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Abstract. Under certain conditions, a filtration on an augmented algebra A admits

a related filtration on the Yoneda algebra E(A) := ExtA(K, K). We show that there
exists a bigraded algebra monomorphism gr E(A) ↪→ EGr(gr A), where EGr(gr A) is the

graded Yoneda algebra of gr A. This monomorphism can be applied in the case where

A is connected graded to determine that A has the K2 property recently introduced by
Cassidy and Shelton.

1. Introduction

In this paper, we use filtrations to study certain homological properties of augmented
algebras. We generalize a similar recently-studied homological property of graded algebras.
Throughout, if a K-algebra A (where K is a field) is graded by a monoid M with identity
element e, we denote by ExtGr the derived functor of the M-graded Hom functor

HomGr(M,N) :=
⊕
α∈M

HomGr(M,N)α,

where HomGr(M,N)α = homA(M(α), N), M(α)β := Mαβ , and homA(M,N) contains only
degree-e homomorphisms. A connected-graded algebra A is called Koszul if its (graded)
Yoneda algebra EGr(A) := ExtGr(K,K) is generated as a K-algebra by E1

Gr(A). (Through-
out, we assume connected-graded algebras are finitely generated and finitely related.) Our
goal is to study a generalization of Koszul introduced by Cassidy and Shelton [3]:

Definition 1.1. A connected-graded algebra A is K2 if E1
Gr(A) and E2

Gr(A) generate EGr(A)
as a K-algebra.

The Koszul algebras are exactly the quadratic K2 algebras. More generally, an algebra
A is in the class of N -Koszul algebras introduced by Berger [1] if and only if A is K2 and
has only degree-N relations [5, Theorem 4.1][3, Corollary 4.6]. (Unfortunately, the term N -
Koszul has obtained two incompatible meanings. The meaning used here is different than
that found in [9].) However, K2 algebras can have relations of several different degrees.

Our goal is generalize further to augmented algebras and to relate the graded case to the
augmented case via filtrations. Throughout, we suppose that A is an augmented algebra
over a field K, i.e., A = A+ ⊕ K · 1 for A+ / A. (The augmentation is then ε : A � K).
Furthermore, we suppose that a totally-ordered monoid M (with identity element e) filters
A so that
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(1)
⋃
α FαA = A;

(2) FαA = K⊕ FαA+, where FαA+ := FαA ∩A+;
(3) FeA = K and FαA+ 6= 0 when α > e; and
(4) dimFα/Fs(α,−1)A <∞ for all α > e.

We use E(A) to denote the Yoneda algebra ExtA(K,K), the cohomology of the co-
bar complex Cob(A) := HomK(A⊗•+ ,K), where Hom is the functor yielding all A-module
homomorphisms. The complex Cob(A) has an M-filtration Fα Cob(A) (see Definition
2.2) which induces a filtration Fα En(A) and associated graded algebra grF E(A). Also,
the filtration on A yields the associated graded algebra grF A (graded by M); we set
(grF A)+ :=

⊕
α>e(grF A)α. The algebra grF A is augmented by grF A = K⊕ (grF A)+.

Theorem 1.2. There is a bigraded (with respect to the cohomological and M gradings)
algebra monomorphism

Λ : grF E(A) ↪→ EGr(grF A).

We make the following generalization of K2 to this broader category of algebras:

Definition 1.3. An augmented algebra A is K2 if E1(A) and E2(A) generate E(A) as a
K-algebra.

We can then connect the theory of connected-graded (finitely-related) algebras and un-
graded algebras with the following, to be proved in Section 3:

Lemma 1.4. For a connected-graded algebra A, Em(A) = EmGr(A) if an only if dim EmGr(A) <
∞. Consequently, if a connected-graded algebra A is K2 in the sense of Definition 1.3, then
A is K2 in the sense of Definition 1.1.

Our primary goal was to develop a technique for transferring the K2 property from grF A
to A. As we will see, it is often much easier to prove that grF A is K2.

Theorem 1.5. If E1
Gr(grF A) and E2

Gr(grF A) are finite dimensional and generate EGr(grF A),
and Λ1 and Λ2 are surjective, then A is K2.

This theorem captures a more specific situation involving connected-graded algebras. Ev-
ery connected-graded algebraA with n generators is a factor of the free algebra K 〈x1, . . . , xn〉.
Thus, the monomials in x1, . . . , xn are a totally-ordered (noncommutative) monomial (un-
der the degree-lexicographical order), and so provide a filtration F on A. The following is
well-known (see, for example, [9, Theorem IV.3.1]):

Theorem 1.6. If A is a connected-graded quadratic algebra and grF A is also quadratic,
then A is Koszul.

An algebraA which meets the hypotheses of Theorem 1.6 is called a Poincaré–Birkhoff–
Witt algebra. Setting I := ker(K 〈x1, . . . , xn〉 � A), we say a Gröbner basis G for I is
essential if its elements generate I in a certain minimal manner (see Definition 3.5). The
following K2 analogue of Theorem 1.6 was the original goal of this research.

