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Universidade Federal de Pernambuco

CEP 50740-540, Recife-PE, Brazil.

email: pablo@dmat.ufpe.br

Lucas C. F. Ferreira

Departamento de Matemática
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Abstract

We derive new results about existence and uniqueness of local and global solutions for non-
linear Schrödinger equation, including self-similar global solutions. Our analysis is performed in
the framework of Marcinkiewicz spaces.

1 Introduction

We consider the nonlinear Schrödinger equation

i∂tu+∆u = λ|u|ρu, x ∈ R
n, t ∈ R, (1.1)

u(0, x) = φ(x), x ∈ R
n, (1.2)

where u = u(t, x) is a complex valued function, λ is a fixed complex number, and 0 < ρ < ∞. The
initial value φ : Rn → C is given. The Cauchy problem (1.1)-(1.2) is formally equivalent to the
integral equation

u(t) = S(t)φ− iλ

∫ t

0
S(t− s)(|u(s)|ρu(s))ds, (1.3)

∗P. Braz e Silva is partly supported by CAPES/MECD-DGU Brazil/Spain, grant #117/06.
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where S(t) is the unitary group determined by the linear Schrödinger equation

∂tu− i∆u = 0, x ∈ R
n, t ∈ R.

If φ ∈ S(Rn) and u is defined by û(t)(ξ) = e−i|ξ|2tφ̂(ξ), for ξ ∈ R
n, then

ût + i|ξ|2û = 0

in R× R
n. In this case, the solution of

∂tu− i∆u = 0, x ∈ R
n, t ∈ R, (1.4)

u(0, x) = φ(x), x ∈ R
n, (1.5)

is given by u(t) = S(t)φ = Kt ∗ φ, where Kt(x) =
(
e−i|ξ|2t

)̌
.

Existence and uniqueness of local and global solutions of problem (1.1)-(1.2) have been much
studied in the framework of the Sobolev spaces Hs, s ≥ 0, i.e, the solutions and their derivatives have
finite energy. See, for instance, Ginibre and Velo [11]-[15], Kato [9]-[10], Cazenave and Weissler[3]
-[6], and the references therein.

As far as we know, the first authors to study infinite energy solutions of (1.1)-(1.2) were Cazenave
and Weissler in [7]. There, they consider the space

Xρ = {u ∈ L∞
loc((0,∞), Lρ+2(Rn)); sup

t>0
t
α
2 ‖u(t)‖Lρ+2 < ∞},

where α
2 = 1

ρ−
n

2(ρ+2) and ‖·‖Lρ+2 denotes the usual Lρ+2 norm. Under a suitable smallness condition

on the initial data, they prove the existence of global solutions of (1.1)-(1.2) in Xρ, for ρ in the range

ρ+ 2

ρ+ 1
<

nρ

2
< ρ+ 2. (1.6)

If n = 1 or n = 2, condition (1.6) is equivalent to ρ0 < ρ < ∞, where ρ0 is the positive value of ρ for
which ρ+2

ρ+1 = nρ
2 . If n ≥ 3, it is equivalent to ρ0 < ρ < 4

n−2 . Later on, in [2], the Cauchy problem
(1.1)-(1.2) was studied in the framework of weak-Lp spaces. Using a Strichartz-type inequality,

the authors obtained existence of solutions in the class L(p,∞)(Rn+1) ≡ L
(p,∞)
t

(
L
(p,∞)
x

)
, where

(t, x) ∈ R× R
n and p = ρ(n+2)

2(ρ+1) , for ρ in the range

ρ0 <
4(n + 1)

n(n+ 2)
< ρ <

4(n + 1)

n2
<

4

n− 2
. (1.7)

In [16], the existence of solutions with initial data in the Besov space Ḃ
sρ,∞
2 (Rn), with positive

regularity sρ = n
2 − 2

ρ > 0, was proved for ρ in the range ρ0 < 4
n < ρ < ∞. Note that if

f ∈ Ḃ
sρ,∞
2 (Rn), then f has at least local finite energy.

