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A NEGATIVE MASS THEOREM FOR THE 2-TORUS

K. Okikiolu

Abstract. Let M be a closed surface. For a metric g on M , denote the area element by dA and the

Laplace-Beltrami operator by ∆ = ∆g . We define the Robin mass m(p) at the point p ∈ M to be the

value of the Green function G(p, q) at q = p after the logarithmic singularity has been subtracted off, and
we define trace∆−1 =

R

M
m(p) dA. This regularized trace can also be obtained by regularization of the

spectral zeta function and is hence a spectral invariant. Furthermore, (trace∆−1)/A is a non-trivial analog

for closed surfaces of the ADM mass for higher dimensional asymptotically flat manifolds. We define the

∆-mass of (M, g) to equal (trace∆−1
g − trace∆−1

S2,A
)/A, where ∆S2,A is the Laplacian on the round sphere

of area A. In this paper we show that in each conformal class C for the 2-torus, there exists a metric with

negative ∆-mass. From this it follows that the minimum of the ∆-mass on C is negative and attained by

some metric g ∈ C. For this minimizing metric g, one gets a sharp logarithmic Hardy-Littlewood-Sobolev

inequality and an Onofri-type inequality. We remark that if the flat metric in C is sufficiently long and

thin then the minimizing metric g is non-flat. The proof of our result depends on analyzing the ordinary

differential equation φ′′ = 1 − eφ which is equivalent to h′′ = 1 − 1/h. The solutions are periodic and we

need to establish quite delicate, asymptotically sharp inequalities relating the period to the maximum value.

Section 1. Introduction, Main Results and Summary of the Proof.

Let M be a smooth, closed, compact surface with a (Riemannian) metric g. Denote the area element
of g by dA and the area by A. Let ∆ = ∆g denote the Laplace-Beltrami operator for g, given in local
coordinates (x1, . . . , xn) by

(1.1) ∆ = −
∑

i,j

1√
det g

∂

∂xi

√

det g gij
∂

∂xj
.

The kernel of ∆ is the constants. Let ∆−1 denote the inverse operator

∆−1∆f = f − 1

A

∫

M

f dA.

The Green function G(p, q) for ∆ is the smooth function on M ×M \ {(p, p) : p ∈M} which satisfies

∆−1f(p) =

∫

M

G(p, q)f(q) dA(q).

Denoting the distance from p to q in the metric g by d(p, q), the function G(p, q) is smooth away from
the diagonal and has an expansion at the diagonal of the form

(1.2) G(p, q) = − 1

2π
log d(p, q) + m(p) + o(d(p, q)).
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We call the value m(p) = mg(p) the Robin mass at the point p. For a smooth function φ on M , write
Aφ for the area of M in the metric eφg, so

Aφ =

∫

M

eφ dA.

Conformal change of the Robin mass. If φ is a smooth function on M then

(1.3) meφg(p) = mg(p) +
φ

4π
− 2

Aφ
(∆−1

g eφ)(p) +
1

A2
φ

∫

M

eφ∆−1
g eφ dA.

For the proof, see for example [S1], [S2], [M2] or [O2]. We define

trace∆−1
g =

∫

M

mg(p) dA(p).

This is a spectral invariant for ∆, since it can be obtained from the spectral zeta function associated
to ∆, see [S1], [S2], [M3], or [O2].

Remark. Writing K(p) for the Gaussian curvature of g at p, it is shown in [S1], [S2], that for any metric
g on the 2-sphere, we have

(1.4) mg(p) − 1

2π
∆−1K(p) =

1

A
trace∆−1

g .

The left hand side (and hence the right hand side) is a 2-sphere analog of the ADM mass from general
relativity. Indeed, the (Riemannian) ADM mass is defined for asymptotically flat manifolds. However,
ifM is a compact Riemannian manifold of dimension greater than 2, with positive conformal Laplacian,
then given a point p ∈M we can define a mass at p by blowing up the metric around p using the Green
function for the conformal Laplacian, and taking the ADM mass of the resulting asymptotically flat
metric. This amounts to taking the constant term in the asymptotic expansion of the Green function
for the conformal Laplacian around the point p. The left hand side of (1.4) is the natural non-trivial
analog of this for the 2-sphere. Formula (1.4) does not hold for surfaces of higher genus. The left hand
side is no longer pointwise constant and its fluctuation does not have obvious geometric significance.
Therefore we consider the right hand side of (1.4) as a natural non-trivial analog of the ADM mass for
compact surfaces.

Now (1.3) immediately gives the following formula, see also [M1].

Conformal change of trace∆−1 (Morpurgo’s Formula). If φ is a smooth function on M , then

(1.5) trace∆−1
eφg

=

∫

M

mge
φ dA +

1

4π

∫

M

φ eφ dA − 1

Aφ

∫

M

eφ∆−1
g eφ dA.

On the round sphere, the right hand side of (1.5) occurs in the logarithmic Hardy-Littlewood-Sobolev
inequality.

Sharp logarithmic Hardy-Littlewood-Sobolev inequality on the S2. If g is a round metric on
S2 of area A,

1

4π

∫

S2

φ eφ dA − 1

A

∫

S2

eφ∆−1eφ dA ≥ 0

holds for all functions φ : S2 → R with
∫

S2 e
φ dA = A such that

∫

S2 φ e
φ dA is finite. Moreover equality

is attained exactly when eφ is the Jacobian of a conformal transformation of S2.

For the proof, see [On], [CL], [B]. Combining this with (2), Morpurgo obtained the following.
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Spectral interpretation of the logarithmic HLS inequality. Among all metrics on the 2-sphere
of area A, the round metric attains the minimum value of trace∆−1.

The behavior of trace∆−1 for non-flat metrics on the torus was first considered in [M1]. Suppose g0 is
any flat metric of unit area on the 2-torus, and let λ1(g0) denote the lowest eigenvalue of the Laplace-
Beltrami operator for g0. Let C1 denote the class of metrics conformal to g0 having unit area. It was
shown in [M1] that if λ1(g0) > 8π, then g0 is a local minimum for trace∆−1 on C1. In [LL1], [LL2], this
was improved to a global result in most cases. Indeed, it was shown that g0 minimizes trace∆−1 on C1
provided λ1(g0) ≥ π3, or g0 is rectangular and λ1 ≥ 8π. It is well understood that g0 cannot minimize
trace∆−1 on C1 when λ1(g0) is small. Indeed, it can be observed from the Kronecker limit formula
that when λ1(g0) is small, the value of trace∆−1 for g0 is greater than the value for the round sphere
of unit area, as was pointed out in [DS2]. However, by blowing a spherical bubble, one can construct a
family of metrics in C1 for which trace∆−1 approaches the value for the round sphere (see [O2], [DS2]
for different approaches to this). In this paper, we show that if T is a flat torus of unit area with
λ1(T ) < 8π, then the minimum value of trace∆−1 among conformal metrics of unit area is attained
by a non-flat metric. Although we do not identify this minimizing metric explicitly, we do construct a
candidate, which is approximately spherical except for a short wormhole joining the poles.

Theorem 1. Let T be a 2-dimensional torus with metric g0. Then there exists a metric g in the same
conformal class as g0 and having the same area A, such that the Robin mass m(x) for g is constant,
and strictly less than the Robin mass for the round sphere of area A.

