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Abstract

We study the absorption probability and Hawking radiation of the scalar field in the rotating

black holes on codimension-2 branes. We find that finite brane tension modifies the standard results

in Hawking radiation if compared with the case when brane tension is completely negligible. We

observe that the rotation of the black hole brings richer physics. Nonzero angular momentum triggers

the super-radiance which becomes stronger when the angular momentum increases. We also find

that rotations along different angles influence the result in absorption probability and Hawking

radiation. Compared with the black hole rotating orthogonal to the brane, in the background that

black hole spins on the brane, its angular momentum brings less super-radiance effect and the brane

tension increases the range of frequency to accommodate super-radiance. These information can

help us know more about the rotating codimension-2 black holes.
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I. INTRODUCTION

In braneworld scenarios it is known that large extra dimensions can lower the fundamental scale of gravity

down to the order of TeV. This brings the possibility of creating microscopic black holes in high energy

experiments such as the forthcoming Large Hadron Collider (LHC) [1] (for a recent review on this topic and

a complete list of references please refer to [2]). After their creation, these microscopic black holes will decay

quickly through the emission of Hawking radiation. Hawking radiation serves as the chief arena for studying

the quantum gravity and disclosing the signature of extra dimensions [3]-[14]. Other attempts on detecting

the extra dimension have been investigated in the perturbations around braneworld black holes [15]-[19].

Most examinations for the extra dimension through Hawking radiations and the wave dynamics are con-

centrated on braneworld black holes with zero brane tension. However the nonzero tension on the brane is

not trivial, since it can curve the brane as well as the bulk. In general it is very hard to obtain exact solutions

of higher-dimensional Einstein equations describing black holes on the brane with tension. Recently, a metric

describing a black hole located on a three-brane with finite tension, embedded in locally flat six-dimensional

spacetime was constructed in [20]. Hawking radiation [10] and perturbations around this black hole [17, 19]

have been studied subsequently, where modifications due to the finite brane tension and imprints of extra

dimensions have been examined.

Further progress has been made by generalizing the Schwarzschild like solution of [20] to rotating black

holes on a codimension-2 brane [21]. Including the rotation will bring richer physics. In Hawking radiation

the amplifications in various properties due to the rotation have been shown in [12, 13, 14] where the brane

tension was zero. It is of great interest to examine the evaporation of the rotating black holes on codimension-2

brane and investigate the physics brought by the rotation and the brane tension.

The general metric of a small rotating black holes on a codimension-2 brane reads [21]

ds2 = −(1− µr

ΠF
)dt2 +

2µr

ΠF
(a1µ

2
1dφ1 + ba2µ

2
2dφ2)dt+

F

1− µr
Π

dr2 + r2(dα2 + dµ2
1 + dµ2

2 + µ2
1dφ

2
1 + b2µ2

2dφ
2
2)

+ a21[dµ
2
1 + µ2

1(1 +
µr

ΠF
µ2
1)dφ

2
1] + a22[dµ

2
2 + b2µ2

2(1 +
µr

ΠF
µ2
2)dφ

2
2] + 2ba1a2

µr

ΠF
µ2
1µ

2
2dφ1dφ2, (1)

with

Π =

2
∑

i=1

(r2 + a2i ), F =

2
∑

i=1

r2µ2
i

r2 + a2i
+ α2. (2)

Here a1, a2 are two angular momentum parameters. The two direction cosines, µi and the coordinate α are
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constrained by

µ2
1 + µ2

2 + α2 = 1. (3)

The quantity µ = r3s/b is proportional to the mass of the black hole, where rs is the horizon radius of the usual

six-dimensional Schwarzschild black hole. The parameter b is related to the brane tension λ by b = 1− λ
2πM4

∗

with 0 < b ≤ 1, where M∗ is the fundamental mass scale of six-dimensional gravity.

