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Abstract

We calculate the neutron matter equation of state at finite temperature based on
low-momentum two- and three-nucleon interactions. The free energy is obtained
from a loop expansion around the Hartree-Fock energy, including contributions from
normal and anomalous diagrams. We focus on densities below saturation density
with temperatures T 6 10MeV and compare our results to the model-independent
virial equation of state and to variational calculations. Good agreement with the
virial equation of state is found at low density. We provide simple estimates for the
theoretical error, important for extrapolations to astrophysical conditions.

1 Introduction

The nuclear equation of state plays a central role in astrophysics, for problems
ranging from the structure of neutron stars [1], neutron star mergers [2] to
core-collapse supernovae [3,4]. Astrophysical applications probe the equation
of state at the extremes of isospin and temperature: The mass of a neutron
star depends mainly on the equation of state of neutron matter up to densities
ρ ∼ 4ρ0 [5], where ρ0 = 0.16 fm−3 is the saturation density of symmetric
nuclear matter, while supernova explosions are most sensitive to the properties
of nucleonic matter at subnuclear densities and MeV temperatures [3]. For
many regimes of interest, the equation of state has to be extrapolated from
the conditions reached with existing and upcoming experimental facilities.
Therefore, reliable theoretical input is needed. In this paper, we present a
study of neutron matter at finite temperature, as part of a program to improve
the nuclear equation of state input for astrophysics.
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Conventional nucleon-nucleon (NN) interactions are nonperturbative as a re-
sult of several sources. First, there is a strong short-range repulsion, which
leads to bound states of the “flipped” potential λVNN for small, negative λ.
This implies that λ = 1 is far outside the radius of convergence. Consequently,
at least the summation of particle-particle ladder diagrams is required [6]. Sec-
ond, the tensor force, which is singular at short distances, requires iteration in
the triplet channels [7,8]. Finally, there are physical bound and nearly-bound
states in the S-waves, which render the perturbative Born series divergent. Re-
cently, it was shown that the first two sources of nonperturbative behavior de-
pend on the choice of NN interaction, and can be removed by evolving nuclear
forces to low-momentum interactions Vlow k [9,10,11,12] with cutoffs around
2 fm−1 [13,14]. An important additional advantage is that the corresponding
leading-order three-nucleon (3N) interactions from chiral effective field theory
(EFT) become perturbative in light nuclei for cutoffs Λ . 2 fm−1 [15].

At sufficient density (ρ & 0.01ρ0 [16] in nuclear matter), Pauli blocking elim-
inates the shallow bound states, and thus the particle-particle channel be-
comes perturbative [13]. Consequently, the Hartree-Fock (HF) approximation
is a good starting point for low-momentum NN and 3N interactions, and per-
turbation theory (in the sense of a loop expansion) around the HF energy
becomes tractable. The perturbative character is due to a combination of
Pauli blocking and an appreciable effective range (see also Ref. [17]). The 3N
interaction is essential for nuclear matter saturation [13], while the contribu-
tions to the potential energy remain compatible with EFT power-counting
estimates. Furthermore, the equation of state becomes significantly less cut-
off dependent with the inclusion of the dominant second-order contributions.
In this paper, we extend the investigation of Ref. [13] to neutron matter at
subsaturation densities, ρ < ρ0, and generalize the perturbative approach to
finite temperature.

Based on the work of Kohn, Luttinger and Ward [18,19], at finite temperature
the loop expansion around the HF free energy can be realized by the pertur-
bative expansion of the free energy. In this paper, we include the first-order
NN and 3N contributions, as well as anomalous and normal second-order dia-
grams with NN interactions. We defer 3N contributions beyond the HF level
and higher-order corrections to future work. The pressure, entropy and energy
are calculated using standard thermodynamic relations. Since low-momentum
interactions are energy independent, the Matsubara sums can be carried out
analytically.

Low-momentum interactions Vlow k and the corresponding 3N forces are defined
by sharp or smooth regulators with a variable momentum cutoff Λ. Varying
the cutoff is a powerful tool to estimate the theoretical errors due to neglected
higher-order many-body interactions and to assess the completeness of the
calculations. We use the cutoff dependence to provide simple error estimates,
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and find that the cutoff dependence is reduced significantly, when second-order
contributions are included. The possibility of estimating theoretical errors is
an important step towards reliable extrapolations to astrophysical conditions.
Finally, we compare our results to the virial equation of state [20,21] and to
variational calculations [22]. The low-density behavior is in good agreement
with the virial equation of state. Our results for the energy per particle (see
Fig. 5) highlight the importance of a correct finite-temperature treatment of
second and higher-order correlations.