This leads to the following result.

Theorem 2. Let T be a 2-dimensional torus with metric g0. Then among metrics in the same confor-
mal class as g0 and having the same area A, there exists a metric g which attains the minimum value
of trace∆−1. Moreover g has constant Robin mass m(x), and this is less than the Robin mass of the
round sphere of area A.

We remark that if g0 is flat with λ1(g0) < 8π, then the metric g is not flat and the Robin mass for g
is less than that for g0.

Corollary 3. (Analogs of Logarithmic HLS inequality and Onofri’s Inequality for the torus.) For the
minimizing metric g of Theorem 2, we have

(1.6)
1

4π

∫

T

φ eφ dA − 1

A

∫

T

eφ∆−1eφ dA ≥ 0

for all functions φ : T → R with
∫

T
eφ dA = A such that

∫

T
φ eφ dA is finite. Here, dA and ∆ are

associated to g. Moreover, for φ ∈ C∞(T ),

1

16π

∫

T

φ∆φdA − log

(

1

A

∫

T

eφ dA

)

+
1

A

∫

T

φdA ≥ 0.

To deduce Theorem 2 from Theorem 1, we appeal to Theorem 1 of [O2], which states that the
minimum value of trace∆−1 among metrics conformal to g0 having the same area is attained, provided
there exists a metric conformal to g0 for which the value of trace∆−1 is lower than the value for the
round sphere of the same area. The proof of that result is a variational argument very similar in spirit
to the proof of the Yamabe theorem in the non-positive case. One is trying to find φ to minimize (1.5).
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First one modifies the equation to break the lack of compactness by replacing ∆−1 in the integral on
the right by ∆−1−ε. One can construct a minimizer for the resulting functional, and one wants this
minimizer to converge to a limit as ε→ 0. It is here that one uses the fact that the value of trace∆−1

is lower than that for the round sphere, which is what prevents bubbles from forming and ensures the
existence of a convergent subsequence as ε→ 0. To deduce Corollary 3 from Theorem 2, we appeal to
Theorem 3 in [O2], which is just an explicit formulation of the duality between the logarithmic Sobolev
inequality and the Onofri inequality. For some related results, see [Ch], [M2], [M3], [O1], [OsPS1], [S2].
For a probabilistic interpretation of trace∆−1, see [DS1].

Proof of Theorem 1. We will quickly show that our result is related to the problem of establishing
somewhat delicate inequalities between the period and the maximum value of solutions to the ordinary
differential equation φ′′ = 1 − eφ. These inequalities are established by making just the right Taylor
expansion of the integral formula for the period.

We first remark that under scaling by a constant eλ, the Robin mass scales as

meλg(p) = mg(p) +
λ

4π
.

Hence if we can prove the Theorem for area A = 1, it follows for arbitrary values of A. Furthermore,
by the classical Uniformization Theorem we can assume that g0 is a flat metric on T with area 1, and
we seek the metric g = eφg0 of area 1. From (1.3), the condition that the mass meφg0(p) is constant is

φ − 8π(∆−1
0 eφ) is constant,

where ∆0 is the Laplacian for g0. Applying ∆0 we find that this is equivalent to

(1.7) ∆0φ = 8π(eφ − 1).

We remark that if φ satisfies this condition then the metric eφg0 automatically has area 1, since

0 =

∫

T

∆0φdA = 8π

∫

T

(eφ − 1) dA0.

where dA0 is the area element for g0. We assume that φ satisfies (1.7). Then (1.5) gives

(1.8) trace∆−1
eφg0

= trace∆−1
0 +

1

8π

∫

T

φ(1 + eφ) dA0,

Now we work on a torus with flat metric g of area 1, given by C/Λ where Λ is the lattice generated
by 1/b and a+ ib. A fundamental domain for the torus is given by

(1.9)

{

x+ iy : 0 ≤ y ≤ b,
ay

b
≤ x ≤ ay + 1

b

}

.

It is a fact that every metric on the torus is conformal to such a flat metric, with

(1.10) b ≥
(

3

4

)1/4

= 0.9306...
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For the flat metric g on this torus, we compute in the appendix using the first Kronecker limit formula
that setting

(1.11) β =
√
π b,

we have

(1.12) trace∆−1
0 − trace∆−1

S2,1 =
1

4π

(

β2

3
− log(4β2) + 1 − 4

∞
∑

n=1

log
∣

∣

∣
1− e−2n(β2−i

√
π βa)

∣

∣

∣

)

,

where ∆−1
S2,1 is the Laplacian on the round 2-sphere of area 1, see also [Chiu], [S1], [S2]. From this we

see that

(1.13) trace∆−1
0 − trace∆−1

S2,1 ≤ 1

4π

(

β2

3
− log(4β2) + 1 − 4

∞
∑

n=1

log
∣

∣

∣
1− e−2nβ2

∣

∣

∣

)

.

From this point, the proof involves some simple numerical evaluations as well as exact formulas and
asymptotic estimates. It is a fact first pointed out in [DS2] that that the left hand side of (1.13) is
negative when β is small. To see this, note that

−4

∞
∑

n=1

log
∣

∣

∣
1− e−2nβ2

∣

∣

∣

is decreasing in β and is thus bounded by the value at the endpoint β = π1/2(3/4)1/4 , which is

−4

∞
∑

n=1

log
∣

∣

∣
1− e−31/2πn

∣

∣

∣
< 0.02.

On the other hand,
β2

3
− log(4β2) + 1

is convex on the interval [π1/2(3/4)1/4, 2.6], and hence is bounded above there by −0.04. Adding these
terms, we find that the right hand side of (1.13) is negative when β ≤ 2.6. We see then that in this
case the flat metric g = g0 satisfies the conclusion of Theorem 1. We only need prove Theorem 1 when
β > 2.6. Noting that 2.6 > π/

√
2, we now complete the proof of Theorem 1, by explaining how to find

g in the case β > π/
√
2.

Remark. If b > 1, then the length of the shortest geodesic is 1/b and the lowest eigenvalue of the

Laplace-Beltrami operator is λ1 = 4π2/b2 = 4π3/β2, so the value β = π/
√
2 corresponds to λ1 = 8π.

The value β = 2 corresponds to λ1 = π3. We remark that when β ≤ 2, it is shown in [LL1] that the
flat metric minimizes trace∆−1. Since the minimum must beat the round sphere, this again confirms
for the case β ≤ 2 , that (1.13) is negative.

Assuming φ satisfies (1.7), combining (1.8) and (1.13) gives

(1.14) trace∆−1
eφg0

− trace∆−1
S2,1

≤ 1

4π

(

1

2

∫

T

φ(1 + eφ) dA0 +
β2

3
− log(4β2) + 1 − 4

∞
∑

n=1

log
∣

∣

∣
1− e−2nβ2

∣

∣

∣

)

.