There are two different choices of angles through which the hole can rotate. Choosing the rotation axis to

be φ2, by setting a1 = 0, a2 = a, and after doing rescale φ2 → bφ2 and substituting φ1 = φ, φ2 = ψ, and

µ1 = sin θ, µ2 = cos θ sinχ, α = cos θ cosχ, (4)

into equation (1), we can obtain the metric for the black hole spinning orthogonal to the brane with its angular

momentum pointing along the brane

ds2 = −(1− µ

rρ2
)dt2 +

2µa

rρ2
sin θ2dtdφ +

ρ2

∆
dr2 + ρ2dθ2

+ sin θ2(r2 + a2 +
µa2 sin θ2

rρ2
)dφ2 + r2 cos θ2(dχ2 + b2 sinχ2dψ2), (5)

where ρ2 = r2 + a2 cos θ2 and ∆ = r2 + a2 − µ/r. The Hawking temperature and the angular velocity of the

horizon can be expressed as

TH =
3r2H + a2

4πrH(r2H + a2)
, (6)

and

ΩH =
a

(r2H + a2)
. (7)

Due to the presence of b the radius of horizon rH is larger than rs [21], the angular velocity at the horizon is

smaller than that in the tensionless case.

Choosing φ1 as the rotation axis, the hole would be spinning on the brane with its angular momentum

orthogonal to the brane, whose metric has the form

ds2 = −(1− µ

rρ2
)dt2 +

2µab

rρ2
sin θ2dtdφ+

ρ2

∆
dr2 + ρ2dθ2

+ b2 sin θ2(r2 + a2 +
µa2 sin θ2

rρ2
)dφ2 + r2 cos θ2(dχ2 + sinχ2dψ2). (8)

The Hawking temperature is the same as that in the previous case, but the angular velocity at the horizon

becomes

ΩH =
a

b(r2H + a2)
. (9)
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It is clear that this angular velocity is larger than that in the tensionless case because the radius of the black

hole horizon rH ∼ b−1/3rs, and thus the denominator in equation (9) b(r2H + a2) ∼ b1/3r2s + ba2 < r2s + a2.

We will discuss the evaporation of scalar field in six-dimensional black holes pierced by a tense 3-brane

rotating orthogonal to the brane and along the brane. We will calculate the corresponding absorption proba-

bilities and luminosity of Hawking radiation analytically by employing the matching technique of combining

the far-field and near-horizon parts of solutions in the low energy and angular momentum limit.

The organization of the paper is as follows: in the following section we will derive the master equation in

rotating black holes on codimension-2 branes. In Sec.III we will present the solution in the low energy and low

angular momentum limit by using the matching technique. In Sec.IV, we derive the absorption probability

and the luminosity of Hawking radiation. Finally in the last section we present our conclusions.

II. THE MASTER EQUATION IN ROTATING BLACK HOLES ON CODIMENSION-2 BRANES

The equation of motion for a massless scalar particle propagating in the curved spacetime is described by

1√−g∂µ(
√−ggµν∂ν)Φ(t, r, θ, φ, χ, ψ) = 0, (10)

where Φ(t, r, θ, φ, χ, ψ) is the scalar field. Separating the scalar field into Φ(t, r, θ, φ, χ, ψ) =

e−iωt+imφ+iηψR(r)S(θ)Γ(χ), we can obtain the radial and angular equations for the metric (5)

1

r2
d

dr

[

r2∆
dR(r)

dr

]

+

[

K2
1

∆
+ 2amω − a2ω2 − Elmj1 −

Λ(j, η)a2

r2

]

R(r) = 0, (11)

1

sin θ cos θ2
d

dθ

[

sin θ cos θ2
d

dθ

]

S(θ) +

[

ω2a2 cos θ2 − m2

sin2 θ
− Λ(j, η)

cos2 θ
− Elmj1

]

S(θ) = 0, (12)

1

sinχ

d

dχ

[

sinχ
d

dχ
Γ(χ)

]

+

[

Λ(j, η)− η2

b2 sin2 χ

]

Γ(χ) = 0, (13)

with

K1 = ω(r2 + a2)− am, (14)

and η and Λ(j, η) are angular eigenvalue.