Theorem 1.7. If I has an essential Gröbner basis and grF A is K2, then A is K2 as well.

The algebra grF A will be a monomial connected-graded algebra. Cassidy and Shelton
have provided an algorithm that determines whether a monomial connected-graded algebra
is K2 [3, Theorem 5.3].

In Section 2, we prove Theorems 1.2 and 1.5, which involves relating the cobar complexes
Cob(A) and Cob(grF A), and constructing the map Λ. In Section 3, we consider the case
where A is a connected-graded algebra, and connect the existence of an essential Gröbner
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basis to the surjectivity of Λ2, proving Theorem 1.7. (The surjectivity of Λ1 is automatic
in the connected-graded case.) We connect surjectivity of Λ2 with the existence of a special
Gröbner basis for ker(K 〈x1, . . . , xn〉 � A). In Section 4, we use the results from Section 3
to prove that some anticommutative analogues of face rings are K2.

2. Bigraded algebra monomorphism Λ : grF E(A) ↪→ EGr(grF A)

In this section, A denotes an augmented algebra filtered by a totally-ordered monoid M
as specified above. (Note that M need not be commutative.) We prove Theorems 1.2 and
1.5. We shall use the following notation:

Definition 2.1. For α ∈ M, denote the monomial appearing r steps after α in the total
order by s(α, r).

We begin by setting detailed notation for the cobar complex and its associated filtration.

Definition 2.2. Let d : A⊗n+ → A⊗n−1
+ via

d(a1 ⊗ · · · ⊗ an) :=
n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an.

This makes A⊗•+ into a chain complex. We filter this complex by setting

FαA
⊗n
+ :=

∑
α1···αn<α
αi>e

Fα1A+ ⊗ · · · ⊗ FαnA+.

The cobar complex is the co-chain complex dual to A•+, defined via

Cobn(A) := HomK
(
A⊗n+ ,K

)
with the dual differential, which we denote ∂.

We put a decreasing filtration on Cob(A) by setting

Fα Cobn(A) :=
{
f : A⊗n+ → K |Fs(α,−1)A

⊗n
+ ⊂ ker f

}
.

If B is an algebra graded by a totally-ordered monoid M with identity element e, we
similarly define CobGr(B) := HomGr

(
B⊗•+ ,K

)
, where B+ =

∑
α>eBα.

The cup product multiplication in a cobar complex, graded cobar complex, or Yoneda
algebra will be denoted by `.

Throughout, we will denote HomK(V,K) =: V ∨. We first relate Cob•Gr(grF A) to the
cobar complex of A.

Proposition 2.3. There is a differential-graded algebra isomorphism

grF Cob•(A) ' Cob•Gr(grF A).

The proof of Proposition 2.3 will follow after two lemmas. Let us fix a K-basis R =∐
α∈MRα for A such that:

(1)
⋃
β≤αRβ is a basis for FαA.

(2) Rα ⊂ FαA+ for α > e.

Then {r + Fs(α,−1)A+ : r ∈ Rα} is a basis for FαA+/Fs(α,−1)A+.
For readability, we set (((grF A)+)⊗n)α =: (grF A)⊗n+,α.
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Lemma 2.4. The map

ϕ : (grF A)⊗n+,α →
FαA

⊗n
+

Fs(α,−1)A
⊗n
+

via

ϕ((a1 + Fs(α1,−1)A)⊗ · · · ⊗ (an + Fs(αn,−1)A)) := a1 ⊗ · · · ⊗ an + Fs(α,−1)A
⊗n
+

is a chain isomorphism.

Proof. First, if ai − a′i ∈ Fs(αi,−1)A for some 1 ≤ i ≤ n and α1 · · ·αn = α, then

a1 ⊗ · · · ⊗ (ai − a′i)⊗ · · · ⊗ an ∈ Fs(α,−1)A
⊗n
+ .

Hence, ϕ is well-defined.
To show that ϕ is a chain map, suppose ai ∈ FαiA and α1 · · ·αn = α. We compute

(d ◦ ϕ)
((
a1 + Fs(α1,−1)A

)
⊗ · · ·

(
an + Fs(αn,−1)A

))
= d

(
a1 ⊗ · · · ⊗ an + Fs(α,−1)A

⊗n
+

)
=
n−1∑
i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an + Fs(α,−1)A
⊗n
+

= ϕ
( n−1∑
i=1

(−1)i
(
a1 + Fs(α1,−1)A

)
⊗ · · ·

⊗
(
aiai+1 + Fs(αiαi+1,−1)A

)
⊗ · · · ⊗

(
an + Fs(αn,−1)A

) )
= (ϕ ◦ d)

((
a1 + Fs(α1,−1)A

)
⊗ · · · ⊗

(
an + Fs(αn,−1)A

))
.