We will find φ ∈ C∞(T ) satisfying (1.7) such that φ(x + iy) is a function of y alone, and the right
hand side of (1.14) is negative. We can recast (1.7) and (1.14) in terms of the single variable y so that
Theorem 1 follows from the following:
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Theorem 1′. For each b > (π/2)1/2, there exists a smooth function φ ∈ C∞(R) satisfying

d2φ

dy2
= 8π(1− eφ),(1.15)

φ(y + b) = φ(y) for every y ∈ R,(1.16)

φ attains its maximum value φ0 at y = 0,(1.17)

and such that writing β = π1/2b, we have

(1.18)
1

2b

∫ b

0

φ(1 + eφ) dy +
β2

3
− log(4β2) + 1 − 4

∞
∑

n=1

log
∣

∣

∣
1− e−2nβ2

∣

∣

∣
< 0.

Remarks. 1. The condition (1.17) is just thrown in to eliminate the degree of freedom given by trans-
lation invariance. In fact we choose φ to have smallest period b, which together with (1.15) and (1.17)
determines φ uniquely.

2. In proving Theorem 1′, we will establish a relationship between the maximum value φ0 of φ and
the period b. A simplified version is that there exist ε1, ε2 > 0 such that

eφ0 + log 4 + ε1e
−φ0 ≤ πb2 ≤ eφ0 + log 4 + ε2e

−φ0 , for b ≥
(π

2

)1/2

.

The precise version is that there exist ε1, ε2 > 0 such that

(1.19) eφ0−φ0+log 4+ε1e
−φ0 ≤ πb2−log(πb2) ≤ eφ0−φ0+log 4+ε2e

−φ0 , for b ≥
(π

2

)1/2

.

3. In [DS2], conformal factors were chosen for long skinny flat tori of area 1, so that as the length
of the flat torus tends to infinity, the Robin mass of the new metric converges to that of the round
sphere. From [O2], one sees this can easily be accomplished by conformal factors which concentrate
at a point, but the conformal factors in [DS2] depend only on the length variable y. In this paper
we choose conformal factors which minimize the Robin mass among one-variable candidates, yielding
optimal metrics which beat the mass of the sphere on every torus. It is unknown whether our conformal
factors give the true minimizer in any case.

The rest of the paper is dedicated to proving Theorem 1′. We begin by giving a summary of the
proof, and then supply the details,

Outline of the proof of Theorem 1′.

In Proposition 2.1, we will show that for b >
√

π/2, there exists a unique function φ satisfying
(1.15)–(1.17) and having smallest period b. Moreover, the initial condition φ0 increases with b. Next
write

(1.20) β =
√
π b, f0 = eφ0 − φ0, M =

1

2b

∫ b

0

φ(1 + eφ) dy.

Let us emphasize that although we are now using 4 variables, b, β, φ0, f0, each one is an increasing
function of any of the others. The non-trivial relationship between them is the differential equation
which relates b to φ0. We are trying to prove inequality 1.18, which we write as

(1.21) M +
β2

3
− log(4β2) + 1 − 4

∞
∑

n=1

log
∣

∣

∣
1− e−2nβ2

∣

∣

∣
< 0.

6



In Proposition 2.4 we show that

(1.22)
d(βM)

dβ
= 1 − f0.

We then investigate how f0 behaves as a function of β, so that we can estimate the left hand side of
(1.21). Set

ε(β) = β2 − log(4β2) − f0

=
d(βM)

dβ
+ β2 − log(4β2) − 1.(1.23)

We will prove the three key estimates, (1.24)–(1.26). Set β1 to be the value of β corresponding to the
initial value φ0 = log 5.

(1.24) ε(β) > 0, for
π

21/2
< β ≤ β1,

(1.25) ε(β) >
0.03

β2
for β1 ≤ β.

For some γ > 0, we have

(1.26) ε(β) <
γ

β2
, for

π

21/2
< β.

Thus ε(β) is integrable. For the proof of (1.24), see Proposition 2.6–Corollary 2.8. For the other two
inequalities, see Lemma 2.9 and Proposition 2.10.

In Corollary 2.5, we obtain a simple upper bound on β in terms of φ0 which yields

β1 ≤ 3.8, for φ0 ≤ log 5.

Hence integrating (1.24), (1.25) from β to infinity yields

(1.27)
1

β

∫ ∞

β

ε(β̃) dβ̃ >
0.01

β2
, for β >

π

21/2
.

Now integrating (1.23) gives

(1.28) M +
β2

3
− log(4β2) + 1 =

C

β
− 1

β

∫ ∞

β

ε(β̃) dβ̃,

where C is the constant of integration. In Proposition 2.11 we rework some of the asymptotic formulas
required in the proof of (1.25)-(1.26) to show that C = 0. Hence combining this with (1.27) gives

(1.29) M +
β2

3
− log(4β2) + 1 ≤ −0.01

β2
, for β >

π

21/2
.

Finally, one can check with a simple numerical calculation that

(1.30) −4
∞
∑

n=1

log
∣

∣

∣
1− e−2nβ2

∣

∣

∣
<

0.002

β2
,

holds at the value β = π/21/2. But then in Lemma 2.12 we see that (1.30) must hold at all values
β > π/21/2. Adding (1.29) and (1.30) gives (1.21), thus completing the proof of Theorem 1′.

Now we fill in the results stated in the outline to complete the proof.

Section 2. Auxiliary Results and Proofs.
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Proposition 2.1. There exists a smooth function ψ :
(

√

π/2 , ∞
)

× R → R such that for each fixed

b ∈ (
√

π/2,∞) the function
φ(y) = ψ(b, y)

satisfies (1.15)–(1.17), has smallest period b, and attains its minimum value at y = b/2. Moreover,
writing

f(φ) = eφ − φ,

φ is also characterized by having period b and satisfying the following two conditions:

(2.1) φ(−y) = φ(y),

(2.2) y =
1

4
√
π

∫ φ0

φ(y)

dφ
√

f0 − f(φ)
, y ∈ (0, b/2).

Furthermore, the map
b 7→ φ0 = ψ(b, 0)

is smooth from the interval (
√

π/2,∞) onto the interval (0,∞), and

db

dφ0
> 0.

Remarks. 1. Every solution of (1.15)–(1.17) has the form

φ(y) = ψ(b/n, y),

for some n ∈ N.

2. By making the change of variables h = eφ, and dα = eφ dy, we can transform equation (2.4) to

(2.3)
d2h

dα2
= 8π

(

1− 1

h

)

.

Now dα is a measure of the change in area, and in some respects it turns out to be more natural to
analyze (2.3) than (1.15). However, we will require a delicate estimate on the relationship between b
and φ0, and although we work with the variable h at some points, there are places where it is better to
work with (1.15). (For example Proposition 2.4.)

Proof of Proposition 2.1. This result is standard and is part of the standard theory of ordinary
differential equations, see for example [A] and [Chi]. We give the proof here to set up notation for later.
For φ ∈ R, set

f(φ) = eφ − φ.

We start by constructing the inverse of f . Indeed, f maps R onto [1,∞), and for each f1 ∈ [1,∞) there
exist at most two solutions of the equation f(φ) = f1, given by φ = φ∗(f1) and φ = φ∗(f1), where

(2.4) φ∗(f1) ≤ 0, φ∗(f1) ≥ 0.

8



For φ0 > 0, we consider the initial value problem

d2φ

dy2
= 8π

(

1− eφ
)

,(2.5)

φ(0) = φ0.(2.6)

dφ

dy
(0) = 0,(2.7)

Set

(2.8) f0 = f(φ0).