Similarly, in the background metric (8) radial and angular equations can be expressed as

1

r2
d

dr

[

r2∆
dR(r)

dr

]

+

[

K2
2

∆
+

2amω

b
− a2ω2 − Elmj2 −

j(j + 1)a2

r2

]

R(r) = 0, (15)

1

sin θ cos θ2
d

dθ

[

sin θ cos θ2
d

dθ

]

S(θ) +

[

ω2a2 cos θ2 − m2

b2 sin2 θ
− j(j + 1)

cos2 θ
− Elmj2

]

S(θ) = 0, (16)
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with

K2 = ω(r2 + a2)− am

b
. (17)

We limit ourselves to the case where ωa ≪ 1 and the deviation of the parameter b from unity is very

small which is physically justified for small brane tension. And then we can adopt the perturbation theory

to calculate eigenvalues of angular equations (12), (13) and (16). This perturbation method was first used in

[17] and was supported in [19]. As did in [17], we find the angular eigenvalue of Eq. (13)

Λ(j, η) = j(j + 1) +
η(2j + 1)(1− b2)

2b2
. (18)

The zeroth-order eigenfunctions of (12) and (16) can be given in terms of the Jacobi polynomials

S0(θ) = (sin θ)|m| cos θ|j|P

(

l − j −m

2
, j +

1

2
,m; 1− 2 cos2 θ

)

, (19)

and then angular eigenvalues of Eqs. (12) and (16) can be expressed respectively

Elmj1 = l(l+ 3) +
η(2j + 1)(1− b2)

2b2
[2(j +m) + 1](2j + 3) + 2(l − j −m)(l + j +m+ 3)

(2j + 3)(2j − 1)

+ a2ω2 2j(j − 1) + 2l(l+ 1)− 2m2 + 4(l+ j) + 3

(2l+ 5)(2l + 1)
, (20)

Elmj2 = l(l+ 3) +
m[2(j +m) + 1](1− b2)

2b2
+ a2ω2 2j(j − 1) + 2l(l+ 1)− 2m2 + 4(l+ j) + 3

(2l + 5)(2l+ 1)
, (21)

where l, m, j and η are restricted by

l ≥ (j + |m|), j ≥ |η| and
l− (j +m)

2
∈ {0,Z+}. (22)

In the limit b → 1, the eigenvalue Elmj1 is identical to Elmj2 and returns to that in the six dimensional

rotating black hole spacetime without brane tension.

III. GREYBODY FACTOR IN THE LOW-ENERGY REGIME

Now we provide an analytic solution of the radial equation using the matching technique. We first derive

the solution in the near horizon regime, then derive the solution in the far field limit. Finally we stretch and

match the two solutions in an intermediate region. In this way we can construct the analytic expression in

the low energy and low angular momentum approximation for the radial part of the field valid throughout

the entire spacetime. This analytic approximation has been employed in [12, 13, 14].
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Let us first focus on the near-horizon regime. In order to translate radial equations (11) and (15) into the

form of the known differential equation, we make the following change of the variable

r → f =
∆

r2 + a2
⇒ df

dr
= (1− f)r

A

r2 + a2
, (23)

where A = 3 + a2/r2. Then radial equations (11) and (15) can be rewritten in a unified form

f(1− f)
d2R(f)

df2
+ (1−D∗f)

dR(f)

df
+

[

K2
∗,i

A(rH)2(1− f)f
− (Elmji − Pi)(r

2
H + a2)

r2HA(rH)2(1− f)

]

R(f) = 0, (24)

with i = 1, 2 corresponding to new radial equations in the background of (5) and (8) respectively.

D∗ = 1− 4a2r2H
(3r2H + a2)2

, (25)

and

K∗,1 = ω(rH +
a2

rH
)− am

rH
, P1 = 2amω − a2ω2 − Λ(j, η)a2

r2H
, (26)

K∗,2 = ω(rH +
a2

rH
)− am

brH
, P2 =

2amω

b
− a2ω2 − j(j + 1)a2

r2H
. (27)

for black holes on codimension-2 branes rotating orthogonal to the brane or on the brane, respectively. Making

the field redefinition R(f) = fα(1 − f)βF (f), we can rewrite equation (24) in the form of a hypergeometric

equation

f(1− f)
d2F (f)

df2
+ [c− (1 + ãi + b̃i)f ]

dF (f)

df
− ãib̃iF (f) = 0, (28)

where

ãi = αi + βi +D∗ − 1, b̃i = αi + βi, ci = 1 + 2αi. (29)

Due to the constraint from the coefficient of F (f), the power coefficients αi and βi must satisfy the second-

order algebraic equations

α2
i +

K2
∗,i

A(rH)2
= 0, (30)

and

β2
i + βi(D∗ − 2) +

K2
∗,i

A(rH)2
− (Elmji − Pi)(r

2
H + a2)

r2HA(rH)2
= 0. (31)