Now, to show that ϕ is an isomorphism, note that the set

B1 :=
{(
a1 + Fs(α1,−1)A

)
⊗ · · · ⊗

(
an + Fs(αn,−1)A

) ∣∣∣ ai ∈ Rαi , αi 6= e, α1 · · ·αn = α
}

is a basis for (grF A)⊗n+,α, while

B2 :=
{
a1 ⊗ · · · ⊗ an + Fs(α,−1)A

⊗n
+

∣∣∣ ai ∈ Rαi , αi 6= e, α1 · · ·αn = α
}

is a basis for FαA⊗n+ /Fs(α,−1)A
⊗n
+ . Since ϕ gives a bijection between these bases, ϕ is an

isomorphism. �

Now, because of condition (4) on the filtration, we have a chain isomorphism

ϕ∨ :

(
FαA

⊗n
+

Fs(α,−1)A
⊗n
+

)∨
∼→ Cobn,αGr (grF A).

The restriction map
(A⊗n+ )∨ → (FαA⊗n+ )∨

induces an injective map

ρ :
Fα Cobn(A)

Fs(α,1) Cobn(A)
↪→

(
FαA

⊗n
+

Fs(α,−1)A
⊗n
+

)∨
.

It is straightforward to check the following:

Lemma 2.5. The map ρ is a chain isomorphism.
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We now know that

ϕ∨ ◦ ρ : grF Cob•(A)→ Cob•Gr(grF A)

is a chain isomorphism, graded by M.

Proof of Proposition 2.3. It suffices to show that ϕ∨ ◦ ρ is a differential-graded algebra ho-
momorphism. Let f ∈ Fα Cobn(A), g ∈ Fβ Cobm(A), ai ∈ FαiA, bi ∈ FβiA, α1 · · ·αn = α,
and β1 · · ·βm = β.

Then,

(ϕ∨ ◦ ρ)((f + Fs(α,1) Cobn(A)) ` (g + Fs(β,1) Cobm(A))(
(a1 + Fs(α1,−1)A)⊗ · · · ⊗ (an + Fs(αn,−1)A)

⊗ (b1 + Fs(β1,−1)A)⊗ · · · ⊗ (bm + Fs(βm,−1)A)
)

= ρ((f + Fs(α,1) Cobn(A)) ` (g + Fs(β,1) Cobm(A)))

((a1 ⊗ · · · ⊗ an + Fs(α,−1)A
⊗n
+ )⊗ (b1 ⊗ · · · ⊗ bm + Fs(β,−1)A

⊗m
+ ))

= ρ(f ` g + Fs(αβ,1) Cobn+m(A))

(a1 ⊗ · · · ⊗ an ⊗ b1 ⊗ · · · ⊗ bm + Fs(αβ,−1)A
⊗n+m
+ )

= f(a1 ⊗ · · · ⊗ an)g(b1 ⊗ · · · ⊗ bm).

Likewise,

(
(ϕ∨ ◦ ρ)(f + Fs(α,1) Cobn(A)) ` (ϕ∨ ◦ ρ)(g + Fs(β,1) Cobm(A))

)
(

(a1 + Fs(α1,−1)A)⊗ · · · ⊗ (an + Fs(αn,−1)A)

⊗ (b1 + Fs(β1,−1)A)⊗ · · · ⊗ (bm + Fs(βm,−1)A)
)

= ρ(f + Fs(α,1) Cobn(A))(a1 ⊗ · · · ⊗ an + Fs(α,−1)A
⊗n
+ )

· ρ(g + Fs(β,1) Cobm(A))(b1 ⊗ · · · ⊗ bm + Fs(β,−1)A
⊗m
+ )

= f(a1 ⊗ · · · ⊗ an)g(b1 ⊗ · · · ⊗ bm),

as desired. �

Recall that we give E(A) a filtration Fα E(A) induced by the filtration Fα Cob•(A).

Definition 2.6. Define a surjective map η∞ : Fα Cobn(A) ∩ ker ∂ � (grF E(A))n,α to be
the composition

Fα Cobn(A) ∩ ker ∂ � Fα En(A)�
Fα En(A)

Fs(α,1) En(A)
.
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Define a map η1 : Fα Cobn(A) ∩ ker ∂ → En,αGr (grA) to be the composition

Fα Cobn(A) ∩ ker ∂ →
Fα Cobn(A) ∩ ker ∂ + Fs(α,1) Cobn(A)

Fs(α,1) Cobn(A)

→ Fα Cobn(A)
Fs(α,1) Cobn(A)

∩ ker(grF ∂)

ϕ∨◦ρ|
−−−−→ Cobn,αGr (grF A) ∩ ker ∂

� En,αGr (grF A).

(Recall that ϕ∨ ◦ ρ : grF Cob•(A) → Cob•Gr(grF A) is a differential-graded algebra isomor-
phism by Proposition 2.3.)