This paper is organized as follows. In Sect. 2, we discuss the perturbative
expansion at finite temperature and give the expressions for the evaluated
diagrams. Our results for the free energy, pressure, entropy and energy are
presented in Sect. 3. We conclude and give an outlook in Sect. 4.

2 Loop expansion at finite temperature

We consider the perturbative expansion of the grand-canonical potential,

Ω(µ, T, V ) = −β lnZ(µ, T, V ) , (1)

where Z(µ, T, V ) denotes the partition function of the interacting Fermi sys-
tem, µ is the chemical potential, β = 1/T the inverse temperature and V
the volume. We include the first-order NN and 3N contributions, Ω1,NN and
Ω1,3N, as well as the second-order anomalous and normal contributions with
NN interactions, Ω2,a and Ω2,n. The grand-canonical potential is then given by

Ω = Ω0 + Ω1 + Ω2 + . . .

= Ω0 + (Ω1,NN + Ω1,3N) + (Ω2,a + Ω2,n) + . . . , (2)

where terms of the same order are enclosed in brackets, and Ω0 is the grand-
canonical potential of the non-interacting system,

Ω0

V
= −2 T

∫ dk

(2π)3
ln
(
1 + e−β(ǫk−µ)

)
= −2

∫ dk

(2π)3
k2

3m
nk . (3)

Here, ǫk = k2/(2m) is the free single-particle energy, with m the nucleon mass,
and nk = 1/[eβ(ǫk−µ)+1] is the Fermi-Dirac distribution function. The different
contributions are depicted diagrammatically in Fig. 1.

The loop expansion around the HF energy is realized by the perturbative
expansion of the free energy F (N, T, V ), which is obtained by a Legendre
transformation of the grand-canonical potential with respect to the chemical
potential,

F (N, T, V ) = Ω(µ, T, V ) + µN . (4)
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Fig. 1. Non-interacting (0); first-order NN (1,NN) and 3N (1, 3N); second-order
anomalous (2, a) and normal (2,n) contributions to the grand-canonical potential
Ω(µ, T, V ). The wiggly and double-wiggly lines denote antisymmetrized low-mo-
mentum NN and 3N interactions, respectively.

The mean particle number N ≡ 〈N〉 is given by

N(µ, T, V ) = −
∂Ω

∂µ

∣∣∣∣∣
T,V

= −
∂Ω0

∂µ

∣∣∣∣∣
T,V

−
∂Ω1

∂µ

∣∣∣∣∣
T,V

−
∂Ω2

∂µ

∣∣∣∣∣
T,V

− . . . . (5)

In order to invert Eq. (5) for the chemical potential µ(N, T, V ), we follow the
treatment of Kohn and Luttinger [18] and expand µ to the same order

µ = µ0 + µ1 + µ2 + . . . , (6)

where the particle number is counted as order zero. The lowest order term µ0

is the chemical potential of a non-interacting system with the same density
ρ = N/V as the interacting system.

Expanding each term on the right-hand side of Eq. (5) around µ = µ0 and
solving for the chemical potential order by order leads to

N = −
∂Ω0

∂µ

∣∣∣∣∣
µ0

and µ1 = −
∂Ω1/∂µ

∂2Ω0/∂µ2

∣∣∣∣∣
µ0

, (7)

and correspondingly for the free energy

F = Ω0(µ0) + (µ1 + µ2)
∂Ω0

∂µ

∣∣∣∣∣
µ0

+
1

2
µ2
1

∂2Ω0

∂µ2

∣∣∣∣∣
µ0

+ Ω1(µ0) + µ1
∂Ω1

∂µ

∣∣∣∣∣
µ0

+ Ω2(µ0)

+ µ0N + (µ1 + µ2)N + . . . . (8)

Using Eq. (7), we find

F (N) = F0(N) + Ω1(µ0) + Ω2(µ0)−
1

2

(∂Ω1/∂µ)
2

∂2Ω0/∂µ2

∣∣∣∣∣
µ0

, (9)

where F0(N) = Ω0(µ0) + µ0N is the free energy of the non-interacting sys-
tem. Since we neglect the contribution of 3N interactions in second-order di-
agrams, we consistently keep only the first-order NN part Ω1,NN in the term
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(∂Ω1/∂µ)
2|µ0

. Consequently, we have

F (N) = F0(N) +Ω1(µ0) +Ω2,n(µ0) +



Ω2,a(µ0)−
1

2

(∂Ω1,NN/∂µ)
2

∂2Ω0/∂µ2

∣∣∣∣∣
µ0



 . (10)

According to the Kohn-Luttinger-Ward theorem [18,19], the term in the square
brackets vanishes at T = 0 for isotropic, normal Fermi systems, since the
anomalous diagram cancels against the contribution induced in Ω1,NN by the
shift of the chemical potential. Thus, the above expansion ensures that the
T → 0 limit is correctly reproduced.