Multiplying (2.5) by dφ/dy and integrating from y = 0 gives

(2.9)

(

dφ

dy

)2

= 16π
(

eφ0 − φ0 − (eφ − φ)
)

= 16π(f0 − f(φ)).

Hence

(2.10)
dy

dφ
=

±1

4
√
π

1
√

f0 − f(φ)
.

Set

(2.11) ℓ = ℓ(φ0) :=
1

4
√
π

∫ φ0

φ∗(f0)

dφ
√

f0 − f(φ)
.

Then the function φ(y), assuming it exists, satisfies

(2.12) y = I(φ(y)) for 0 ≤ y ≤ ℓ, where I(z) =
1

4
√
π

∫ φ0

z

dφ
√

f0 − f(φ)
.

Defining φ to be the inverse of the function I, we find that φ is decreasing and smooth on (0, ℓ) and it
extends to be continuously differentiable on [0, ℓ], and satisfies

φ(0) = φ0, φ(ℓ) = φ∗(f(φ0)),
dφ

dy
(0) =

dφ

dy
(ℓ) = 0.

We now extend φ to [−ℓ, ℓ] by requiring that it is even, that is φ(−y) = φ(y), and then we extend it to R

by requiring that it is periodic with period 2ℓ. The result is an even, continuously differentiable, periodic
function on R whose smallest period is 2ℓ, and which is smooth on R \ 2ℓZ and satisfies (2.5) there,
and which attains its maximum value at y = 0 and its minimum value at y = ℓ. Now by the general
theorem on the uniqueness and smoothness of solutions to ordinary differential equations, this solution
φ is smooth and satisfies (2.5) everywhere on R. Moreover by the smooth dependence of solutions to
ordinary differential equations on the initial conditions, we see that defining

η(φ0, y) = φ(y), where φ satisfies (2.5)–(2.7),

9



then η ∈ C∞((0,∞) × R). The final step is to show that the function

φ0 → b = 2ℓ(φ0)

is smooth and bijective from (0,∞) to (
√

π/2,∞), with

db

dφ0
> 0,

so the inverse function
b → φ0(b)

is smooth and bijective from (
√

π/2,∞) to (0,∞). We then define the function ψ by

ψ(b, y) = η(φ0(b), y).

Proposition 2.1 is thus reduced to the following.

Proposition 2.2. The function β : [1,∞) → [0,∞) defined by

(2.13) β(f0) :=
1

2

∫ φ∗(f0)

φ∗(f0)

dφ
√

f0 − f(φ)

is a smooth function mapping (1,∞) bijectively onto
(

π/
√
2 , ∞

)

, with

dβ

df0
> 0, on (1,∞).

Proof. See [Chi] for a general proof of this result. See also [ChiJ]. We include the proof here to develop
properties of the variable J = j∗ + j∗ which will be useful later on. To reduce the need for notation, it
is convenient to work with physical variables rather than functions. (To be more precise, we suppose
that there is a fixed underlying “physical” space which we don’t need to specify. A variable is then a
continuous function defined on this space.) We suppose then that φ is a variable taking values in R,
and f and h are variables related to φ by

(2.14) f = eφ − φ, h = eφ, φ = log h, f = h− log h.

The variables f and h take values in [1,∞) and (0,∞) respectively. Given a value for f , we write φ∗ ≥ 0
and φ∗ ≤ 0 for the two corresponding values for φ and set

(2.15) h∗ = eφ
∗

, h∗ = eφ∗ .

When f = 1 we have φ∗ = φ∗ = 0 and h∗ = h∗ = 1. For other values of f the values of φ∗ and φ∗ are
distinct. Then making a change of variables,

1

2

∫ φ∗(f0)

φ∗(f0)

dφ

(f0 − f)1/2
=

1

2

∫ f0

1

1

(f0 − f)1/2

(

1

eφ∗(f) − 1
+

1

1− eφ∗(f)

)

df

=
1

2

∫ f0

1

1

(f0 − f)1/2

(

1

h∗(f)− 1
+

1

1− h∗(f)

)

df.(2.16)

We will now analyze the Jacobian factor in (2.16) and modify it to obtain a positive monotonically
increasing function of f .
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Lemma 2.3. Define variables j∗ and j∗ by

(2.17) j∗ =
1

h∗ − 1
− 1

(2(f − 1))1/2
, j∗ =

1

1− h∗
− 1

(2(f − 1))1/2
.

Then
(a) As f → 1,

j∗ → −1

3
, j∗ → 1

3
.

(b) The variables j∗ and j∗ are increasing with f , indeed

dj∗

df
> 0,

dj∗
df

> 0, for f > 1,

and
dj∗

df
= O((f − 1)−1/2),

dj∗
df

= O((f − 1)−1/2), as f → 1.

(c) As functions of the variable f , the variables j∗ and j∗ are concave. More precisely,

d2j∗

df2
< 0,

d2j∗
df2

< 0, for f > 1.

(d) The variable

(2.18) j∗ + j∗ =
1

h∗ − 1
+

1

1− h∗
−
(

2

f − 1

)1/2

satisfies
d(j∗ + j∗)

df
> 0,

d2(j∗ + j∗)

df2
< 0, for f > 1,

and

(j∗ + j∗) → 0,
d(j∗ + j∗)

df
= O((f − 1)−1/2), as f → 1.

(e)
0 < j∗ + j∗ < 1, when f > 1.

Proof of Lemma 2.3. Clearly (d) follows from (a), (b) and (c). Moreover, see from (2.18) that
j∗ + j∗ → 1, as f → ∞, so (e) follows from (d).

(a) Dealing with the variables j∗ and j∗ simultaneously, note that as h→ 1, we have

(2.19)
1

|h− 1| − 1

(2(f − 1))1/2
=

1

|h− 1| − 1

(2(h− 1− log(1− (1− h))))1/2

=
1

|h− 1| − 1

((1− h)2 + 2(1− h)3/3 + 2(1 − h)4/4 + . . . )
1/2

11



→
{ −1/3 as h ↓ 1,

1/3 as h ↑ 1.

(b) We need to show that

(2.20)
d

df

(

1

|h− 1| − 1

(2(f − 1))1/2

)

> 0, when f > 1.

Note that

(2.21)
dh

df
=

h

h− 1
.

We thus compute the sign of the derivative

d

df

(

1

|h− 1| − 1

(2(f − 1))1/2

)

=
− sign(h− 1)

(h− 1)2
dh

df
+

1

(2(f − 1))3/2

=
−h

|h− 1|3 +
1

(2(f − 1))3/2
.

Hence (2.20) will follow if we can show that

|h− 1|3
h

> (2(f − 1))3/2, for h 6= 1,

equivalently

(2.22) h−2/3(h− 1)2 > 2(f − 1), for h 6= 1.

But this indeed holds, since

(2.23) h−2/3(h− 1)2 − 2(f − 1)

equals zero at h = 1, and

d

df

(

h−2/3(h− 1)2 − 2(f − 1)
)

=
2h−2/3(2h+ 1)

3
− 2 > 0 for f > 1.