We study equation (1.3) in functional spaces of infinite energy. In the first theorem proved here,

we consider the initial data φ belonging to the Marcinkiewicz space L
( ρ+2
ρ+1

,∞), and show existence
and uniqueness of local in time solutions in the class

ET
α,β =

{
u; ‖u‖α,β = sup

−T<t<T
|t|

α−β
2 ‖u(t)‖(ρ+2,∞) < ∞

}
,
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where (α−β)
2 = nρ

2(ρ+2) , with
nρ
2 < ρ+2

ρ+1 . Note that nρ
2 < ρ+2

ρ+1 is equivalent to 0 < ρ < ρ0 <
4
n . So, our

range for ρ is different from the ones in [7, 2, 16]. The norm ‖ · ‖α,β is not invariant by the scaling

uµ(t, x) = µ
2
ρu(µ2t, µx). This is a key point to obtain local in time solutions in Marcinkiewicz spaces.

It is also worth noting that our result allows one to consider singular initial data as, for example,

homogeneous functions |x|
−n(ρ+1)

ρ+2 ∈ L
( ρ+2
ρ+1

,∞)
.

Our second theorem concerns global in time solutions. We show existence of such solutions in
norms of type sup|t|>0 |t|

α/2‖u(t)‖L(ρ+2,∞) , where α
2 = 1

ρ − n
2(ρ+2) and

ρ0 < ρ <
4

n− 2
. (1.8)

This extends the result of Cazenave and Weissler [7] to the context of Lorentz spaces. Note that
range (1.8) is greater than range (1.7).

As a corollary, we show that when the initial data φ is a homogeneous function of degree −2
ρ , we

obtain a self-similar solution, if ‖S(1)φ‖(ρ+2,∞) is sufficiently small. Moreover, we discuss asymptotic
stability of the global solutions, and show that regular perturbations of the linear Schrödinger
equations are negligible for large times. We also analyze the behavior of the local solutions as t → 0
in the space L(ρ+2,∞).

Our approach is different from the methods used in [2, 16], where the authors use a Strichartz-
type inequality in weak-Lp and Besov spaces, respectively. Indeed, our existence results are based
on bounds for the Schrödinger linear group S(t) in the context of Lorentz spaces. In Lemma 2.1,
we state and prove these bounds via real interpolation techniques. They generalize the bounds for
usual Lp spaces used in [7].

In section 2, we carefully state our results and discuss their improvement in the light of previous
results. We prove them in section 3.

2 Main Results

We first recall some facts about the Lorentz spaces. For more details see, for instance, [1] and [17].
Let 1 < p ≤ ∞ and 1 ≤ q ≤ ∞. A measurable function f defined on R

n belongs to Lorentz space
L(p,q)(Rn) if the quantity

‖f‖(p,q) =





(
p

q

∫ ∞

0

[
t
1
p f∗∗(t)

]q dt
t

) 1
q

, if 1 < p < ∞, 1 ≤ q < ∞,

sup
t>0

t
1
p f∗∗(t) , if 1 < p ≤ ∞, q = ∞,

is finite, where the f∗∗ is defined for t > 0 by

f∗∗(t) =
1

t

∫ t

0
f∗(s) ds,

where

f∗(t) = inf
{
s > 0;m{x ∈ R

n : |f(x)| > s} ≤ t
}
, t > 0.
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Note that Lp(Rn) = L(p,p)(Rn). The spaces L(p,∞)(Rn) are called weak-Lp spaces or Marcinkiewicz
spaces. Lorentz spaces have the same scaling relation as Lp spaces, that is, for all λ > 0 one has
‖f(λx)‖(p,q) = λ

−n
p ‖f‖(p,q), where 1 ≤ p < ∞ and 1 ≤ q ≤ ∞. Morover, Lorentz spaces can be

constructed via real interpolation [1]. Indeed,

L(p,q)(Rn) = (L1(Rn), L∞(Rn))1− 1
p
,q, 1 < p < ∞.

They have the interpolation property

(L(p0,q0)(Rn), L(p1,q1)(Rn))θ,q = L(p,q)(Rn),

provided 0 < p0 < p1 < ∞, 0 < θ < 1, 1
p = 1−θ

p0
+ θ

p1
, 1 ≤ q0, q1, q ≤ ∞, where (·, ·)θ,q stands for

the real interpolation spaces constructed via the K-method [1].
We begin by bounding the Schrödinger group S(t) in Lorentz spaces.