In the T → 0 limit µ0 = ǫF = k2
F/(2m), where kF is the Fermi momentum, and

the ground state energy of the interacting system is given by F → E = E0 +
Ω1(ǫF)+Ω2,n(ǫF)+ . . .. For a momentum-independent contact interaction, the
square bracket in Eq. (10) vanishes at all temperatures, since in this case the
HF self-energy is momentum independent. Consequently, the thermodynamic
potential derived from the free energy Eq. (10) corresponds exactly to the
loop expansion around the HF energy. For finite-range interactions, the HF
self-energy is momentum dependent, and the cancellation is exact only in the
zero-temperature limit. At finite temperature, the momentum dependence of
the HF self-energy is therefore treated perturbatively.

The pressure, entropy and energy follow from the free energy using standard
thermodynamic relations. The entropy per particle S/N is given by

S

N
= −

∂(F/N)

∂T

∣∣∣∣∣
N,V

= −
∂(f/ρ)

∂T

∣∣∣∣∣
N,V

, (11)

where f = F/V is the free-energy density. The chemical potential is given by
µ = ∂NF |T,V and the pressure P follows from

P = µ ρ− f =
N2

V

∂(F/N)

∂N

∣∣∣∣∣
T

= ρ2
∂(f/ρ)

∂ρ

∣∣∣∣∣
T

. (12)

Finally, the energy per particle is obtained from E/N = F/N + T (S/N).

2.1 Hartree-Fock NN and 3N diagrams

The first-order Vlow k contribution, (1,NN) in Fig. 1, is given by

Ω1,NN

V
=

1

2
Trσ1,σ2

∫
dk1

(2π)3

∫
dk2

(2π)3
nk1 nk2 〈12 | Vlowk (1− P12) | 12〉 , (13)

where the trace is over the spins of the two neutrons and P12 denotes the
exchange operator for spin and momenta of nucleons 1 and 2. Note that the
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momentum-conserving delta function is not included in the NN matrix ele-
ments.

In neutron matter, the effect of 3N interactions is expected to be smaller
than in symmetric matter, since the Pauli principle prevents three neutrons
from interacting in a relative S-state. In the evaluation of the first-order 3N
diagram, (1,3N) in Fig. 1, we follow Ref. [13]. At the HF level only the c1 and
c3 terms of the long-range 2π-exchange part contribute:

Ω1,3N

V
=

g2A
4f 2

π

∫ dk1

(2π)3

∫ dk2

(2π)3

∫ dk3

(2π)3
nk1 nk2 nk3 f

2
R(p, q)

×

[
−
4c1m

2
π

f 2
π

(
2

k12 · k23

(k2
12 +m2

π)(k
2
23 +m2

π)
+ 2

k2
12

(k2
12 +m2

π)
2

)

+
2c3
f 2
π

(
2

(k12 · k23)
2

(k2
12 +m2

π)(k
2
23 +m2

π)
− 2

k4
12

(k2
12 +m2

π)
2

)]
, (14)

where gA = 1.29, fπ = 92.4MeV, mπ = 138.04MeV and kij = ki − kj. As
discussed in Ref. [15], we use the ci constants extracted by the Nijmegen group
in a partial wave analysis with chiral 2π-exchange [23]: c1 = −0.76GeV−1 and
c3 = −4.78GeV−1, where the dominant contribution is due to c3. The low-
energy constants ci are within errors consistent with the determination from
πN data [24], but at present c3 has a large theoretical uncertainty ≈ 25%,
which is not included in our error bands (see however Fig. 6). For the 3N
contribution, we have the regulator [15]

fR(p, q) = exp

[
−

(
p2 + 3q2/4

Λ2

)4]
(15)

where p and q are Jacobi momenta. Based on the nuclear matter results of
Ref. [13], we expect that the c3 term is repulsive and the dominant part of the
3N contribution, and that the c1 term is small.

