (element in the free
w

group F'). The Fox derivatives gT are elements in the group ring Z[F], which

are defined by gim:' = §;; and

ouv ou ov

Let G be a group and V' be a G-module. For any n-tuple g = (g1,...,9,) € G"

the Fox derivative % naturally defines a map %(g) V=V

An equivalent way to define this map is the following: Let I" be an extension
of G by the abelian group V then

ow
8$i

(2)(0’) = w(’yb s Yi—1, Qi Vil - - 7’771) ' w(’yla cee 7’711)_1

for any lifts v; € I of ¢; € G.

Theorem 7. Lety = (71,...7) be a set of elements in G which generate G/V .
Suppose that w(xy,...,xx) is a word such that w(y) € V.
Assume that

1. The image of the map w:V — V defined by w(v) = gT“;(l) owv has finite
index M in V.

2. For any choice of elements g1 € V1V, ..., gk—1 € Yk—1V the group
(91,---,9k—1) generated by them has finite index in G.

3. We have that d,(G) < k for any prime p.

Then there exist lifts g1,...,9x of Y1,--.,Yk (i-e. such that g; € v;V') which
generate G.

Moreover there is an algorithm for finding g; from the ~y; (provided all the
objects from conditions 1,2,3 above are computable).



Proof. We say that the element g; is a lift of «; whenever g; € ;V. Note
that the Fox derivative %(g) = g—;”i(l) does not depend on the choice of lifts

g="(g1,-- -, 9%) of ¥ = (1, ).
For each : = 0,1,...,k let Q(i) be the following statement.

Q(i) : There exist lifts S; = {g1,--.,9:} of y1,--.,7 and a finite set of prime
numbers P; with the following property.

e For each prime p € P; there exist lifts gj(»p) €evV,j=1+1,...,k such
that S; U {g§p)}j>i are k generators for G mod p.

e For each prime p & P;, there exist lifts g](p), j=1i+1,...,k—1 such that

for any lift g,(cp) € vV we have that S; U {g§p)}j>i are k generators for G
mod p.

The proof of (i) is by induction on 3.

The base case ¢ = 0 is proved as follows: Take Sy = () and choose any lifts
Y1, --->Yk—1 of the ;. They generate a subgroup of finite index L in G, therefore
for any p fL and any lift g € vV the elements {g1,. .., gr} generate G mod p.

Define Py to be the set consisting of all primes which divide L or M. We only
have to show that for all p € Py there exist lifts g%p ), g,(cp ). which generate
G mod p. Consider the k images 7; of v1,...,v in G/VG,. They generate
G/VG, (since 7; generate G/V) and also we know that G/G,, is k-generated.

By Gaschutz Theorem we can find elements g](p ) e ~; VG, which generate G/G)p.

These can be further adjusted by elements from G, so that gJ(P )7; '€ V. This
proves the base case i = 0 of the induction.

Suppose that we have already found S; and P;. By the Chinese Remainder

Theorem there exists a lift g;+1 such that g;y1 = gg_)l (mod G,) for all p € P;.
Choose any lifts g; 12, ... gx—1. By one of the assumptions the group H gener-
ated by {gi}fz_ll is of finite index N; in G. Denote P;11 = {p| p divides N;}UP;.
We want to show that S;11 = S; U {g;+1} and the set P;;1 satisfy the
induction hypothesis.
It is very easy to check that the second part of the induction hypothesis

is satisfied for this definition of the set P,y1 (just choose gj(-p) = g; for j =
i+2,...,k —1). It remains to show that for all primes p € P, the first

condition is satisfied. This is clearly the case if p € P;. Let p ¢ P, then by
the induction assumption there exist lifts {gj(-p ) f;zl which together with S; and

any lift g,(cp ) e ~;V generate G mod p. We will show that we can chose a lift g

of ygsuch that the group L generated by S;1, {gj(-p ) ?;}H and g; contains an

element u = gi__:l gff_)l (mod VP), which implies that these elements generate G

mod p.



The key observation here is that for x € V the element w(gip), ceey g,(fi)l, xg,(cp))

is equal to
ow
(2)2) wlal? ool =) € v

which by one of the assumptions takes any value in V/V? as x ranges over V/V?
(since p does not divide the index M of the image of gT“;(z) in V). So we can

indeed find = € V such that the element 7'(z) € V satisfies 7'(z) = g4 gfi)l
mod VP.
This shows that there exist lifts g, which generate G mod p which completes

the induction step.

The statement Q(k) gives a set S, which generates G mod p for any prime
p and therefore (Si) = G.