Lemma 2.1. Let 1 ≤ d ≤ ∞, and 1 < p < 2. If p′ is such that 1
p + 1

p′ = 1, then there exists a
constant C = C(n, γ, p) > 0 such that

‖S(t)ϕ‖(p′,d) ≤ C|t|−
n
2
( 2
p
−1) ‖ϕ‖(p,d) , (2.1)

for all ϕ ∈ L(p,d)(Rn) and all t 6= 0.

Proof. Fix t 6= 0 and let 1 < p0 < p < p1 < 2 such that 1
p′ = λ

p0
+ 1−λ

p1
and 0 < λ < 1. By

the well known Lp = L(p,p) estimate of Schrödinger group, we have that S(t) : Lp0 → Lp′0 and
S(t) : Lp1 → Lp′1 , where the operator norms are respectively bounded by

‖S(t)‖p0→p′0
≤ C|t|

−n
2
( 2
p0

−1)
,

‖S(t)‖p1→p′1
≤ C|t|

−n
2
( 2
p1

−1)
.

Through real interpolation,

‖S(t)‖(p,d)→(p′,d) ≤ ‖S(t)‖λp0→p′0
‖S(t)‖1−λ

p1→p′1

≤
(
C|t|

−n
2
( 2
p0

−1)
)λ (

C|t|
−n

2
( 2
p1

−1)
)1−λ

= C|t|
−n

2
( 2
p
−1)

,

which is equivalent to (2.1).

From now on, we denote α :=
2

ρ
−

n

ρ+ 2
and β :=

2

ρ
−

n(ρ+ 1)

(ρ+ 2)
.

Definition 2.2. Let 0 < ρ < ∞ and 0 < T ≤ ∞. We denote by Eα and ET
α,β the Banach spaces

Eα =
{
u; |t|

α
2 u ∈ BC((−∞,∞);L(ρ+2,∞))

}
, (2.2)

ET
α,β =

{
u; |t|

α−β
2 u ∈ BC((−T, T );L(ρ+2,∞))

}
, (2.3)
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with respective norms
‖u‖α = sup

−∞<t<∞
|t|

α
2 ‖u(t)‖(ρ+2,∞),

and
‖u‖α,β = sup

−T<t<T
|t|

α−β
2 ‖u(t)‖(ρ+2,∞),

which are weakly continuous in the sense of distributions at t = 0.

Definition 2.3. Let 0 < T ≤ ∞. A mild solution of the initial value problem (1.1)-(1.2) in the space
ET

α,β (respectively, in the space Eα) is a complex valued function u ∈ ET
α,β (respectively, u ∈ Eα)

satisfying equation (1.3) for all 0 < |t| < T , such that u(t) ⇀ φ when t → 0 in the sense of
distributions.

Our main results are

Theorem 2.4. (Local in time solutions) Let 0 < ρ < ∞ and
nρ

2
<

ρ+ 2

ρ+ 1
.

1. If φ ∈ L
( ρ+2
ρ+1

,∞)
, then there exists 0 < T < ∞ such that the initial value problem (1.1)-

(1.2) has a unique mild solution u(t, x) ∈ ET
α,β, with T = T (φ) = C ‖φ‖

− ρ
δ

( ρ+2
ρ+1

,∞)
, where δ =

1− α−β
2 (ρ+ 1) > 0.

2. Moreover, if φn ∈ L
( ρ+2
ρ+1

,∞)
is a sequence of functions satisfying φn → φ in L

( ρ+2
ρ+1

,∞)
, then

there exists 0 < T0 < ∞ and n0 ∈ N such that, for n ≥ n0, the solutions un and u with
respective initial data φn and φ lie in ET0

α,β and un → u in ET0
α,β. Actually, the solution map

φ 7→ u is Lipschitz continuous.

Theorem 2.5. (Global in time solutions) Let 0 < ρ < ∞ and
ρ+ 2

ρ+ 1
<

nρ

2
< ρ+ 2.