2.2 Second-order anomalous and normal diagrams

The second-order anomalous contribution, (2,a) in Fig. 1, is given by

Ω2,a

V
= −

1

2T

(
3∏

i=1

Trσi

∫
dki

(2π)3

)
nk1 nk2 (1− nk2)nk3

× 〈12 | Vlow k (1− P12) | 12〉〈23 | Vlowk (1− P12) | 23〉 . (16)

We note that in the HF approximation, all tadpole self-energy insertions,
including the anomalous diagram (2,a), are included in the HF mean-field.
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Hence, in a loop expansion around the HF solution, the first anomalous
diagrams are of fourth order and involve two second-order self-energy in-
sertions in place of the tadpoles in diagram (2,a). As discussed above, the
present approach is equivalent to a loop expansion around the HF energy for
a momentum-independent contact interaction. It follows that the contribu-
tion from the square bracket in Eq. (10) is small, although the anomalous
diagram (2,a) is significant. The reasons are: First, at zero temperature the
square bracket vanishes, and therefore the contribution is small at low tem-
peratures, and second, at finite temperature it is non zero only due to the
weak momentum dependence of the HF self-energy in neutron matter.

The second-order normal diagram, (2,n) in Fig. 1, reads

Ω2,n

V
= −

1

8

(
4∏

i=1

Trσi

∫ dki

(2π)3

)
(2π)3δ(k1 + k2 − k3 − k4)

×
nk1nk2 (1− nk3)(1− nk4)− (1− nk1)(1− nk2)nk3nk4

ǫk3 + ǫk4 − ǫk1 − ǫk2

×
∣∣∣〈12 | Vlowk (1− P12) | 34〉

∣∣∣
2
. (17)

Expanding in partial waves and performing the spin traces, we find

∑

S,MS ,M
′

S

∣∣∣〈kSMS | Vlow k (1− P12) |k
′ SM ′

S〉
∣∣∣
2

=
∑

L

PL(cos θk,k′)
∑

J, l, l′, S

∑

J̃ , l̃, l̃′

(4π)2 i(l−l′+l̃−l̃′)

× 〈k | V J l′ l S
low k | k′〉〈k′ | V J̃ l̃′ l̃ S

low k | k〉
(
1− (−1)l+S+1

) (
1− (−1)̃l+S+1

)

×
√
(2l + 1)(2l′ + 1)(2l̃ + 1)(2l̃′ + 1) (2J + 1)(2J̃ + 1) (−1)̃l+l′+L

×
(
l 0 l̃′ 0 |L 0

)(
l′ 0 l̃ 0 |L 0

){ l S J

J̃ L l̃′

}{
J S l′

l̃ L J̃

}
, (18)

where θk,k′ is the angle between relative momenta k = (k1 − k2)/2 and k′ =
(k3 − k4)/2. Keeping only L = 0 in Eq. (18) would result in an angle average
of the Pauli-blocking operator, but all L 6 6 are included in our results.
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T=3 MeV
T=6 MeV
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Hartree-Fock (NN+3N) HF + 2nd-order NN

Fig. 2. The free energy per particle F/N as a function of density ρ. The left figure
gives the first-order NN and 3N contributions with a free single-particle spectrum.
Second-order anomalous and normal NN contributions are included in the right
figure. Our results are compared to the virial equation of state (virial) [21] and to
the variational calculations of Friedman and Pandharipande (FP) [22]. The virial
curve ends where the fugacity z = eµ/T = 0.5.

3 Results

We compute the different contributions to the free energy using the adaptive
Monte Carlo integration routine Vegas [25]. Our results 1 for the free energy
per particle are shown in Fig. 2 for temperatures T = 3MeV, 6MeV and
10MeV, where the low-momentum interaction Vlow k is obtained from the Ar-
gonne v18 potential [27] for a cutoff Λ = 2.1 fm−1. The cutoff dependence of
the free energy can be used to provide lower limits for the theoretical uncer-
tainty in the calculation, since the result should be cutoff independent when
all relevant contributions are included. For the T = 6MeV results, we provide
error estimates by varying the cutoff over the range Λ = 1.9 fm−1 (lower curve)
to Λ = 2.5 fm−1 (upper curve). The cutoff dependence of the T = 3MeV and
10MeV results here and in the following is of similar size. As expected, the
error grows with increasing density. Moreover, we observe that the equation
of state becomes significantly less cutoff dependent with the inclusion of the
second-order NN contributions.