The maps η1 and η∞ appear in the construction of a spectral sequence obtained from the
filtration F on Cob(A). See, for example, [8, Theorem 2.6] and its proof. (We will not need
this spectral sequence.)

Lemma 2.7. ker η1 = ker η∞.

Proof. Suppose f ∈ ker η1, meaning

(ϕ∨ ◦ ρ)(f + Fs(α,1) Cobn(A)) ∈ Cobn,αGr (grF A) ∩ im ∂.

As ϕ∨ ◦ ρ is a differential-graded algebra isomorphism,

f + Fs(α,1) Cobn(A) ∈ Fα Cobn(A)
Fs(α,1) Cobn(A)

∩ im ∂;

that is, there exists g ∈ Fα Cobn−1(A) such that

∂(g) + Fs(α,1) Cobn(A) = f + Fs(α,1) Cobn(A).

However, f − ∂(g) + im ∂ ∈ Fs(α,1) En(A). Thus, η∞(f) = 0.
Now, suppose f ∈ ker η∞, meaning f+im ∂ ∈ Fs(α,1) En(A). So, f+∂(g) ∈ Fs(α,1) Cobn(A)

for some g ∈ Cobn(A). Since f, f + ∂(g) ∈ Fα Cobn(A), ∂(g) ∈ Fα Cobn(A) as well, and

f + Fs(α,1) Cobn(A) = ∂(g) + Fs(α,1) Cobn(A).

Thus,
(ϕ∨ ◦ ρ)(f + Fs(α,1) Cobn(A)) ∈ Cobn,αGr (grF A) ∩ im ∂

and so η1(f) = 0. �

Definition 2.8. Since η∞ is surjective, Lemma 2.7 tells us we may define a unique injective
map Λn,α such that the diagram

Fα Cobn(A) ∩ ker ∂

η∞

zzuuuuuuuuuuuuuuuuuuuu

η1

$$HHHHHHHHHHHHHHHHHHH

(grF E(A))n,α Λn,α // En,αGr (grF A)

commutes. Set Λ :=
⊕

n,α Λn,α.
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We may now prove Theorem 1.2, which we restate:

Theorem 2.9. The map
Λ : grF E(A) ↪→ EGr(grF A).

is an algebra monomorphism.

Proof. It remains only to prove Λ is an algebra homomorphism. Let f ∈ (grF E(A))n,α and
g ∈ (grF E(A))m,β . Choose preimages (under η1)

f̃ ∈ Fα Cobn(A) ∩ ker ∂ and g̃ ∈ Fβ Cobm(A) ∩ ker ∂

for f and g, respectively. We have

f̃ ⊗ g̃ ∈ Fαβ Cobn+m(A) ∩ ker ∂.

Now, we compute

η∞(f̃ ⊗ g̃) = ((f̃ ⊗ g̃) + im ∂) + Fs(αβ,1) En+m(A)

= ((f̃ + im ∂) ` (g̃ + im ∂)) + Fs(αβ,1) En+m(A)

= ((f̃ + im ∂) + Fs(α,1) En(A)) ` ((g̃ + im ∂) + Fs(β,1) Em(A))

= η∞(f̃) ` η∞(g̃)
= f ` g. �

Before proving Theorem 1.5, we prove a general fact about filtered algebras:

Lemma 2.10. Let R =
⊕

iRi be a graded algebra with a decreasing filtration F by a totally-
ordered monoid M. Put FαRi = FαR ∩ Ri and assume FαR =

⊕
i FαRi for all i. Let R′

be the subalgebra of R generated by R1, . . . , Rm. Suppose, for each i, FαRi ⊂ R′ for α
sufficiently large. If (grF R)1, . . . (grF R)m generate grF R, then R1, . . . , Rm generate R.

Proof. Suppose that Fs(α,1)Ri ⊂ R′. Let a ∈ FαRi \ Fs(α,1)Ri. As grF R is generated by
(grF R)1, . . . , (grF R)n, there exists a′ ∈ R′ ∩ FαRi such that

a− a′ ∈ Fs(α,1)Ri ⊂ R′.

As a ∈ R′, we know a ∈ R′. Thus, FαR ⊂ R′. By (decreasing) induction on α, R = R′. �

Lemma 2.11. If dim grF En(A) < ∞ then Fα En(A) = 0 for some α, and consequently,
dim grF En(A) = dim En(A)

Proof. Let {ξ+Fs(αi,1) En(A) : 1 ≤ i ≤ m} be a basis for grF En(A), and choose α > αi for
all 1 ≤ i ≤ m. For β ≥ α, Fβ En(A)/Fs(β,1) En(A) = 0, meaning Fβ En(A) = Fα En(A).

Now, choose any ξ ∈ Fα En(A). For β ≥ α, there exists fβ ∈ Fβ Cobn(A) and f ′β ∈
Cobn−1(A) such that fβ + im d = ξ and fβ = fs(β,1) + d(f ′β).

Then, for β ≥ α,

fα = fs(α,1) + d(f ′α)

= fs(α,2) + d(f ′s(α,1)) + d(f ′α)

...