1. If φ is a distribution such that sup−∞<t<∞ |t|
α
2 ‖S(t)φ‖(ρ+2,∞) < ε, for ε > 0 small enough,

then the initial value problem (1.1)-(1.2) has a global in time mild solution u(t, x) ∈ Eα. This
solution is the only one satisfying ‖u‖α ≤ 2ε.

2. Futhermore, if (φn) is a sequence of distributions such that ‖S(t)φn − S(t)φ‖Eα → 0 when
n → ∞, and un, u are the solutions with respective initial data φn and φ, then un → u in Eα.

We compare the theorems above with previous results.

• In [7], the existence of solutions in spaces of infinite energy was obtained for ρ0 < ρ < 4
n−2 ,

where ρ0 is the value of ρ for which ρ+2
ρ+1 = nρ

2 . In [2], using Strichartz-type inequalities,

the existence of global solutions in the class L(p,∞)(Rn+1) ≡ L
(p,∞)
t

(
L
(p,∞)
x

)
was established,

where p = ρ(n+2)
2(ρ+1) and ρ0 <

4(n+1)
n(n+2) < ρ <

4(n+1)
n2 . So, Theorem 2.4 extends the set of exponents

ρ where such solutions exist by including the interval 0 < ρ < ρ0.

• In the range ρ0 < ρ < 4
n−2 , Theorem 2.5 extends the global solutions results derived in [7] to

the framework of Marcinkiewicz spaces. Our range for ρ is also greater than the one in [2] (see
1.7).
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• Theorem 2.4 assures the existence of local in time solutions even for singular initial data

φ(x) = Pk(x) |x|
−k−

n(ρ+1)
ρ+2 ∈ L

( ρ+2
ρ+1

,∞), where Pk(x) is a homogeneous polynomial of degree k.
As far as we know, there were no previous existence results covering this case. On the other
hand, we were not able to obtain self-similar solutions in Eα,β though, since the norm ‖ · ‖α,β

is not invariant by the scaling relation uµ(t, x) = µ
2
ρu(µ2t, µx).

As a direct consequence of Theorem 2.5, one can show the existence of a self-similar solution.

Corollary 2.6. (self-similar solutions) In addition to the hypothesis of Theorem 2.5, if the initial
data φ is a sufficiently small homogeneous function of degree −2

ρ , then the solution u(t, x) provided

by Theorem 2.5 is self-similar, that is, u(t, x) = µ
2
ρu(µ2t, µx) for all µ > 0, almost everywhere for

x ∈ R
n and t > 0.

Remark 2.7. Let Pk(x) be a homogeneous polynomial of degree k. The set of functions φ which

are finite linear combinations of functions of the form Pk(x)

|x|
k+2

ρ
is an admissible class for the existence

of self-similar solutions for problem (1.1)-(1.2).

We also analyze the large time behaviour of the solutions given by Theorem 2.5, and study the
behaviour of the solutions given in Theorem 2.4 near to time t = 0. These are the content of the
following theorem.

Theorem 2.8. 1. (Asymptotic stability) Suppose 0 ≤ h < 1 − α
2 (ρ + 1), and let u, v ∈ Eα be

two global solutions of problem (1.1)-(1.2) obtained through Theorem 2.5, corresponding to

respective initial conditions φ, ϕ ∈ L
( ρ+2
ρ+1

,∞)
. If lim

|t|→∞
|t|

α
2
+h ‖S(t)(φ− ϕ)‖(ρ+2,∞) = 0, then

lim
|t|→∞

|t|
α
2
+h ‖u(t)− v(t)‖(ρ+2,∞) = 0. (2.4)

2. (Decay rate as t → 0) Suppose δ = 1− α−β
2 (ρ + 1) > 0, and h > −δ . Let u, v ∈ Eα,β be two

local solutions of (1.1)-(1.2) obtained through Theorem 2.4, corresponding to initial conditions

φ,ϕ ∈ L
( ρ+2
ρ+1

,∞), respectively. If lim
t→0

|t|
α−β
2

−h ‖S(t)(φ− ϕ)‖(ρ+2,∞) = 0, then

lim
t→0

|t|
α−β
2

−h ‖u(t)− v(t)‖(ρ+2,∞) = 0. (2.5)

Let us comment some improvements produced by Theorem 2.8.