Indeed,
h−2/3(2h+ 1) > 3 for f > 1,

as one can easily check by cubing both sides or differentiating once more with respect to f . The behavior
of the derivative as f → 1 is obtained with a Taylor expansion as in (2.19).

(c) We compute

d2

df2

(

1

|h− 1| − 1

(2(f − 1))1/2

)

=
d

df

( −h
|h− 1|3 +

1

(2(f − 1))3/2

)

=
h(2h + 1)

|h− 1|5 − 3

(2(f − 1))5/2
.
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In order to show that this is negative, we need to show

(2(f − 1))5/2

3
<

|h− 1|5
h(2h + 1)

for f > 1,

or equivalently we need to show

(2.24) 2(f − 1) < 32/5(h(2h + 1))−2/5(h− 1)2 for f > 1.

Now defining

(2.25) τ = 32/5(h(2h + 1))−2/5(h− 1)2 − 2(f − 1),

we see that τ vanishes at f = 1. Differentiating with respect to f we get

(2.26)
dτ

df
=

2 · 32/5
5

(2h2 + h)−7/5h (6h2 + 8h+ 1) − 2,

which also vanishes at f = 1. To show that this is positive, we compute

5

2 · 32/5
d2τ

df2
=

2h2(6h2 − 2h+ 1)

5(2h2 + h)12/5
> 0 for h > 0. �

Now we can complete the proof of Proposition 2.2. Introduce the function J : [1,∞) → R such that

j∗ + j∗ = J(f).

We see that β is smooth by fixing c with 1 < c < f0 and writing

(2.27) β(f0) =
1

2

∫ f0

1

1

(f0 − f)1/2

(

2

(2(f − 1))1/2
+ J(f)

)

df =
π

21/2
+

1

2

∫ f0

1

J(f)

(f0 − f)1/2
df

=
π

21/2
+

1

2

∫ c

1

J(f)

(f0 − f)1/2
df +

1

2

∫ f0−c

0

J(f0 − f)

f1/2
df.

Since J is smooth away from 1, both integrals on the right can be differentiated repeatedly in f0, and
we see β is smooth in f0. Differentiating and letting c→ 0 gives

dβ(f0)

df0
=

1

2

∫ f0−1

0

J ′(f0 − f)

f1/2
df > 0. �

Our mission is to compute the quantity M in terms of β, and we will prove (1.22) relating M to f0.
We rescale the function φ to have period 2, by taking the solution ψ from Proposition 2.1, and setting

ρ(b, s) = ψ(b, bs/2),

so that for b fixed, the function s 7→ ρ(b, s) is even, and attains its maximum value at s = 0, and

(2.28)
∂2ρ

∂s2
= 2β2(1− eρ),

The solution ρ is a smooth function of (β, s), and we are interested in the quantity M , defined in (1.20).
Setting f0 = f(φ0) = eφ0 − φ0, we have from the definition (1.20), the symmetry of φ, and (2.10),

(2.29) M =
1

b

∫ b/2

0

φ(1 + eφ) dy =
1

2

∫ 1

0

ρ(1 + eρ) ds =
1

4β

∫ φ0

φ∗(f0))

φ(1 + eφ)

(f0 − f(φ))1/2
dφ.
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Proposition 2.4. (a)
dM

dβ
=

1

β

∫ 1

0

ρ(1− eρ) ds.

(b)
d(βM)

dβ
=

1

2

∫ 1

0

ρ(3− eρ) ds = 1− f0.

Proof. (a) We differentiate (2.28) to obtain

(2.30)
∂2

∂s2
∂ρ

∂β
= 4β(1 − eρ) − 2β2 ∂ρ

∂β
eρ.

Integrating (2.30) we get

(2.31)

∫ 1

0

∂ρ

∂β
eρ ds = 0.

Hence

(2.32)
dM

dβ
=

1

2

∫ 1

0

dρ

dβ
(1 + eρ + ρeρ) ds =

1

2

∫ 1

0

dρ

dβ
(1− eρ + ρeρ) ds.

However, integrating (2.30) against ρ, we get

∫ 1

0

∂ρ

∂β

∂2ρ

ds2
ds = 4β

∫ 1

0

ρ(1− eρ) ds − 2β2

∫ 1

0

∂ρ

∂β
ρeρ ds.

Hence using the equation (2.28), we get

2β2

∫ 1

0

∂ρ

∂β
(1− eρ) ds = −2β2

∫ 1

0

∂ρ

∂β
ρeρ ds + 4β

∫ 1

0

ρ(1− eρ) ds.

Hence
1

2

∫ 1

0

∂ρ

∂β
(1− eρ + ρeρ) ds =

1

β

∫ 1

0

ρ(1− eρ) ds.

Combining this with (2.32) gives (a).

(b) The first equality follows directly from (a). For the second, we multiply (2.28) by dρ/ds and
integrating as in (2.9), to get

(

∂ρ

∂s

)2

= 4β2(f0 + ρ− eρ).

But then

1

2

∫ 1

0

ρ(1− eρ) ds =
1

4β2

∫ 1

0

ρ
∂2ρ

∂s2
ds = − 1

4β2

∫ 1

0

(

∂ρ

∂s

)2

ds

= −
∫ 1

0

(f0 + ρ− eρ) ds = 1− f0 −
∫ 1

0

ρ ds. �
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Corollary 2.5.

β ≤ π

21/2
+ (f0 − 1)1/2.

Proof. From (2.27) and Lemma 2.3 (e), we have

β(f0) =
π

21/2
+

1

2

∫ f0

1

J(f)

(f0 − f)1/2
df ≤ π

21/2
+

1

2

∫ f0

1

1

(f0 − f)1/2
df =

π

21/2
+ (f0 − 1)1/2.

Our task now is to work towards the estimate in (1.24). This inequality can be checked quite carefully
using mathematica, but we give a concise analytic proof with minimal computation.

Proposition 2.7. Given a constant λ > 0, define functions V,W : [1,∞) → R by

V (f) =
π

21/2
+ λ(f − 1)3/2,

W (f) = V (f)2 − log(4V (f)2) − f.

Suppose that for f1 > 1 fixed, there exists λ such that

0 < λ <
2J(f1)

3(f1 − 1)
,(a)

W (f1) > 0,(b)

W ′(f1) < 0.(c)

Then writing β = β(f0) for the function defined in (2.13), we have

β2 − log(4β2)− f0 > 0, 1 < f0 < f1.

Proof. First we show that W ′′(f) > 0 for f ≥ 1. Indeed, note that V (f) > 1 and V ′′(f) > 0, and

W ′(f) = 2

(

V (f)− 1

V (f)

)

V ′(f) − 1,

W ′′(f) = 2

(

1 +
1

V (f)2

)

(V ′(f))2 + 2

(

V (f)− 1

V (f)

)

V ′′(f) > 0.

Next note that W ′′ > 0 combined with (c) shows that W is decreasing on [1, f1], and this combined
with (b) shows that W (f0) > 0 for 1 < f0 < f1.