= fβ +
∑

α≤γ<β

d(f ′γ).
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So, for x ∈ FβA⊗n+ and γ > β,

fα(x) = fγ(x) +
∑

α≤δ<γ

d(f ′γ)(x)

=
∑

α≤δ<γ

(f ′δ ◦ ∂)(x).

Thus, there exists f ′ : A⊗n−1
+ → K such that fα = f ′ ◦ ∂. Therefore, ξ = 0. �

We may now prove Theorem 1.5, which we restate:

Theorem 2.12. If E1
Gr(grF A) and E2

Gr(grF A) are finite dimensional and generate EGr(grF A),
and Λ1 and Λ2 are surjective, then A is K2.

Proof. The map Λ is an algebra isomorphism. Apply Lemma 2.10 when m = 2 and R =
E(A). �

Example 2.13. Let

A =
K[x, y]
〈x3 − p〉

,

where p is a homogeneous quadratic polynomial. Define ε : A � K via ε(x) := 0 and
ε(y) := 0.

The standard N-grading on K 〈x, y〉 induces a filtration F on A which satisfies the con-
ditions in the introduction. Then,

grF A ' K[x, y]
〈x3〉

.

Note that grF A is a complete intersection, and therefore is K2 by [3, Corollary 9.2].
One can easily compute dimE1(grF A) = dimE2(grF A) = 2. Furthermore, using

Cob•(A), one can find the necessary linearly-independent cohomology classes to show dim E1(A) =
dim E2(A) = 2, implying that Λ1 and Λ2 are surjective. Hence A is K2.

3. Connected-graded algebras with monomial filtrations

By a connected-graded algebra, we mean an algebra A such that there is a graded
algebra epimorphism

π : T(V )� A

where V = span{x1, . . . , xn} and I := kerπ ⊂
∑
n≥2 V

⊗n is finitely-generated and ho-
mogeneous. Under these circumstances, E1(A) and E2(A) are finite dimensional. The
following lemma shows that the two definitions of K2 from the introduction are compatible
for connected-graded algebras.

Lemma 3.1. For a connected-graded algebra A, Em(A) = EmGr(A) if an only if dim EmGr(A) <
∞. Consequently, if a connected-graded algebra A is K2 in the sense of Definition 1.3, then
A is K2 in the sense of Definition 1.1.

Proof. Projective modules in the category Gr-A of graded A-modules are graded-free [1,
Proposition 2.1]. So, there exists a projective resolution (in both the category of graded
A-modules and of all A-modules)

· · · → A⊗ V m ∂m−−→ · · · → A⊗ V 1 → A⊗ V 0 → A→A K→ 0
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such that each V i is a graded vector space and ∂i(A ⊗ V i) ⊆ A+ ⊗ V i−1. So, for any
A-module homomorphism f : A⊗ V i−1 → K, ∂i ◦ f = 0. Thus, all the differentials in both
Hom(A⊗ V •,AK) and HomGr(A⊗ V •,AK) are zero. So,

Em(A) = Hom(A⊗ V m,AK) while EmGr(A) = HomGr(A⊗ V m,AK). �

For a graded algebra A, we use notation established by [3], setting

A(nj11 , n
j2
2 , . . . , n

jt
t ) :=

⊕
i

A(ni)⊕ji .

Example 3.2. Consider the algebra

A =
K 〈w, x, y, z〉
〈yz, zx− xz, zw〉

.

introduced in [4, Example 5.2]. A minimal projective resolution for AK is

0→ A(−3,−4,−5, . . . )→ A(−22)→ A(−14)→ A→ K→ 0.

Thus, the dimension of E3
Gr(A) is countably infinite, while the dimension of E3(A) is un-

countable.

In light of Lemma 3.1, we will write E1(A) for E1
Gr(A) and E2(A) for E2

Gr(A).
The monomialsM of T(V ) (with respect to the basis {x1, . . . , xn} for V ) form a monoid

which is totally-ordered by degree-lexicographical order. For α ∈ M, we set FαA :=
span {π(β) : β ≤ α}. AsM is itself N-graded, the we may put an N-grading on EGr(grF A)
by setting

Ei,jGr(grF A) :=
⊕
|α|=j

Ei,αGr (grF A).

The algebra E(A) inherits the grading on A, and so does grF E(A). Indeed, it is clear that

(grF E(A))i,j =
⊕
|α|=j

(grF Ej(A))α

Furthermore, the monomorphism

Λ : grF E(A) ↪→ EGr(grF A)

defined in Theorem 1.2 is homogeneous with respect to this internal N-grading.
The goal of this section is to apply Theorem 1.5 to connected-graded algebras, using this

monomial filtration. Note that Λ1 is always surjective, so to apply Theorem 1.5, we need
only check:

(1) grF A is K2, and
(2) Λ2 : grF E2(A) ↪→ E2(grF A) is surjective.