• (Asymptotic stability) Theorem 2.5 already gives

sup
|t|>0

|t|
α
2 ‖u(t)− v(t)‖(ρ+2,∞) < ∞.

Thus, it is obvious that the estimate (2.4) holds for h < 0. On the other hand, the first item
in Theorem 2.8 extends this property for the range 0 ≤ h < 1 − α

2 (ρ + 1). However, more
regularity on the initial perturbation φ − ϕ is required though. For instance, assuming (in

addition) that φ− ϕ ∈ L
ρ+2
ρ+1 , one obtains

lim
|t|→∞

|t|
α
2
+h ‖S(t)(φ − ϕ)‖(ρ+2,∞) = 0,

with 0 ≤ h < −β
2 . Observe that −β

2 = 1− α
2 (ρ+ 1) > 0, when ρ0 < ρ < 4

n−2 .
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• (Decay rate when t → 0) By bound (3.2), one can see that

|t|
α−β
2

−h ‖u(t)− v(t)‖(ρ+2,∞) ≤ |t|
α−β
2

−h ‖S(t)(φ − ϕ)‖(ρ+2,∞) +C |t|δ−h ,

which implies the bound (2.5) for h < δ. Assuming further regularity for φ − ϕ, the second
item of Theorem 2.8 extends this property for the range h > −δ.

3 Proofs

The following Lemma is important to our ends. For its proof, see [8].

Lemma 3.1. Let 0 < ρ < ∞ and X to be a Banach space with norm ‖ · ‖. Suppose B : X → X to
be a map satisfying

‖B(x)−B(z)‖ ≤ K‖x− z‖ (‖x‖ρ + ‖z‖ρ) , (3.1)

B(0) = 0, and let R > 0 be the unique positive root of equation 2ρ+1K(R)ρ−1 = 0. Given 0 < ε < R

and y ∈ X, y 6= 0, such that ‖y‖ ≤ ε, there exists a solution x ∈ X for the equation x = y + B(x)
such that ‖x‖ ≤ 2ε. The solution x is unique in the ball B2ε := B(0, 2ε). Moreover, the solution
depends continuously on y in the following sense: If ‖ỹ‖ ≤ ε, x̃ = ỹ +B(x̃), and ‖x̃‖ ≤ 2ε, then

‖x− x̃‖ ≤
1

1− 2ρ+1Kερ
‖y − ỹ‖.

Now, we state and prove the necessary estimates in order to apply Lemma 3.1 in our case.

Lemma 3.2. Let 0 < ρ < ∞ and B be defined as

B(u) = −iλ

∫ t

0
S(t− s)(|u(s)|ρu(s))ds.

If
nρ

2
<

ρ+ 2

ρ+ 1
, then there exists a positive constant Kα,β such that

‖B(u)−B(v)‖α,β ≤ Kα,βT
1− (α−β)(ρ+1)

2 ‖u− v‖α,β

(
‖u‖ρα,β + ‖v‖ρα,β

)
, (3.2)

for all u, v ∈ET
α,β. On the other hand, if

ρ+ 2

ρ+ 1
<

nρ

2
< ρ+ 2, then there exists a positive constant

Kα such that
‖B(u)−B(v)‖α ≤ Kα‖u− v‖α (‖u‖

ρ
α + ‖v‖ρα) , (3.3)

for all u, v ∈ Eα.

Proof. Without loss of generality, we assume t > 0. First note that if nρ
2 < ρ+2

ρ+1 < ρ + 2, then

7



α−β
2 (ρ+ 1) < 1 and n

2 (
2(ρ+1)
ρ+2 − 1) < 1. Therefore,

‖B(u)−B(v)‖(ρ+2,∞) ≤

∫ t

0
‖S(t− s)(|u|ρ u− |v|ρ v)‖(ρ+2,∞)ds

≤ C

∫ t

0
(t− s)−

n
2
(
2(ρ+1)
ρ+2

−1)‖(|u− v|)(|u|ρ + |v|ρ)‖( ρ+2
ρ+1

,∞)ds

≤ C

∫ t

0
(t− s)−

n
2
(
2(ρ+1)
ρ+2

−1)‖u− v‖(ρ+2,∞)