Now we show that for 1 < f0 < f1 we have β(f0) > V (f0). Indeed, comparing the concave function
J(f) with the linear function, we get

J(f) >
J(f1)

f1 − 1
(f − 1), 1 < f < f1.
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Substituting t = (f − 1)/(f0 − 1) we get

β(f0) =
π

21/2
+

1

2

∫ f0

1

J(f)

(f0 − f)1/2
df

≥ π

21/2
+

J(f1)

2(f1 − 1)

∫ f0

1

f − 1

(f0 − f)1/2
df =

π

21/2
+

J(f1)(f0 − 1)3/2

2(f1 − 1)

∫ 1

0

t

(1 − t)1/2
dt

=
π

21/2
+

2J(f1)(f0 − 1)3/2

3(f1 − 1)
>

π

21/2
+ λ(f0 − 1)3/2 = V (f0).

Hence we have

β2 − log(4β2) − f0 > V (f0)
2 − log(4V (f0)) − f0 = W (f0) > 0.

Remark. It will be useful to know the formula

h∗ =
∞
∑

j=0

(j + 1)j−1

j!
e−(j+1)f ,

although we will not prove it or depend on it.

Lemma 2.8. For λ = 0.098, the conditions of Proposition 2.7 are satisfied for f1 = 5− log 5.

Proof of Lemma 2.8. Step 1: For h = 5, write 5∗ = h∗. Then numerical calculation shows that

5− log(5) = f(5) < f(0.034) = 0.034 − log(0.034).

Hence
5∗ > 0.034,

and

(j + j∗)(f(5)) =
1

5− 1
+

1

1− 5∗
−
(

2

5− log 5− 1

)1/2

≥ 1

4
+

1

1− 0.034
−
(

2

4− log 5

)1/2

= 0.3705...,

and the right hand term in Proposition 2.6 (a) is

2(j + j∗)(f(5))

3(4− log 5)
= 0.1033.... > 0.098.

Step 2:

V (f(5)) =
π

21/2
+ λ(4− log 5)3/2 = 2.583664...

so
2.58366 < V (f(5)) < 2.584.

Hence at the value f1 = 5− log 5 we have

W = V 2 − log(4V 2) − (5− log 5) ≥ 2.583662 − log(4× 2.583662)− (5− log 5) = 0.00002... > 0,

while

W ′ = 3λ

(

V − 1

V

)

(4−log 5)1/2 − 1 < 0.294

(

2.584 − 1

2.584

)

(4−log 5)1/2 − 1 = −0.001... < 0. �
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Corollary 2.8. Set β1 = β(5− log 5). For β = β(f0), we set

ε(β) = β2 − log(4β2) − f0.

Then
ε(β) > 0, if

π

21/2
< β < β1.

Proof. By Lemma 2.7, if 1 < f0 < f1 = 5− log 5, then ε(β) > 0.

Now we will investigate more precisely how b(f0) depends on f0 as f0 → ∞. We will use the fact that
we only have positive Taylor coefficients in the expansion

(1− x)−1/2 =
∞
∑

0

γkx
k, γk =

(2k)!

22k(k!)2
∼ 1√

πk
.

From (2.5) and the fact that φ is even and periodic with period b, we have

∫ b/2

0

(1− eφ) dy = 0.

Hence using (2.10) and setting h = eφ, we get

(2.33) β =
√
πb = 2

√
π

∫ b/2

0

eφ dy =
1

2

∫ φ∗(f0)

φ∗(f0)

eφ dφ
√

f0 − f(φ)
=

1

2

∫ h∗(f0)

h∗(f0)

dh
√

f0 − (h− log h)
.

Using the notation of (2.14), (2.15) and writing h0 = h∗(f0) and h0∗ = h∗(f0), so f0 = h0 − log h0 =
h0∗ − log h0∗, and setting t = 1− h/h0, we get

β =
1

2

∫ h0

h0∗

(

h0 − h+ log
h

h0

)−1/2

dh

=
h0
2

∫ 1−h0∗/h0

0

(h0t + log(1− t))
−1/2

dt

=
h0

2(h0 − 1)1/2

∫ 1−h0∗/h0

0

t−1/2

(

1− − log(1− t)− t

(h0 − 1)t

)−1/2

dt(2.34)

=
h0

2(h0 − 1)1/2

∞
∑

k=0

γk
(h0 − 1)k

∫ 1−h0∗/h0

0

t−1/2

(− log(1− t)− t

t

)k

dt

=
h0

(h0 − 1)1/2

∞
∑

k=0

γk µk(1− h0∗/h0)

(h0 − 1)k
,(2.35)

where the series converges by monotone convergence, and

(2.36) µk(τ) =
1

2

∫ τ

0

t−1/2

(− log(1− t)− t

t

)k

dt.
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Clearly µk(τ) is an increasing function of τ which is strictly positive for τ ∈ (0, 1]. Now

(2.37) β2 =
h20

h0 − 1

∞
∑

k=0

νk(1− h0∗/h0)

(h0 − 1)k
, νk(τ) =

k
∑

j=0

γj γk−j µj(τ)µk−j(τ).

Clearly νj(τ) is also positive. It is easy to compute

µ0(τ) = τ1/2, ν0(τ) = τ.

Hence just taking the first term in (2.37) gives

(2.38) β2 >
h20ν0(1− h0∗/h0)

h0 − 1
=

h0(h0 − h0∗)

h0 − 1
> h0.

Now applying the Mean Value Theorem to the function w 7→ w − logw, we have

β2 − log(β2) − (h0 − log h0) ≥ h0 − 1

h0
(β2 − h0) =

∞
∑

k=0

h0 νk(1− h0∗/h0)

(h0 − 1)k
− h0 + 1

≥ 1 − h0∗ +
h0 ν1(1− h0∗/h0)

h0 − 1
+

h0 ν2(1− h0∗/h0)

(h0 − 1)2
.(2.39)

Lemma 2.9. If h0 ≥ 5 then

(a) 1 − h0∗ +
h0 ν1(1− h0∗/h0)

h0 − 1
> 2 log 2,

and

(b)
h0 ν2(1− h0∗/h0)

(h0 − 1)2
>

0.03

β2

so

(c) ε(β) = β2 − log(4β2) − f0 >
0.03

β2

Proof. (a) Now evaluating (2.36) for k = 1,

(2.40) µ1(τ) = 2 log(1 + τ1/2) − τ1/2 + (τ−1/2 − 1) log(1− τ),

so we have

(2.41) ν1(τ) = µ0(τ)µ1(τ) = 2τ1/2 log(1 + τ1/2) − τ + (1− τ1/2) log(1− τ).

We will estimate the terms on the right hand side. Since log(1− τ) < 0, we have

(1− τ1/2) log(1− τ) > (1− τ) log(1− τ),
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and by the convexity of the logarithm we have log(1 + x) > x log 2 for 0 < x < 1, and so

τ1/2 log(1 + τ1/2) > τ log 2.

Hence substituting these inequalities into (2.41),

ν1(τ) > τ(2 log 2− 1) + (1− τ) log(1− τ).

and writing 1− τ = h0∗/h0 we have

1 − h0∗ +
h0 ν1(1− h0∗/h0)

h0 − 1

> 1 − h0∗ +
h0

h0 − 1

(

(2 log 2 − 1)

(

1 − h0∗
h0

)

+
h0∗
h0

log
h0∗
h0

)

= 2 log 2 +
(2 log 2− 1) + 2h0∗(1− log 2) − h0∗(h0 + log(h0/h0∗))

h0 − 1
,

and so (a) holds provided

(2.42) 2 log 2− 1 + 2h0∗(1− log 2) − h0∗(h0 + log(h0/h0∗)) ≥ 0, for h0 > 5,

which certainly follows if we can show

(2.43) h0∗(h0 + log h0 + log 1/h0∗) < (2 log 2− 1), for h0 > 5.