Solving these two equations, we obtain solutions for parameters α and β

αi± = ± iK∗,i

A(rH)
, (32)

βi± =
1

2

[

(2−D∗)±
√

(D∗ − 2)2 −
4K2

∗,i

A(rH)2
+

4(Elmji − Pi)(r2H + a2)

r2HA(rH)2

]

. (33)
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Thus, the general solution of master equations (11) and (15) near the horizon can be expressed as

RiNH(f) = Ai−f
αi(1− f)βiF (ãi, b̃i, ci; f) +Ai+f

−α(1 − f)βF (ãi − ci + 1, b̃i − ci + 1, 2− ci; f), (34)

where Ai± are arbitrary constants. Near the horizon, r → rH , and f → 0, the solution (34) can be reduced to

RiNH(f) = Ai−f
±iK∗,i/A(rH ) +Ai+f

∓iK∗,i/A(rH) = Ai−e
±ikiy +Ai+e

∓ikiy, (35)

with

k1 = ω − am

r2H + a2
, k2 = ω − am

b(r2H + a2)
, (36)

for different rotating angles. Here y is the tortoise-like coordinate, which can be expressed as

y =
(r2H + a2) ln f

rHA(rH)
. (37)

According to the boundary condition that no outgoing mode exists near the horizon, we choose αi = αi− and

Ai+ = 0. Thus the asymptotic near horizon solution has the form

RiNH(f) = Ai−f
αi(1− f)βiF (ãi, b̃i, ci; f). (38)

Moreover, the boundary condition also demands that near the horizon the hypergeometric function

F (ãi, b̃i, ci; f) must be convergent, i.e. Re(ci − ãi − b̃i) > 0, which implies that we must choose βi = βi−.

Now, let us turn to the far field region, where equations (11) and (15) take the form

d2RFF (r)

dr2
+

4

r

dRFF (r)

dr
+

[

ω2 − Elmji + a2ω2

r2

]

RFF (r) = 0. (39)

Obviously, this is a Bessel equation. General solutions of radial master equations (11) and (15) in the far field

region can be expressed as

RiFF (r) =
1√
r

[

Bi1Jνi(ωr) +Bi2Yνi(ωr)

]

, (40)

where Jνi(ωr) and Yνi(ωr) are the first and second kind Bessel functions, νi =
√

Elmji + a2ω2 + 9/4. Bi1 and

Bi2 are integration constants.

In order to match the near horizon and far field solutions in the intermediate zone, we must stretch the near

horizon solution to the large value of the radial coordinate. As in Refs. [12, 13, 14], at first we change the

argument of the hypergeometric function of the near-horizon solution from f to 1− f by using the relation

RiNH(f) = A−f
αi(1− f)βi

[

Γ(c− i)Γ(c−ãi − b̃i)

Γ(ci − ãi)Γ(ci − b̃i)
F (ãi, b̃i, ãi + b̃i − ci + 1; 1− f)

+ (1− f)ci−ãi−b̃i
Γ(ci)Γ(ãi + b̃i − ci)

Γ(ãi)Γ(b̃i)
F (ci − ãi, ci − b̃i, ci − ãi − b̃i + 1; 1− f)

]

. (41)
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In the limit r ≫ rH , the function (1 − f) can be approximated by

1− f =
µ

r

1

r2 + a2
∼ rH(r2H + a2)

r3
, (42)

and the near-horizon solution (41) can be simplified further as

RiNH(r) ≃ Ai1r
−3βi + Ai2r

3(βi+D∗−2), (43)

with

Ai1 = Ai−
Γ(ci)Γ(ci − ãi − b̃i)

Γ(ci − ãi)Γ(ci − b̃i)
[rH(r2H + a2)]βi , (44)

Ai2 = Ai−
Γ(ci)Γ(ãi + b̃i − ci)

Γ(ãi)Γ(b̃i)
[rH(r2H + a2)]−(β+D∗−2). (45)

In the limit r → 0, RiFF (r) in equation (40) becomes

RiFF (r) ≃
Bi1(

ωr
2 )νi√

r Γ(νi + 1)
− Bi2Γ(νi)

π
√
r (ωr2 )νi

. (46)

And then comparing it with equation (43), we will obtain two relations between Ai1 and Bi1, Bi2 in the limit