(
‖u‖ρ(ρ+2,∞) + ‖v‖ρ(ρ+2,∞)

)
ds

≤ C

(
sup

0<t<T
t
α−β
2 ‖u− v‖(ρ+2,∞) sup

0<t<T

(
t
(α−β)ρ

2 ‖u‖ρ(ρ+2,∞) + t
(α−β)ρ

2 ‖v‖ρ(ρ+2,∞)

))∫ t

0
(t− s)−

α−β
2 s−

α−β
2

(ρ+1)ds

= Kα,βt
−α−β

2 t1−
α−β
2

(ρ+1)‖u− v‖α,β

(
‖u‖ρα,β + ‖v‖ρα,β

)
,

which proves (3.2). On the other hand, if ρ+2
ρ+1 < nρ

2 < ρ+2, then α
2 (ρ+1) < 1 and n

2 (
2(ρ+1)
ρ+2 −1) < 1.

In this case,

‖B(u)−B(v)‖(ρ+2,∞) ≤ C

∫ t

0
(t− s)−

n
2
(
2(ρ+1)
ρ+2

−1)‖u− v‖(ρ+2,∞)

(
‖u‖ρ

(ρ+2,∞)
+ ‖v‖ρ

(ρ+2,∞)

)
ds

≤ C

(
sup
t>0

t
α
2 ‖u− v‖(ρ+2,∞) sup

t>0

(
t
αρ
2 ‖u‖ρ(ρ+2,∞) + t

αρ
2 ‖v‖ρ(ρ+2,∞)

))∫ t

0
(t− s)−

n
2
(
2(ρ+1)
ρ+2

−1)
s−

α
2
(ρ+1)ds

= Kαt
−α

2 ‖u− v‖α (‖u‖
ρ
α + ‖v‖ρα) ,

which proves (3.3).

3.1 Proof of Theorem 2.4

Let y = S(t)φ. Due to Lemma 2.1, one has

‖y‖α,β = sup
−T<t<T

|t|
α−β

2 ‖S(t)φ‖(ρ+2,∞) ≤ C ‖φ‖( ρ+2
ρ+1

,∞) < ∞.

Using Lemma 3.2, one gets

‖B(u)−B(v)‖α,β ≤ Kα,βT
δ‖u− v‖α,β

(
‖u‖ρα,β + ‖v‖ρα,β

)
, (3.4)

where δ = 1 − α−β
2 (ρ + 1) > 0. Now, choose 0 < T < ∞ sufficiently small, and ε > 0 such

that ‖y‖α,β ≤ C ‖φ‖( ρ+2
ρ+1

,∞) = ε < R :=
(

1
2(ρ+1)Kα,βT δ

) 1
ρ
. Using Lemma 3.1 with X = ET

α,β, one

assures the existence of a local mild solution u ∈ ET
α,β. Moreover, this solution is unique in the ball

B2ε := B(0, 2ε) ⊂ ET
α,β. Furthermore, through standard arguments on can prove that u(t) → φ

in the sense of distributions when t → 0. So, solutions of the integral equation are indeed mild
solutions in the sense of Definition 2.3.

Finally, let un and u be the solutions with respective initial data φn and φ. By Lemma 3.1, one
has

‖un − u‖Eα,β
≤

1

1− 2ρ+1Kα,βT δερ
‖S(t)φn − S(t)φ‖Eα,β

≤
C

1− 2ρ+1Kα,βT δερ
‖φn − φ‖( ρ+2

ρ+1
,∞).

This finishes the proof.
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3.2 Proof of Theorem 2.5

Apply Lemma 3.1 to the integral equation (1.3) with X = Eα and y = S(t)φ. In this case, the
bound (3.3) gives

‖B(u)−B(v)‖α ≤ Kα‖u− v‖α (‖u‖
ρ
α + ‖v‖ρα) .

Now, one considers ε > 0 small enough so that ‖S(t)φ‖α = sup|t|>0 |t|
α
2 ‖S(t)φ‖(ρ+2,∞) < ε allows

one to apply Lemma 3.1 repeatedly, in order to obtain the existence of a global mild solution u ∈ Eα.
This solution is unique in the ball B2ε := B(0, 2ε) ⊂ Eα.