We first remark that
0.035 − log 0.035 < 5− log 5,

and hence if h0 > 5, then
h0∗ < 0.035 < exp(−1).

But then for h0∗ < 0.035, we have that h0∗ log(1/h0∗) increases with h0∗ and hence decreases with h0.
Moreover,

h0 − 1 > 4 > 1− h0∗,

so the functions
h0 7→ h0∗h0

and
h0 7→ h0∗ log h0

are also decreasing with h0, as can be checked by differentiating with respect to f0. For example

d(h0∗h0)

df0
= h0∗h0

(

1

h0 − 1
− 1

1− h0∗

)

< 0.

Hence the left hand side of (2.43) is decreasing with h0, and so bounded above by

0.035(5 + log 5 + log 1/0.035) = 0.34866... < 0.386294.. = 2 log 2− 1,
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and (2.43) holds, so (a) holds.

(b) Now for τ > 0,

ν2(τ) =
3µ0(τ)µ2(τ)

4
+

(µ1(τ))
2

4
>

(µ1(τ))
2

4
.

Hence for h0 ≥ 5, we have
h0∗ < 0.035

and
(µ1(1− h0∗/h0))

2

4
≥ (µ1(1− 0.035/5))2

4
= 0.0340... > 0.03.

Hence
h0 ν2(1− h0∗/h0)

(h0 − 1)2
≥ 0.03

h0 − 1
>

0.03

β2
.

(c) Follows by substituting (a) and (b) into (2.39). �

Proposition 2.10.
ε(β) = O(β−2), as β → ∞.

Proof. We will prove this by bounding the error when we approximate the series in (2.35) by the
partial sums. Indeed, we show that there exists a constant C(K) independent of h0 such that

(2.44)

∣

∣

∣

∣

∣

β − h0
(h0 − 1)1/2

K
∑

k=0

γk µk(1)

(h0 − 1)k

∣

∣

∣

∣

∣

≤ C(K)

h
K+1/2
0

, for h0 > 2.

In fact, what we show is

(2.45)

∣

∣

∣

∣

∣

β − h0
(h0 − 1)1/2

K
∑

k=0

γk µk(1)

(h0 − 1)k

∣

∣

∣

∣

∣

≤ C(K)(log h0)
K

h
K−1/2
0

, for h0 > 2.

By applying (2.45) with K replaced by K + 2, we get (2.44).

Notation. Suppose h = (h1, . . . , hp) and k = (k1, . . . , kq) are variables taking values in U ⊂ R
p and

V ⊂ Rq respectively, and suppose that F1 and F2 are two functions of (h, k). Then we write

F1 ≤
k

F2,

if for every k ∈ V , there exists a constant C(k) <∞, such that

F1(h, k) ≤ C(k) F2(h, k) for all h ∈ U.

Now we prove (2.45). We first remark that

∣

∣

∣

∣

∣

(1− x)−1/2 −
K−1
∑

k=0

γkx
k

∣

∣

∣

∣

∣

≤
K

(1− x)−1/2 xK , for 0 ≤ x < 1.
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Hence from (2.34), writing t = 1− h/h0, we have that for h0 > 2,

(2.46)

∣

∣

∣

∣

∣

β − h0
(h0 − 1)1/2

K−1
∑

k=0

γk µk(1− h0∗/h0)

(h0 − 1)k

∣

∣

∣

∣

∣

≤
K

h0
(h0 − 1)K+1/2

∫ 1−h0∗/h0

0

t−1/2

(

1− − log(1− t)− t

(h0 − 1)t

)−1/2(− log(1− t)− t

t

)K

dt

=
1

(h0 − 1)K

∫ h0

h0∗

(h0 − log h0 − (h− log h))
−1/2

(− log(1− t)− t

t

)K

dh.

We split into two cases. The function

− log(1− t)− t

t
=

∞
∑

k=1

tk

k + 1
, 0 < t < 1,

is increasing with t, so decreasing with h. Hence for h0 > h and h0 > 2, we have

− log(1− t)− t

t
=

log(h0/h)

1− h/h0
− 1 <

{ 8
3
log h0 h > 1/h0,

− 8
3 log h h ≤ 1/h0.

Hence the right hand side of (2.46) is bounded up to a constant C(K) by

(log h0)
K

(h0 − 1)K

∫ h0

h0∗

(h0 − log h0 − (h− log h))−1/2 dh

+
1

(h0 − 1)K

∫ 1/h0

h0∗

(h0 − log h0 − (h− log h))
−1/2

(− log h)K dh.(2.47)

Using Corollary 2.5, for h0 > 2, the first term in (2.47) is equal to

2(log h0)
Kβ

(h0 − 1)K
≤
K

(log h0)
K

(h0 − 1)K

( π

21/2
+ (f0 − 1)1/2

)

≤
K

(log h0)
K

(h0 − 1)K−1/2
.

To bound the second term in (2.47), we change variables to f = h− log h to get the bound

(2.48)
1

(h0 − 1)K

∫ f0

log h0+1/h0

(f0 − f)
−1/2

(− log h∗(f))
K h∗(f)

1− h∗(f)
df.

But
− log h∗(f) = f − h∗(f) < f + 1,

and for f > log(2/ log 2) we have
h∗(f) ≤ 2e−f .

Hence (2.48) is bounded up to a constant C(K) by

1

(h0 − 1)K

∫ f0

0

(f0 − f)
−1/2

e−ffK df.
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But the integral here is uniformly bounded in f0, so the second term in (2.47) is bounded up to C(K)
by

1

(h0 − 1)K
.

So far we have bounded the left hand side of (2.46) by the right hand side of (2.45). To complete the
proof of (2.45) we just have to show that for h0 > 2,

|µk(1− h0∗/h0)− µk(1)| ≤
k,K

1

hK0
.

However, the left hand side equals

∣

∣

∣

∣

∣

1

2

∫ 1

1−h0∗/h0

t−1/2

(− log(1− t)− t

t

)k

dt

∣

∣

∣

∣

∣

≤
k

∫ h0∗/h0

0

| log s|k ds

≤
k

h0∗
h0

| log h0 − log h0∗|k =
h0∗
h0

(h0 − h0∗)
k ≤

k
e−f0hk−1

0 ≤
k,K

1

hK0
.

This completes the proof of (2.45). From this we get from this the asymptotic formula

β2 ∼ h20
h0 − 1

∞
∑

k=0

νk(1)

(h0 − 1)k
,

where νk is defined in (2.37), in the sense that for h0 > 2,

∣

∣

∣

∣

∣

β2 − h20
h0 − 1

K
∑

k=0

νk(1)

(h0 − 1)k

∣

∣

∣

∣

∣

≤
K

1

hK0
.