ωrH ≪ 1. Then making use of equations (44) and (45) and removing Ai−, we find that the constraint for

Bi1, Bi2 is given by

Bi ≡
Bi1
Bi2

= − 1

π

[

2

ωr
1/3
H (r2H + a2)1/3

]2l+3√

Elmji + a2ω2 + 9/4

× Γ2(
√

Elmj + a2ω2 + 9/4)Γ(ci − ãi − b̃i)Γ(ãi)Γ(b̃i)

Γ(ãi + b̃i − ci)Γ(ci − ãi)Γ(ci − b̃i)
. (47)

In the asymptotic region r → ∞, the solution in the far field can be expressed as

RiFF (r) ≃
Bi1 + iBi2

2
√
2πω r

e−iωr +
Bi1 − iBi2

2
√
2πω r

eiωr = A
(∞)
i in

e−iωr

r
+A

(∞)
i out

eiωr

r
. (48)

The absorption probability can be calculated by

|Almji|2 = 1−
∣

∣

∣

∣

A
(∞)
i out

A
(∞)
i in

∣

∣

∣

∣

2

= 1−
∣

∣

∣

∣

Bi − i

Bi + i

∣

∣

∣

∣

2

=
2i(B∗

i −Bi)

BiB∗
i + i(B∗

i −Bi) + 1
. (49)

Combining the above result and the expression Bi given in equation (47), we can examine properties of

absorption probability for the massless scalar field in two kinds of classical rotating black holes on codimension-

2 branes in the low-energy and low-angular momentum limit.
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IV. THE ABSORPTION PROBABILITY AND HAWKING RADIATION IN THE ROTATING

BLACK HOLES ON CODIMENSION-2 BRANES

With solutions obtained above, we are now in a position to compute the absorption probability and discuss

Hawking radiation of black holes on codimension-2 branes spinning orthogonal to the brane and spinning

on the brane, respectively. Recently numerical study on the emission of scalar fields into the bulk from a

six-dimensional tensional black hole rotating orthogonal to the brane was also proposed in [22].

In Fig.1, we examine the influence of the brane tension on the absorption probability. We plot the absorption

probability for the first partial waves (l = 0,m = 0, j = 0) by fixing a = 0.4. It is clearly shown that the

absorption probability decreases with the increase of b (decrease of the brane tension). In Fig.2 we fix b (with

constant brane tension) and exhibit the dependence of the absorption probability on the angular momentum.

It shows that with the increase of the angular momentum, the absorption probability decreases. The main

reason is that in the low-energy limit the absorption probability |A(l = 0,m = 0, j = 0)|2 ∼ ω4r4H . When

parameters a and b increase, the radius of the black hole event horizon decreases. The dependence of the

absorption on the brane tension and angular momentum of the black hole does not differ much for the six-

dimensional tensional black holes rotating along different angles.

Fig.2 shows the dependence of the absorption probability on the angular index. We see the suppression

of |A|2 as the values of the angular index increase. This phenomenon explains that the first partial wave

dominates over all others, which has also been observed in black hole cases when there is no brane tension

[12, 13]. Moreover, we also observe that the absorption probability in the black hole (5) depends on the

angular index η. With the increase of the index η, the absorption probability decreases.

In Fig.3, we find that for positive m, in some ranges of frequency ω, the absorption probability can be

negative, which presents us the super-radiance. This is the property brought by the rotation as also disclosed

in [12, 13]. Here we observed that the brane tension also influences the super-radiation. For the black hole

spinning orthogonal to the brane, the range of ω for the super-radiance to occur increases with the increase

of b (decrease of the brane tension). But for the black hole spinning on the brane, with the decrease of the

brane tension, the range of ω for the super-radiance to happen decreases. The physical reason behind this

phenomenon can be understood as follows.



10

0 0.1 0.2 0.3 0.4
Ω

0

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

ÈA
lm

jÈ
2

b=0.9
b=0.95
b=1

l=0 m=0
j=0 a=0.4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Ω

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

ÈA
lm

jÈ
2

a=0.6
a=0.3
a=0

l=0 m=0
j=0 b=0.9

FIG. 1: Absorption probability |A|2 of scalar particles propagating in the rotating black holes on codimension-2 branes,
for different b and a, respectively, when l = 0, j = 0, m = 0. Here rs = 1.
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FIG. 2: Absorption probability |A|2 of scalar particles propagating in the rotating black holes on codimension-2 branes
for different combinations of (l,m, j), where we fixed a = 0.4, b = 0.9 and rs = 1.