The continuity of the solutions with respect to the initial conditions, as well as the continuity of
the solutions in the sense of distributions, follow as in the proof of Theorem 2.4.

3.3 Proof of Corollary 2.6

Let t > 0. If the initial data φ(x) is a homogeneous function of degree −2
ρ , then S(t)φ satisfies the

self-similar property u(t, x) = µ
2
ρu(µ2t, µx). Thus,

tα/2‖S(t)φ‖(ρ+2,∞) = t
α
2 t

n
2(ρ+2)

− 1
ρ ‖S(1)φ‖(ρ+2,∞) = ‖S(1)φ‖(ρ+2,∞).

Moreover, ‖S(1)φ‖Lρ+2 is finite(see [7]). Since the inclusion Lρ+2 →֒ L(ρ+2,∞) continuously, one has

‖S(1)φ‖(ρ+2,∞) ≤ ‖S(1)φ‖Lρ+2 < ∞.

Therefore, if ‖S(1)φ‖(ρ+2,∞) is small enough , it is straightforward to show that the solution u(t, x)
obtained in Theorem 2.4 is self-similar.

3.4 Proof of Theorem 2.8

Without loss of generality, assume t > 0. Subtracting the integral equations satisfied by u and v,
one gets

t
α
2
+h ‖u(t)− v(t)‖(ρ+2,∞) ≤ t

α
2
+h ‖S(t)(φ− ϕ)‖(ρ+2,∞)

+ t
α
2
+h

∥∥∥∥
∫ t

0
S(t− s)(u |u|ρ − v |v|ρ)ds

∥∥∥∥
(ρ+2,∞)

.

Since ‖u‖α, ‖v‖α ≤ 2ε, one uses the change of variable s 7−→ ts, and bound

t
α
2
+h‖

∫ t

0
S(t− s)(u|u|ρ − v|v|ρ)ds‖(ρ+2,∞)

≤ Ct
α
2
+h

∫ t

0
(t− s)

−n
2
( 2(ρ+1)

(ρ+2)
−1)

s−
α(ρ+1)

2
−h(s

αρ
2 ‖u(s)‖ρ(ρ+2,∞) + s

αρ
2 ‖v(s)‖ρ(ρ+2,∞))s

α
2
+h‖u(s)− v(s)‖(ρ+2,∞)ds

≤ C2ρ+1ερ
∫ 1

0
(1− s)

−n
2
( 2(ρ+1)

(ρ+2)
−1)

s−
α(ρ+1)

2
−h(ts)

α
2
+h‖u(ts)− v(ts)‖(ρ+2,∞)ds.

Therefore,

t
α
2
+h ‖u(t)− v(t)‖(ρ+2,∞) ≤ t

α
2
+h ‖S(t)(φ− ϕ)‖(ρ+2,∞) (3.5)

+ C2ρ+1ερ
∫ 1

0
(1− s)

−n
2
( 2(ρ+1)

(ρ+2)
−1)

s−
α
2
(ρ+1)−h(ts)

α
2
+h‖u(ts)− v(ts)‖(ρ+2,∞)ds,
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for all t > 0. Now, define
A := lim sup

t→∞
t
α
2
+h‖u(t)− v(t)‖(ρ+2,∞).

Using the assumption on the initial perturbation φ−ϕ, it is not difficult to show that A < ∞. Now,
note that

lim sup
t→∞

∫ 1

0
(1− s)

−n
2
( 2(ρ+1)

(ρ+2)
−1)

s
−α(ρ+1)

2
−h(ts)

α
2
+h‖u(ts)− v(ts)‖(ρ+2,∞)ds

≤ A

∫ 1

0
(1− s)

−n
2
(
2(ρ+1)
(ρ+2)

−1)
s−

α
2
(ρ+1)−hds.

So, taking lim sup
t→∞

in (3.5), one obtains

A ≤

(
C2ρ+1ερ

∫ 1

0
(1− s)

−n
2
( 2(ρ+1)

(ρ+2)
−1)

s−
α(ρ+1)

2
−hds

)
A.