Thus

(2.49) β2 =
h20

h0 − 1

(

1 +
2 log 2− 1

h0 − 1

)

+ O(h−1
0 ) = h0 + 2 log 2 + O(h−1

0 ).

From this we see that

β2 − log(β2) − (h0 − log h0) − 2 log 2 = O(h−1
0 ) = O(β−2).

This completes the proof of Proposition 2.10. �

Proposition 2.11.

M = −β
2

3
+ log(4β2) − 1 + O(β−2) as β → ∞.
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Proof. From (2.29), we have

(2.50) M =
1

4β

∫ φ∗(f0)

φ∗(f0)

φ(eφ + 1)
√

f0 − f(φ)
dφ

=
1

3β

∫ φ∗(f0)

φ∗(f0)

(φ− log h0)e
φ

√

f0 − f(φ)
dφ +

log h0
3β

∫ φ∗(f0)

φ∗(f0)

eφ
√

f0 − f(φ)
dφ +

1

12β

∫ φ∗(f0)

φ∗(f0)

φ(3 − eφ)
√

f0 − f(φ)
dφ

=
1

3β

∫ φ∗(f0)

φ∗(f0)

(φ− log h0)e
φ

√

f0 − f(φ)
dφ +

2 log h0
3

+
1− f0

3
.

The third line here follows from (2.33) and the second equality in Proposition 2.4(b). Now we change
variables to h = eφ so f = eφ − φ = h− log h, and set h0 = h∗(f0) and h0∗ = h∗(f0). Then define

(2.51) N :=
1

2

∫ φ∗(f0)

φ∗(f0)

(φ− log h0)e
φ

√

f0 − f(φ)
dφ =

1

2

∫ h0

h0∗

log h− log h0√
f0 − f

dh.

We follow the argument of (2.34)-(2.35) with β replaced by (2.51) to get

N =
h0

2(h0 − 1)1/2

∫ 1−h0∗/h0

0

(log(1− t)) t−1/2

(

1− − log(1− t)− t

(h0 − 1)t

)−1/2

dt

=
h0

(h0 − 1)1/2

∞
∑

k=0

γk κk(1− h0∗/h0)

(h0 − 1)k
,

where

κk(τ) =
1

2

∫ τ

0

(log(1− t)) t−1/2

(− log(1− t)− t

t

)k

dt.

Moreover, following the proof of (2.44)-(2.45), we conclude that for h0 > 2,

∣

∣

∣

∣

∣

N − h0
(h0 − 1)1/2

K−1
∑

k=0

γk κk(1)

(h0 − 1)k

∣

∣

∣

∣

∣

≤
K

1

h
K−1/2
0

.

Now
κ0(1) = 2 log 2− 2,

and so in particular, using (2.49),

N = κ0h
1/2
0 + O(h

−1/2
0 ) = (2 log 2− 2)β + O(β−1), as β → ∞.

Substituting this into (2.50) and using (2.49), we see that as β → ∞ we have

M =
2(log 4− 2)

3
+

2 log(β2)

3
+

−β2 + log(4β2) + 1

3
+ O(β−2)

= −β
2

3
+ log(4β2) − 1 + O(β−2).
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Lemma 2.12. Suppose that C > 0 and β1 > 1/
√
2 are constants and that the formula

(2.52) −4

∞
∑

n=1

log
(

1− e−2nβ2
)

<
C

β2
,

holds for β = β1. Then it holds for all β ≥ β1.

Proof. Define

ω(β) = −4

∞
∑

n=1

log
(

1− e−2nβ2
)

, β > 0,

and

ψ(β) =
C

β2
− ω(β).

Then ω is positive and smooth, and

−ω′(β) = 16β

∞
∑

n=1

n

1− e−2nβ2
> 16β

∞
∑

n=1

1

1− e−2nβ2
> 4βω(β).

Suppose that (2.52) fails, that is ψ(β) ≤ 0, for some β2 > β1. Then we can choose β2 > β1 minimal
such that this is the case, and clearly ψ(β2) = 0. But then

ψ′(β2) =
2C

β3
2

− ω′(β2) =
2ω(β2)

β2
− ω′(β2) ≥ ω(β2)

(−2

β2
+ 4β2

)

.

But β2 > 1/
√
2, so the right hand side is positive and so ψ(β) < 0 for some β with β1 < β < β2, which

is a contradiction. �

Appendix. Explicit formulas for the flat torus and the round sphere.

Lemma A.1. Let T = C/Λ be a torus of area 1, where Λ is a lattice, and let u and v be the generators
of the dual lattice Λ∗ and set z = v/u. Then for the flat metric g0 on T ,

(A.1) trace∆−1
g0 = − log 2π

2π
− log(|η(z)|4/|u|2)

4π
,

where the Dedekind eta function η is defined by

(A.2) η(z) = eπiz/12
∞
∏

n=1

(1− e2πinz).

On the other hand,

(A.3) trace∆−1
S2,1 = − log π

4π
− 1

4π
,

and so

(A.4) trace∆−1
g0

− trace∆−1
S2,1 =

1

4π

(

− log(|η(z)|4/|u|2) − log 4π + 1
)

.

24



When Λ has generators (1/b, a+ bi) with a, b ∈ R, we can choose (u, v) = (−i/b, b− ai) and then (A.4)
becomes (1.12).

Remark. . The quantity log(|η(z)|4/|u|2) was shown in [OsPS] to be maximized at the hexagonal torus,
for which

log(|η(z)|4/|u|2) = −1.0335...

Hence the hexagonal torus minimizes trace∆−1 among flat tori of a given area.
Proof. Now

Λ∗ = {µ ∈ C : ℜ(µ̄λ) ∈ Z for all λ ∈ Λ}.

The eigenfunctions of the Laplacian on T = C/Λ have the form

f(z) = e2πiℜ(µ̄λ), for µ ∈ Λ∗.

The corresponding eigenvalue is (2π)2|µ|2. Consider the Epstein zeta function

ZT (s) =
∑

µ∈Λ∗−0

1

(2π|µ|)2s .

Kronecker’s First Limit Formula states that

(2π)2sZT (s) =
π

s− 1
+ 2π

(

−Γ′(1) − log 2 − log |η(z)|2
)

+ O(s− 1).

Hence

ZT (s) =
1

4π(s − 1)
+ Z1

T + O(s− 1), Z1
T =

1

2π

(

−Γ′(1) − log(4π) − log |η(z)|2
)

.

But Z1
T is a different regularization of the trace of ∆−1, and it can be shown that this differs from our

Green function regularization trace∆−1 by a universal constant:

(A.5) trace∆−1
g0 = Z1

T +
log 2

2π
+

Γ′(1)

2π
.

see [M2], [S1], [S2], or [O2] (A.6). Evaluating (A.5) we get (A.1).
Formula (A.3) is well known. Indeed, on the round 2-sphere of area 4π given by x2 + y2 + z2 = 1,

the Green function G(p, q) can be written in terms of the distance r from p to q, as

G(p, q) = − 1

2π
log | sin r/2| − 1

4π
.

This gives the Robin mass

mS2,4π =
log 2

2π
− 1

4π
,

and combining this with (1.3) gives

mS2,1 = mS2,4π − log 4π

4π
= − log π

4π
− 1

4π
.
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