It is clear that this argument in fact produces an algorithm for finding the
set Sk in a very efficient way, of course provided the various subgroup indices,
words and maps G — G/G,, involved in the induction are computable. Theorem
[[is proved. O

Remark 8. A slight modification of the proof gives that for any finite set P of
primes such that d,(G) < k, we can find lifts ¢1, ..., gx—1 which together with
any lift of v, generate a subgroup of index not divisible by any prime in P.

Remark 9. If v, = e then we can take the word w = xj. Its Fox derivative is

887” = e and defines the identity map from V to V', which is clearly surjective.
k

Remark 10. If we replace the assumption that V is abelian with V nilpotent,
then all results remain valid, since a set generates a nilpotent group if and only
if it generates the abelianization of the group.

2 Applications of Theorem [7]

2.1 Proof of Theorem

Proof. Clearly d(G) = «. Let k:=max{8+ 1,a}.

Take V := U? where ¢ is a prime such that 8 = d,(G). Then V is ¢-good,
i.e., any collection of elements which generates G/V generates a subgroup of
finite index (coprime to ¢) in G.

Take elements 71, . .., y3 which generate G/V. Set v; = 1for j = f+1,...,k.
It is easy to see that the group G, subgroups V, G, = VP (for any prime p), the
elements ~y; above, and the word w = xj, satisfy the conditions of Theorem [7l
We conclude that G can be generated by some lifts of 71, ..., 7, and so d(G) < k
as claimed.

For the second part of the theorem start with V = U¥ instead and with any
generating set 71, ...,7s for G/V and again take v; = 1, s < j < k. The rest
of the argument is similar. O



2.2 Proof of Theorem [l
We begin with the following straightforward

Lemma 11. If G is a virtually polycyclic group and p is a prime then G has a
p-good subgroup L.

Proof. We use induction on the Hirsch length h(G) of G. When h(G) = 0 then
G is finite and we can simply take L = 1. Suppose that the Lemma has been
proved for all groups of Hirsch length less than h > 0. Consider a virtually
polycyclic group G with h(G) = h. Since G is infinite it has an infinite normal
abelian subgroup N. Let G = G/NP. Clearly h(G) < h and so G has a p-good
subgroup, say L = L/NP for some normal subgroup L containing N?.

Then L is p-good for G: Suppose H < G with HL = G. Then HL = G where
H = HNP/NP and so the index [G : HNP] is finite and coprime to p. Therefore
HN = HNP (since N/NP? is a power of p while [HN : HNP| must be coprime
to p) and so Hi NP = N where H; = H N N. The last equality implies that
[N : Hi] is finite and coprime to p and hence so is [G : H] = [G : NH][N : Hy].

Notice that the p-good subgroup L we found contains NP. O

Lemma [I] raises the following natural

Problem 1. Which groups G possess a subgroup N of finite index such that
NH = G for a subgroup H < G implies that [G : H] < co?

The purpose of the following three Lemmas is to ensure the existence of
suitable word w, subgroup V and elements g1, ...gx in a virtually metabelian
and polycyclic group G which meet the conditions of Theorem [7

Lemma 12. Let G be a virtually metabelian and polycyclic group. Then there
exist normal subgroups Go >V of G such that

1. G/Gy is finite, V is a torsion free abelian group,

2. if H is a subgroup of G such that HGg = G then H is of finite index in
G,

3. Go/V is a nilpotent group which acts commutatively on'V, i.e., Go/Ceqy (V)
is abelian, and

4. Q®V is a perfect QGo/V] module, i.e., (Go — 1) -V has finite index in
V.

Proof. Let A < B be normal subgroups of G such that A and B/A are torsion
free abelian and [G : B] is finite. Let L be a p-good subgroup of G for some
prime p and take Go = BN L. Then Gy also a p-good subgroup of G and item
2 follows.

Let W = AN Gy. We have that W and Gy/W are torsion free abelian
groups and W is a module for Gy = Go/W. Consider the chain of submodules
W > (Go — )W > (Go — 1)?W > -... This is a chain of subgroups of the
finitely generated abelian group W , so let V' be the first module in that series



such that (Gp — 1)V has finite index in V. Clearly Go/V is a nilpotent group
(since Gy acts nilpotently on W/V'). Ttem 4 is clear since [V : (Go — 1)V] is
finite while item 3 follows since Cg, (V) > W and Go/W is abelian. O

Lemma 13. Let Iy be a finitely generated torsion free abelian group and let
V be a finitely generated torsion free Z[I'g] module such that Vo =V @ Q is a
perfect Q[To]-module. Then there exists an integer N such that for any subgroup
I' < Ty of index co-prime to N we have that Vg is a perfect Q[I']-module.

Further when this happens then we can find an integer M € N (depending
on T'), integers s; and group elements h; € T' such that

as operators on V.

Proof. Let x be a irreducible character (over C) of T'g. We will call x a character
of finite order if all values of x are roots of 1, in this case the order of x is the
least integer n such that all its values are n-th roots of 1.