In Fig. 2, we also compare our results for the free energy to the model-
independent virial equation of state [21] and to the variational calculations

1 We take the opportunity to correct an error in Ref. [26], where the 3N contribution
had an incorrect factor in the numerical computation.
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Fig. 3. The pressure P as a function of density ρ to first and second order (for details
see Fig. 2). The different-temperature FP results are best identified at low density
by comparison with our results.

of Friedman and Pandharipande [22] (FP, based on the Argonne v14 and a
3N potential). The virial expansion provides a benchmark for low densities
and high temperatures, where the interparticle separation is large compared
to the thermal wavelength. We find a very good agreement with the virial free
energy. Including second-order NN contributions to the HF free energy brings
our results closer to the FP calculations, but this trend is opposite for other
thermodynamic potentials, see for instance the entropy in Fig. 4.

The FP results are based on zero-temperature Fermi-hypernetted-chain cor-
relation functions, with the effective mass as a finite-temperature variational
parameter [28]. We note that the density of states at the Fermi surface is
underestimated in variational calculations of this type, since the energy de-
pendence of the self energy is properly accounted for only when correlation
diagrams are included [29]. In a variational scheme this can be achieved in
correlated basis perturbation theory [30,31]. This effect is in part included in
the induced interaction, which in neutron matter leads to an enhancement of
the effective mass by ≈ 10% (see the RG results for the Fermi liquid parame-
ter F1/3 = m∗/m− 1 in Fig. 6 of Ref. [32]). The enhancement of the effective
mass near the Fermi surface is reflected in an increase of the entropy and the
specific heat over the variational result at low temperatures [31] (see below).

The pressure P and the entropy per particle S/N are shown in Figs. 3 and 4.
As for the free energy, we find a very good agreement with the virial equation
of state at low densities, and the inclusion of second-order contributions signif-
icantly decreases the cutoff dependence. Our results are similar to the calcu-
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Fig. 4. The entropy per particle S/N as a function of density ρ to first and second
order (for details see Fig. 2).

0 0.05 0.1

ρ [fm-3]

5

10

15

20

E
/N

 [
M

eV
]

virial
FP
T=3 MeV
T=6 MeV
T=10 MeV

0 0.05 0.1 0.15

ρ [fm-3]

Hartree-Fock (NN+3N) HF + 2nd-order NN

Fig. 5. The energy per particle E/N as a function of density ρ to first and second
order (for details see Fig. 2).

lations of FP for densities ρ . 0.05 fm−3. For higher densities, we find a larger
pressure and entropy. We emphasize that the results are based on different
Hamiltonians, and therefore the comparison has to be taken with care. How-
ever, the dominant source for the difference in the entropy is likely due to dif-
ferences in the effective masses, since the entropy density of a low-temperature
Fermi liquid is proportional to the effective mass, s = m∗kFT/3 [33]. As dis-
cussed above, the variational calculation underestimates the effective mass at
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HF + 2nd-order NN

Fig. 6. The energy per particle E/N as a function of density ρ for T = 0 and
T = 1.5MeV. For the T = 0 results, we provide error estimates based on the cutoff
variation (shaded band) and including the uncertainties in the low-energy constants
ci at this level. The upper and lower limits for the range of ci values are indicated
by the shaded lines. For comparison we also show the model-independent di-fermion
EFT results [17] (Schwenk+Pethick) and the results of Akmal et al. [35].

the Fermi surface and consequently also the entropy at low temperatures.

Our results for the energy per particle are presented in Fig. 5. As for the
free energy, we observe additional binding and a significantly reduced cut-
off dependence at second order. In contrast to the variational calculation of
FP [22], the low-density behavior at second order is in good agreement with
the virial equation of state [21]. This highlights the importance of a correct
finite-temperature treatment of second and higher-order contributions. Note
that the error in the virial equation of state (due to the neglected third virial
coefficient) increases with density. This error is not shown in Fig. 5, but will be
discussed in future work on understanding the transition from the perturbative
to the virial approach.