As in [12, 13], in the low energy limit BB∗ ≫ i(B ∗ −B) ≫ 1, we can simplify our (49) to the form

|Almji|2 = 2i(
1

B
− 1

B∗ )

=
4π[ωr

1/3
H (r2H + a2)1/3/2]2l+3K∗,iΓ

2(2β +D∗ − 2)Γ2(1 − β)(2 −D∗ − 2β)

A(rH)
√

Elmji + 9/4Γ2(
√

Elmji + 9/4)Γ2(β +D∗ − 1) sin2(π(β +D∗))
. (50)

From (33) we learnt that the quantity 2−D∗ − 2β is always positive. The possibility to make |Almji|2 < 0 is

K∗,i < 0, which leads

0 ≤ ω1 ≤ ωc,1 =
am

r2H + a2
, (51)
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FIG. 3: Absorption probability |A|2 of scalar particles propagating in the rotating black holes (the left for the metric
(5) and the right for the metric (8)) on codimension-2 branes, for fixed a = 0.4, l = 1, m = 1, j = 0, and different b.
Here rs = 1.

for the black hole spinning orthogonal to the brane and

0 ≤ ω2 ≤ ωc,2 =
am

b(r2H + a2)
, (52)

for the hole spinning on the brane. Since rH ∼ rsb
−1/3, we have in the low angular momentum limit ωc,1 ∝ b2/3

and ωc,2 ∝ b−1/3, respectively. Thus with the increase of b, ωc,1 increases while ωc,2 decreases respectively for

black holes rotating along different angles.
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Ω
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jÈ
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a=0

FIG. 4: The super-radiance for the mode l = 1,m = 1,j = 0 in the metrics (5) (the left) and (8) (the right) for fixed
b = 0.9 and different a. Here rs = 1.

The dependence of the super-radiance on the angular momentum of the black hole is shown in Fig.4. It

is clear that the super-radiance occurs when a > 0 and becomes stronger when a increases. For the same

angular momentum, it brings more super-radiance in the black hole background (5) than that in (8). For small
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a the magnitude of super-radiance is very small, which has little contribution to the luminosity of Hawking

radiation.

Now let us turn to study the luminosity of Hawking radiation of black holes in backgrounds (5) and (8)

for the mode l = 0, m = 0, j = 0 which plays a dominant role in the greybody factor. For the first partial

wave (l = 0,m = 0, j = 0), we have K∗,1 = K∗,2, P1 = P2, α1 = α2 and β1 = β2, thus in this case there is no

difference in the absorption probability and Hawking radiation when black holes rotate along different angles.

Performing an analysis similar to that in [12, 13], we can rewrite the the absorption probability (50) as

|A000|2 =
4ω4r2H(r2H + a2)(3r2H + a2)

3(9r2H + a2)
. (53)

Combining it with equation (6), the luminosity of Hawking radiation is given by

L =

∫ ∞

0

dω

2π
|A000|2

ω

e ω/TH − 1

=
(3r2H + a2)7

48384πr4H(r
2
H + a2)5(9r2H + a2)

=
4π5

63
GT 6

H , (54)

where G =
4r2H(r2H+a2)(3r2H+a2)

3(9r2H+a2)
. In Fig.5, we show the dependence of the luminosity of Hawking radiation on
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b
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a=0.1
a=0

0 0.05 0.1 0.15 0.2 0.25 0.3
a
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0.00155

0.0016

L
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b=0.94
b=0.98
b=1

FIG. 5: The luminosity of Hawking radiation L of scalar particles propagating in the rotating black holes on
codimension-2 branes (l = 1, m = 1, j = 0). The left shows the change of L with b for different a and the right
exhibits the change of L with a for different b. Here rs = 1.

parameter b for fixed angular momentum parameters. It is clear that as b increases, (decrease of the brane

tension), L increases. From the formula (54), we obtain that in the low rotating limit L ∼ r−2
H ∼ b2/3r−2

s . This

shows that the decrease of the brane tension enhances Hawking radiation. This effect can also be understood

from the Hawking temperature. We have dTH

db =
3r4H+a4

4πb2r2H(r2H+a2)2(3r2H+a2)
> 0 which indicates that the Hawking

temperature increases with the increase of b, thus leading to the stronger Hawking radiation.
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The luminosity of Hawking radiation depending on the angular momentum of the black hole is also studied.