Fortunately, the first condition is very easy to check since, as we will see, grF A is a
monomial algebra.

Definition 3.3. (1) We can write any element x ∈ T(V ) uniquely as cαα+
∑
β<α cββ

where cα 6= 0. Let τ(x) := cαα, which we call the leading monomial of x.
(2) Define π̂ : T(V )→ grF A via π̂(α) = π(α) + Fs(α,−1)A.

We shall omit the proof of the following lemma.

Lemma 3.4 ([7, Theorem 2.1]). ker(π̂) = 〈τ(x) : x ∈ I〉.
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From this, we see that grF A is a monomial algebra. Cassidy and Shelton provide an
algorithm that determines exactly when a monomial algebra is K2 [3, Theorem 5.3].

Now, we turn our attention to the second condition, the surjectivity of Λ2 : grF E2(A) ↪→
E2(grF A). Let I ′ = V ⊗ I + I ⊗ V .

Definition 3.5. (1) An element x ∈ I is an essential relation for A if x is homoge-
neous and x 6∈ I ′.

(2) A generating set Be for I is an essential generating set for I if Be comprises only
essential relations and no subset of Be generates I.

(3) A generating set G for I is a Gröbner basis for I if

〈τ(x) : x ∈ I〉 = 〈τ(x) : x ∈ G〉 .
(4) A Gröbner basis G for I is an essential Gröbner basis for I if it is an essential

generating set.

The definition of an essential relation first appeared in [3]. Gröbner bases are studied
extensively in [7] and [6].

Note that a generating set Be for I is essential if and only if |Be| = dim I/I ′ = dimE2(A).
We will show later that the existence of an essential Gröbner basis is equivalent to the
surjectivity of Λ2. At the same time, it is desirable to know when an essential generating
set is a Gröbner basis.

Example 3.6. Consider the ideal I :=
〈
x3, y2

〉
in K 〈x, y〉. Under the order x < y, the

set Be := {y2, x3 − y2x} is an essential generating set for I. However Be is not a Gröbner
basis. On the other hand, the slightly modified set G := {y2, x3} is an essential Gröbner
basis. The failure of I to be a Gröbner basis was due to the needless redundancy of leading
monomials.

The following lemma is easy.

Lemma 3.7. Let Be be an essential generating set for I. Then the following are equivalent:
(1) τ(Be) is an essential generating set for 〈τ(Be)〉.
(2) For every r, r′ ∈ Be and α′, α′′ ∈M, τ(r) 6∈ Kα′τ(r′)α′′.
(3) For every r, r′ ∈ Be and α′, α′′ ∈M, τ(r) 6∈ Kτ(α′r′α′′).

Definition 3.8. If an essential generating set Be meets the equivalent conditions of Lemma
3.7, we say Be has the leading monomial property.

In Example 3.6, the set Be failed to be a Gröbner basis because it failed to have the
leading monomial property.

Lemma 3.9. Essential Gröbner bases have the leading monomial property.

Proof. Suppose that G is an essential Gröbner basis. As we have an injective map Λ2 :
grF E2(A) ↪→ E2

Gr(grF A),

|G| = dim E2(A) ≤ dim E2
Gr(grF A).

On the other hand, if τ(r) ∈ Kτ(α′r′α′′) for some α′, α′′ ∈M and r, r′ ∈ Be, then

〈τ(G)〉 = 〈τ(G) \ {τ(r)}〉
and so dim E2

Gr(grF A) < dim E2(A), which is absurd. �

Theorem 3.10. There exist homogeneous bases B for I and B′ for I ′ such that B′ ⊂ B,
and the essential generating set Be := B \ B′ has the leading monomial property.
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The proof of this theorem will follow after two technical lemmas.

Lemma 3.11. For W ⊂ I and α ∈M, define

Aαm(W ) := {r ∈ Im : r 6∈ span W, τ(r) 6∈ Kτ(s) for any s ∈W with τ(s) ≥ α}.

If Ax
m+1
1
m (W ) 6= ∅, then Ax

m
1
m (W ) 6= ∅; that is, there exists r ∈ Im such that τ(r) 6∈ Kα′τ(s)α′′

for any α′, α′′ ∈M and s ∈W .

Proof. Need only show that Aαm(W ) 6= ∅ implies that As(α,−1)
m (W ) 6= ∅. Let r ∈ Aαm(W ).

Suppose τ(r) = τ(s) for some s ∈ W . Then r − s ∈ Im but r − s 6∈ span W . Also,
τ(r − s) < τ(s) < α, so r − s ∈ As(α,−1)

m (W ). �

We will use the following lemma to build our basis degree-by-degree:

Lemma 3.12. Suppose B is a homogeneous basis for
⊕m−1

i=0 Ii and B′ ⊂ B is a basis for⊕m−1
i=0 I ′i. Then there exits B′′ ⊂ Im and r1, . . . , r` ∈ Im such that:

(1) B′′ is a basis for I ′m.
(2) ri 6∈ Kα′τ(r)α′′ for any i = 1, . . . , `, α′, α′′ ∈M, and r ∈ B.
(3) B′′ ∪ {r1, . . . , r`} is a basis of Im.