A comparison of our low-temperature results to the T = 0 energy per particle
provides an independent check of our calculations and of the generalized loop
expansion. In Fig. 6 we show the energy per particle for T = 1.5MeV for a
cutoff Λ = 2.1 fm−1 and the corresponding T = 0 equation of state. The latter
extends the HF results for neutron matter of Refs. [32,34] to include 3N forces
and (normal) second-order NN contributions using an angle-averaged Pauli
blocking operator (see Ref. [13] for details). Except at low densities, where
E/N → 3/2T , we find that the T = 1.5MeV energy closely follows the zero
temperature results.
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In Fig. 6 we provide an error band for the T = 0 equation of state based
on the cutoff variation. The width of this band is of the same size as for
T = 6MeV in Fig. 5. At this level of 3N interactions (leading chiral EFT 3N
in HF), only the 2π-exchange part with low-energy constants ci contribute,
and therefore there are no adjustable 3N parameters. Since the ci constants
are cutoff independent, their uncertainties are not fully captured by the cutoff
variation, and we therefore directly assess how the presently large uncertainties
in ci propagate to theoretical uncertainties in the neutron matter equation of
state at this level. The resulting error estimate in Fig. 6 is based on c1 =
−0.9+0.2

−0.5GeV−1 and c3 = −4.7+1.2
−1.0GeV−1 from Ref. [24]. It is clear that at

present the theoretical uncertainties in 3N interactions overwhelm the error
due to an approximate many-body treatment for these densities.

We can also compare the T = 0 energy per particle at low densities to the
the model-independent di-fermion EFT results [17] based directly on the large
neutron-neutron scattering length and effective range. Our results are consis-
tent with the di-fermion EFT energy per particle within errors. Finally, the
results of Akmal et al. [35] (based on the Argonne v18 and Urbana IX potential)
lie within our error band as well (including the ci uncertainties). The Urbana
IX 3N interaction corresponds to the ∆ contribution, c∆3 = −3.83GeV−1 [36],
and therefore results in less repulsion (with weaker c3). These results show
that, at present, understanding 3N interactions is a frontier for nuclear mat-
ter at the extremes.

4 Conclusions

This work is part of a program to improve the nuclear equation of state for
astrophysics. One of the central objectives is to quantify the theoretical un-
certainties in the microscopic nuclear physics input, and to explore the impact
on supernovae and neutron stars, for example, through predictions of neutron
star masses and radii.

In this first study of neutron matter, we have computed the equation of
state at subsaturation densities and temperatures T 6 10MeV based on low-
momentum NN and 3N interactions. We have generalized the perturbative
approach [13] to finite temperature, where the free energy is obtained from a
loop expansion around the HF energy and the momentum dependence of the
self-energy is treated perturbatively. Our results include first-order NN and 3N
contributions, as well as anomalous and normal second-order diagrams with
NN interactions. The pressure, entropy and energy were then calculated using
standard thermodynamic relations. While the HF energy is sizable (and non-
perturbative for finite nuclei), the finite-temperature loop expansion around
the HF energy seems to be tractable. This is due to a combination of Pauli
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blocking [13] and an appreciable effective range [17].

The virial expansion provides a model-independent equation of state for nu-
clear matter at low density and high temperature [20,21], and our perturbative
results meet this benchmark. This is very promising, since it will enable us to
match the virial equation of state to microscopic calculations based on NN and
3N interactions at higher densities. The comparison of our results to the virial
energy per particle highlights the importance of a correct finite-temperature
treatment of second and higher-order correlations, which are included only
in an average sense in the variational calculations of Ref. [22]. The correct
treatment of thermally-excited low-lying states leads to an enhancement of
the effective mass at the Fermi surface and consequently to an increase in the
entropy, as shown in Fig. 4.

We have provided simple estimates for the theoretical error by varying the
cutoff in low-momentum interactions. This is a powerful tool to assess theo-
retical errors due to neglected higher-order many-body forces and due to an
approximate many-body treatment. We found that the equation of state be-
comes significantly less cutoff dependent with the inclusion of second-order
contributions, and that the cutoff dependence is small for ρ . 0.1 fm−3. We
note that the errors of the free energy are correlated between different tem-
peratures and grow with increasing density. The first observation implies a
relatively small error in the entropy (obtained by a temperature derivative),
and consequently similar errors for the energy per particle. The second obser-
vation explains the relatively large error band for the pressure (obtained from
a density derivative). Finally, we have shown that the uncertainties due to
the long-range parts of 3N interactions, the ci constants, are substantial and
overwhelm the error bands from the cutoff variation at this level. We conclude
that understanding 3N forces is a frontier in microscopic calculations of the
nuclear equation of state, and furthermore that the possibility of estimating
theoretical uncertainties is an important step towards reliable extrapolations
to astrophysical conditions.

Future work will include systematic studies of the range of validity, quantifying
an expansion parameter for the loop expansion, calculations for asymmetric
matter, improving the uncertainties at higher densities, how they propagate
to astrophysical observables, and understanding the transition to the virial
expansion.
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