Since V is a perfect Q[I'g] module it does not contain a trivial submodule.
Let N be the gcd of all orders of irreducible characters which appears in CV.
If I' < Ty is a subgroup of index co-prime to N then the restriction of any
irreducible characters in V' to T is non trivial. Therefore CV is a perfect C[I']
module, which implies that Vg = Q ® V' is perfect Q[I'] module.

For the second part, let I be the augmentation ideal of QI'. Since Vg = I'Vg
and Vg is a finite dimensional vector space over Q we have by Nakayama’s
lemma that id + T" annihilates Vg for some 7" € 1.

Expressing T in the basis of I and clearing the common denominator M of
the rational coefficients gives the integers s; and the elements h; € G. O

Lemma 14. Let T' be a group with an abelian normal subgroup V such that
[V, V] =1 and T'/V is nilpotent of class d. Let gi,...,9x—1 €T .

For any integers t € N,s; and group elements h; € {(g1,...,9k—1) (i =
1,...,t) there exists a word w on x1, ...,z such that

e w(gi,...,9k—1,9) €V foranygeT

e The action of Fox derivative 887“;(91, ceygk—1,9) onx €V is given by

+ d
T <Z si(1— hl)> -

Proof. Consider the word w’(g1, ..., 9k-1,9) = [Ilg, hi]** where h; are expressed
as words on g1,...,gx—1. A direct computation gives that the Fox derivative g—;‘;
at (g1,...,95—1,g) with respect to the last variable acts on V' as multiplication
by 3 si(1 — h;) € Z[T'/V] (use that [ag, k] = alg, hi]("a)™' = Oda - [g, hy]
and each [g, h;] acts trivially on V).



Iterating the map g — w'(g1,...,9k-1,9) d times gives a word w:
w(zy,...,TK) = w/(xl,...,a:k1,w/(x1,...,a:k1,w(~-~w’(:171,...,:ck1,3:k)...)).

The Fox derivative of w with respect to xj is (Z si(1— hi))d, because substi-
tution of words corresponds to multiplication of Fox derivatives. The word w
always evaluates to one on I'/V, because the group I'/V is nilpotent of class
d. O

We now have all the ingredients to prove Theorem [l It will follow from the
corresponding result for metabelian groups:

Theorem 15. Let G be a virtually metabelian polycyclic group. Then

-~ ~

d(@) < d(G) < d(@) +1.
Proof. Let k = d(é) + 1. Let Gy and V are the subgroups provided by
Lemma Now Lemma [I3] applied to the group Go/[Go, Go]V acting on V,
gives us an integer N such than any subgroup of index co-prime to N in Go/V
acts perfectly on V' (as a rational module).

By Lemma 2] there exists a generating set S = {y1,...,v} of G/V such
that v, € Go and the subgroup I' = (y1,...,7-1)V N Go has index [Gp : I']
co-prime to N. Therefore V is a perfect rational Q[I'/V]-module and for some
integer M and element T in the augmentation ideal of Z[I'/V] we have that T
acts on V' as multiplication by M.

For each prime p pick a p-good subgroup G, of G containing V7. (In fact by
replacing G, with a normal subgroup of G of finite index we may even assume
GpNV =VP)

Now apply Lemma[Idl to T and V with v, = ¢;, (i = 1,...,k— 1), g = 1%
and s; € N, h; € (y1,...,v—1) chosen so that T' = 3. s;(1 — h;) in Z[I'/V].
We conclude that there is a word w(x1, ..., ) such that w(y) € V and g—;‘]’c(l)
acts on V as multiplication by M? where d is the nilpotency class of I'/V.

We can now apply Theorem [7] to G with these choices of w,V, G, and ~;.
The conditions 1,2 and 3 are satisfied by the construction of the subgroups Gg
and V, the word w and the definition of the number k. So by Theorem [1 we
can find lifts a; € v;V such that G = (a1, ..., ax). Theorem [[H is proved. O

~

Remark 16. If we have that d(G/V) < d(G) then the argument above gives

~

that d(G) = d(G).

Proof of Theorem[1l In general a virtually polycyclic group G is virtually nilpo-
tent by abelian, i.e., it has normal subgroups G; > G such that G/G; is finite,
G1/G4 is abelian while G5 is nilpotent. (See Theorem 2, Chapter 2 in [6]).
Now every group which generates H = G/G% generates G and so we have
d(G) =d(H), d(@) = d(ﬁ) Thus Theorem [ becomes a corollary of Theorem



151 Moreover its proof gives an efficient algorithm for generating a polycyclic

group G with d(G) + 1 elements, even with d(G) elements if the condition of
Remark [I6] holds. O
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