When a increases, the luminosity of Hawking radiation L decreases. This is because that the Hawking

temperature decreases when the black hole rotates faster, dTH

da = − a(3r2H−a2)

2πrH(3r4H+4a2r2H+a4)
< 0. We have also

examined the emission rate dL
dω = 1

2π

∑

jml
ω|Almji|

2

ek/TH−1
. We observed that other modes’ influence on the dominant

mode (l = m = j = 0) is negligible when a is small. In Figs. 6 and 7, we show the contribution of other mode

on the dominant mode when a = 1.4, which still satisfies the low energy limit aω < 1. Variables P0, P1, P2

in the figure are given by

P0 =
1

2π

ω|A000|2
ek/TH − 1

, (55)

P1 =
1

2π

[

ω|A110|2
ek/TH − 1

+
ω|A1−10|2
ek/TH − 1

+
ω|A100|2
ek/TH − 1

]

, (56)

P2 =
1

2π

[

ω|A220|2
ek/TH − 1

+
ω|A210|2
ek/TH − 1

+
ω|A200|2
ek/TH − 1

+
ω|A2−10|2
ek/TH − 1

+
ω|A2−20|2
ek/TH − 1

]

. (57)

When b increases, the modification becomes bigger. This is because that bigger b leads stronger super-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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�d
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FIG. 6: P0 and P0 + P1 + P2 in metric (5), the left for fixed b = 0.9 and the right for fixed b = 0.95, Here a = 1.4
and rs = 1.

radiance. Comparing to the black hole background (5), the modification to the dominant mode’s emission

rate is even weaker in the background (8). This is consistent with the observation that for fixed a, there is not

much super-radiance in the background (8) compared to that in (5). To our observation, in the low energy

limit the enhancement of the emission rate due to the angular momentum and brane tension is not obvious.

It is interesting to generalize our investigation to the intermediate and high energy and angular momentum

situations to reexamine the emission rate of scalar field.
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FIG. 7: P0 and P0 + P1 + P2 in metric (8), the left for fixed b = 0.9 and the right for fixed b = 0.95. Here a = 1.4
and rs = 1.

V. CONCLUSIONS AND DISCUSSIONS

We have studied the absorption probability and Hawking radiation of scalar field in the background of six-

dimensional black holes rotating orthogonal to a tensional brane or spinning on a tensional brane, respectively.

Our results show that with the nonzero brane tension, properties of evaporations of scalar field are different

from those of the rotating black holes where the brane tension is completely negligible. This could serve as

signatures of extra dimensions in the future collider searches.

We have observed that the rotation of the black hole brings richer physics. Nonzero angular momentum

triggers the super-radiance. But in our analytic analysis we see that the enhancement of the emission rate

due to the angular momentum is weak in the low energy limit. The lowest mode still dominates over other

modes in Hawking radiation and gets small modification in the low energy and angular momentum limits.

It is of interest to generalize our investigation to the intermediate and high energy and angular momentum

situations to reexamine the emission rate.

We have also compared the results for black holes rotating in different angles and found that when the black

hole rotating on the tensional brane, the phenomenon of the super-radiance caused by the angular momentum

is not obvious as compared with the black hole rotating orthogonal to the brane. Less enhancement of the

emission rate has been found for the hole spinning on the tensional brane. The effects due to the brane tension

on the super-radiance also differ when black holes rotate along different angles. For the black hole rotating

on the tensional brane, the nonzero brane tension allows bigger range of the frequency to accommodate the

super-radiance.
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In this paper we only considered the bulk scalar emission in the codimension-2 rotating black holes. It

would be interesting to examine the emission of the scalar field on the brane and investigate the brane to

bulk ratio of Hawking radiation. Recently for rotating black holes with zero tension on the brane, the ratio

between the brane and bulk Hawking radiation has been studied in [14]. Furthermore it would be of more

interesting to study other fields emission, such as the gravitational field etc. Works in this direction will be

reported in the future.
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