Proof. Set
B(0) = {α′r′α′′ ∈ Im : α′, α′′ ∈M, r′ ∈ B} .

Let B′′ ⊂ B(0) such that B′m is linearly independent. Since B(0) spans I ′m, B′′ is a basis for
I ′m.

Now, suppose we have constructed B(j) = B(j−1) ∪ {rj} for 1 ≤ j ≤ i such that (B(i) \
B(0)) ∪ B′′ is linearly independent and τ(rj) 6∈ Kτ(s) for any s ∈ B(i−1).

If B(i) spans Im, then B′′∪{r1, . . . , ri} also spans Im, and the claim is proved. Otherwise,

Ax
m+1
1
m (B(j)) 6= ∅, and so by Lemma 3.11, there exists ri+1 ∈ Im such that τ(ri+1) 6∈ Kτ(s)

for any s ∈ B(i). Set B(i+1) = B(i) ∪ {ri+1}. �

Proof of Theorem 3.10. Set Bm = B′m = Bem = ∅ for m ≤ 1. Apply Lemma 3.12 and
induction on m. �

We are now ready to prove Theorem 1.7, which we restate:

Theorem 3.13. The following are equivalent:
(1) Every essential generating set for I with the leading monomial property is a Gröbner

basis.
(2) There is an essential Gröbner basis for I.
(3) dimE2(A) = dimE2(grF A).
(4) The injective map Λ2 : grF E2(A) ↪→ E2(grF A) defined in Theorem 1.2 is surjective.

Therefore, if I has an essential Gröbner basis and grF A is K2, then A is K2 as well.

Proof. We set J = ker(π̂ : T(V )� grF A) and J ′ = J ⊗ V + V ⊗ J .
In light of Theorem 3.10, is clear that condition (1) implies condition (2).
Suppose G is an essential Gröbner basis for I. Then |G| = dim I/I ′. Also, since G has

the leading monomial property, |G| = |τ(G)| = dim J/J ′. So, condition (2) implies condition
(3).

Clearly, condition (3) and condition (4) are equivalent.
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Finally, assume (4). Suppose Be is an essential generating set for I with the leading
monomial property. Let BeJ be an essential generating set of J such that

{τ(x) : x ∈ Be} ⊂ BeJ .
Then, |Be| = dim I/I ′ = dimJ/J ′ = |BeJ |. So, Be is a Gröbner basis. Thus, condition (4)
implies condition (1). �

Example 3.14. Consider

A :=
K 〈x, y〉

〈xy − x2, yx, y3〉
with a monomial order induced by x < y. We know from [3, Example 4.5] that A is not a
K2 algebra. The Hilbert series of A is HA(t) = 1 + 2t + 2t2. Since π(x3) = 0, we see that
π̂(x3) = 0, and grF A ' K 〈x, y〉 /

〈
xy, yx, x3, y3

〉
. We may apply [3, Theorem 5.3] to see

that grF A is K2. The essential generating set {xy − x2, yx, y3} is not a Gröbner basis for
kerπ. The behavior is similar under y < x (although grF A is a different K2 algebra).

Example 3.15. Consider

A :=
K 〈x, y, z〉

〈x2y − x3, yz2 − yx2, x3z − x4〉
with the monomial order induced by x < y < z. We may use the diamond lemma [2,
Theorem 1.2] to show that

grF A ' B :=
K 〈x, y, z〉

〈x2y, yz2, x3z〉
.

Thus, {x2y − x3, yz2 − yx2, x3z − x4} is an essential Gröbner basis for kerπ. However,
application of [3, Theorem 5.3] shows that B is not K2. By inspection,

0→ B(−5)

“
0 x2 0

”
−−−−−−−−−→ −→B(−32,−4)

0BB@
0 x2 0
0 0 yz
0 0 x3

1CCA
−−−−−−−−−−−→ B(−13)

0BB@
x
y
z

1CCA
−−−→ B → K→ 0

is a minimal projective resolution for BK. By Theorem 1.2, dim Ei,j(A) ≤ dim Ei,j(B). So,
the chain complex of projective A-modules

0→ A(−5)

“
0 x2 −x

”
−−−−−−−−−−→ A(−32,−4)

0BB@
x2 −x2 0
y2 0 −yx
x3 0 −x3

1CCA
−−−−−−−−−−−−−−→ A(−13)

0BB@
x
y
z

1CCA
−−−→ A→ K→ 0

is a minimal projective resolution for AK. Applying [3, Theorem 4.4], we see that A is K2.
Hence, the converse to Theorem 3.13 is false.

Example 3.16. Let

A :=
K 〈x, y〉

〈yx− xy, y3 + x2y〉
.