Now, let Γ := C2ρ+1
∫ 1
0 (1− s)

−n
2
( 2(ρ+1)

(ρ+2)
−1)

s−
α(ρ+1)

2
−hds. Choosing ε > 0 sufficiently small such that

ερΓ < 1, one concludes that A = 0. This proves part 1 of the theorem.
In order to prove part 2, let δ = 1− α−β

2 (ρ+1) and 0 < t < T as in Theorem 2.4. One can write

δ = α−β
2 −h− α−β

2 − α−β
2 (ρ+1)+h+1. Again, one subtracts the equations for u and v, and bound

t
α−β
2

−h

∥∥∥∥
∫ t

0
S(t− s)(u |u|ρ − v |v|ρ)ds

∥∥∥∥
(ρ+2,∞)

≤ Ct
α−β
2

−h

∫ t

0
(t− s)−

α−β
2 s−

α−β
2

(ρ+1)+h(s
α−β
2

ρ(‖u(s)‖ρ
(ρ+2,∞)

+ ‖v(s)‖ρ
(ρ+2,∞)

)) s
α−β
2

−h‖u(s)− v(s)‖(ρ+2,∞)ds

≤ C2ρ+1ερt
α−β
2

−h−α−β
2

−α−β
2

(ρ+1)+h+1

∫ 1

0
(1− s)−

α−β
2 s−

α−β
2

(ρ+1)+h(ts)
α−β
2

−h‖u(ts)− v(ts)‖(ρ+2,∞)ds.

Hence,

t
α−β
2

−h ‖u(t)− v(t)‖(ρ+2,∞) ≤ t
α−β
2

−h ‖S(t)(φ− ϕ)‖(ρ+2,∞)

+ C2ρ+1ερtδ
∫ 1

0
(1− s)−

α−β
2 s−

α−β
2

(ρ+1)+h(ts)
α−β
2

−h‖u(ts)− v(ts)‖(ρ+2,∞)ds

Writing A := lim supt→0 t
α−β
2

−h‖u(t)− v(t)‖(ρ+2,∞) < ∞, one takes lim sup
t→0

in the last inequality to

obtain

0 ≤ A ≤ C2ρ+1ερA

∫ 1

0
(1− s)−

α−β
2 s−

α−β
2

(ρ+1)+hds lim
t→0

tδ = 0.

This concludes the proof.

References

[1] Bergh, J., Lofstrom, J., Interpolation Spaces. An introduction. Springer, Grundlehren der Math-
ematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, (1976).

10



[2] Cazenave, T., Vega, L., Vilela, M. C., A note on the nonlinear Schrödinger equation in weak-Lp

spaces. Commun. Contemp. Math. 3 (2001), no. 1, 153–162.

[3] Cazenave, T., Weissler F. B., Some remarks on the nonlinear Schrödinger equation in the
subcritical case. New methods and results in nonlinear field equations (Bielefeld, 1987), 59–69,
Lecture Notes in Phys., 347, Springer, Berlin, (1989).

[4] Cazenave, T., Weissler F. B., Some remarks on the nonlinear Schrödinger equations in the criti-
cal case, in Nonlinear Semigroups, Partial Differential Equations, and Attractors, (Washington,
DC, 1987), 18–29, Lecture Notes in Math., 1394, Springer, Berlin, (1989).

[5] Cazenave, T., Weissler, F. B., The Cauchy problem for the nonlinear Schrödinger equation in
H1, Manuscripta Math. 61 (1988), no. 4, 477–494.

[6] Cazenave, T., Weissler, F. B., The Cauchy problem for the critical nonlinear Schrödinger equa-
tions in Hs, Nonlinear Anal. 14 (1990), no. 10, 807–836.

[7] Cazenave, T., Weissler, F. B., Asymptotically self-similar global solutions of the nonlinear
Schrödinger and heat equations, Math. Z. 228 (1998), no.1, 83–120.

[8] Ferreira, L. C. F., Villamizar-Roa, E. J., Self-similar solutions, uniqueness and long time asymp-
totic behavior for semilinear heat equations, Differential Integral Equations 19 (2006), no. 12,
1349–1370.

[9] Kato, T., On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré, Phys. Théor. 46 (1987),
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