Then under the order x < y, the essential generating set {yx − xy, y3 + x2y} is a Gröbner
basis for kerπ, and

grF A =
K 〈x, y〉
〈yx, y3〉

.

We may use [3, Theorem 5.3] to show that grF A is K2. Thus, by Theorem 3.13, A is K2.
(This can also be verified directly using [3, Corollary 9.2].)
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Theorem 3.13 is a generalization of the classical theory of Poincaré–Birkhoff–Witt alge-
bras, which we can also prove:

Theorem 3.17 ([9, Theorem IV.3.1]). If A is a quadratic algebra, and grF A is also qua-
dratic, then A is Koszul.

Proof. Quadratic monomial algebras are Koszul [9, Corollary II.4.3]. The theorem follows
directly from Theorem 1.5. �

4. Anticommutative analogues to face rings

In this section, use the results from Section 3 to show some anticommutative analogues
to face rings are K2. In particular, we prove:

Theorem 4.1. The algebra ∧
K(x1, . . . , xn)
(x1 · · ·xn)

is K2.

Suppose X := {x1, . . . , xn} is a finite set and ∆ is a simplicial complex on X—that is,
∆ ⊂ 2X such that {xi} ∈ ∆ for 1 ≤ i ≤ n and if Y ∈ ∆, then 2Y ⊂ ∆. We define an algebra

A[∆] :=
∧
K

(x1, . . . , xn)/ 〈xi1 · · ·xir |i1 < i2 < · · · < ir, {xi1 , . . . xir} 6∈ ∆〉 ,

the anticommutative analogue of the face ring of ∆. (Face rings are studied in detail in
[10].)

Definition 4.2. If Y ⊂ X, Y 6∈ ∆, but 2Y \ {Y } ⊂ ∆, then we say Y is a minimally
missing face of ∆.

Theorem 4.3. Suppose ∆ is a simplicial complex on X := {x1, . . . , xn}. Under the order
x1 < · · · < xn, kerπA[∆] has an essential Gröbner basis if and only if every minimally
missing face Y := {xi1 , . . . , xim} ⊂ X (where i1 < i2 < · · · < im) satisfies the following
property:

(1) If u 6∈ Y and i1 < u < im, then (Y \ {xi1}) ∪ {xu} 6∈ ∆ or (Y \ {xim}) ∪ {xu} 6∈ ∆.

Proof. An essential generating set with the leading monomial property for

I := ker(π : K 〈x1, . . . , xn〉 → A[∆])

is
Be ={xjxi + xixj |i < j} ∪ {x2

i |i = 1 . . . n}
∪ {xi1 · · ·xim |i1 < · · · < im, {xi1 , . . . , xim} is a minimally missing face}.

If Y is a minimally missing face which fails (1) for some u 6∈ Y , then

xi1 · · ·xitxuxit+1 · · ·xm
is an essential relation of grF A for some t, meaning that Be is not a Gröbner basis.

On the other hand, suppose Be is not a Gröbner basis. Then grF A has some new essential
relation r such that r 6= τ(x) for x ∈ Be. Pick such r minimally. Then

r = xi1 · · ·ximxu mod 〈xixj + xjxi〉

for some minimally missing face Y = {xi1 , . . . , xim}. So Y fails (1). �
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Proof of Theorem 4.1. Let X := {x1, . . . , xn} and ∆ = 2X \ {X}. Then by Theorem 4.3,
ker(π : K 〈x1, . . . , xn〉 → A[∆]) has an essential Gröbner basis.

So, applying [3, Theorem 5.3] to

grF A = K 〈x1, . . . , xn〉 / 〈x1 · · ·xn, xjxi : 1 ≤ i ≤ j ≤ n〉 ,
we see that grF A is K2, and hence A is K2. �

Not every simplicial complex ∆ on a set X has an ordering of X which yields an essential
Gröbner basis for kerπA[∆].

Example 4.4. Set X := {t, u, w, x, y, z} and

∆ :=
(

2{u,x,y,z} ∪ 2{t,u,x,z} ∪ 2{u,w,x,z}
)
\ {{u, x, y, z},

{t, u, x, z}, {u,w, x, z}, {x, y, z}, {t, u, z}, {u,w, x}}.
Suppose we have an order < of X under which kerπA[∆] has an essential Gröbner basis.
Note that {x, y, z} is a minimally missing face, but {u, x, y}, {u, y, z}, {u, x, z} ∈ ∆. So

either u < x, y, z or u > x, y, z. Without loss of generality, u < x, y, z.
Also, {t, u, z} is a minimally missing face, but {u, x, z}, {t, x, z}, {t, u, x} ∈ ∆. So as

u < x, x > t, u, z.
Finally, {u,w, x} is a minimally missing face, but {u, x, z}, {u,w, z}, {w, x, z} ∈ ∆. How-

ever, as x > z, we cannot have z > x, u,w. However, as u < z, we cannot have z < x, u,w
either.
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