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Abstract In this work we extend previous work on the evo-
lution of a Primordial Black Hole (PBH) to address the pres-
ence of a dark energy component with a super-negative equa-
tion of state as a background, investigating the competition
between the radiation accretion, the Hawking evaporation
and the phantom accretion, the latter two causing a decrease
on black hole mass. It is found that there is an instant during
the matter-dominated era after which the radiation accretion
becomes negligible compared to the phantom accretion. The
Hawking evaporation may become important again depend-
ing on a mass threshold. The evaporation of PBHs is quite
modified at late times by these effects, but only if the Gen-
eralized Second Law of thermodynamics is violated.

Keywords Black holes; Cosmology; Hawking radiation;
phantom energy.

PACS 04.70.-s; 98.80.-k; 95.35.+d

1 Introduction

The now widely accepted accelerated expansion of the Uni-
verse in its recent history is yet to be fully explained. Several
possibilities to reproduce this effect have been advanced,
ranging from “conservative” to very unusual ones requiring
new physics. One of the most economical hypotheses that
has received a great deal of attention is the late dominance
of a fluid with an “anomalous” equation of state, a sort of
analogue of the inflationary proposals but at a lower energy
scale, the so-calleddark energy. As is customary to write a
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generical equation of state in the formP = ωρ and in spite
that values ofω larger than−1 are usually considered, some
works have raised the possibility that the dark sector may
be characterized by a fluid with an equation of state with
ω < −1, known throughout the literature as thephantom
energy.

There are many physical consequences of such phantom
component in a variety of physical species present in the
Universe, most notably the spacelike singularity known as
the Big Rip [1,2], or even more fabulous possibilities, like
theBig Trip [3,4]. Some effort has been made to remove the
Big Rip singularity, but it is still premature to rule out or
support definitely any scenario.

We work within a general phantom energy scenario in
this paper. It has already been acknowledged that, being such
an exotic physical species, the phantom energy may also
change the accretion regime of black holes [5]. In the present
paper we investigate the influence of phantom energy accre-
tion onto primordial black holes (hereafter PBHs) together
with the radiation and matter accretion/evaporation formerly
addressed.

The PBH interaction with different types of energy in
the universe is the continuous subject of several sudies, as
well as their interaction with cosmological boundary condid-
iotns [6]. Several numerical results also work as test fields
for alternate gravitational theories, and the questions regard-
ing their very formation at extreme cosmological scenarios
are beginning to yield several interesting results [7].

We shall focus on the new features specifically intro-
duced by the phantom era [8], and generally refer to the
full evolution of the PBHs across the mass-time plane. Pre-
vious attempts to address this problem have been limited
to the consideration of the black holes plus phantom fluid
only, although there is a more subtle interplay among com-
ponents when radiation and matter are also included (as will
be shown below). It is also of interest to revisit the issue
of the black hole behavior in the radiation-dominated and
matter-dominated eras (that is, well before the phantom com-
ponent can be important) for a complete assessment of the
fate of PBHs, especially their behavior in the matter-dominated
era where dark matter may fuel their growth.

http://arxiv.org/abs/0711.3641v1
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2 PBHs evolution in the early Universe

2.1 The radiation-only accretion equation

Our starting point will be the evolution equation for PBHs
in the radiation-dominated era addressed by several authors
(see Custódio and Horvath [9] and references therein), which
takes into account the accretion of radiation and the Hawk-
ing evaporation at a semiclassical level. Ignoring the (poten-
tially relevant) “grey factors” in the absorption of radiation,
the resulting differential equation for the black hole massM
reads quite generally

dM
dt

=−
A(M)

M2 +
27πG2

c5 ρrad(T )M
2 (1)

with t being the cosmological time,A(M) = h̄c4

G2 α(M), with
α(M) called therunning constant [10], counting the degrees
of freedom of the emitted particles on the Hawking radiation
(in CGS units,A = 7,8×1026 g3/s for black holes evaporat-
ing today [11]), andρrad(T ) the radiation energy density at
temperatureT at the timet.

In a Universe also filled with phantom energy, the accre-
tion of such exotic component should also be taken into ac-
count. Babichev, Dokuchaev and Eroshenko [5] have worked
out a differential equation for a black hole accreting phan-
tom energy only, obtaining a counterintuitive result that phan-
tom energy accretiondecreases the overall black hole mass.
The expression is similar to the accretion term in eq. (1), and
is given by

dM
dt

=
16πG2

c5 M2[ρph+ p(ρph)] (2)

2.2 The complete accretion equation

Considering the radiation accretion and evaporation terms
from eq. (1) together with the new phantom energy accretion
term in eq. (2), and assuming no interaction between the two
different species, the complete equation for the accretionof
the different types of energy into the black hole is just

dM
dt

=−
A(M)

M2 +
G2

c5

[

27πρrad(T )+16π
(

ρph+ p(ρph)
)]

M2

(3)
Using for the phantom energyp(ρ) = ωρ, ω < −1, the

phantom component of the accretion may be written as

ρph+ p(ρph) = (1+ω)ρph (4)

and the complete accretion equation becomes

dM
dt

=−
A(M)

M2 +
G2

c5

[

27πρrad(T )+16π(1+ω)ρph
]

M2

(5)

2.3 Accretion regimes

As is well-known, the Friedmann equation can be solved to
follow the cosmological evolution of the phantom energy, as
given by Babichev, Dokuchaev and Eroshenko [5].

|ρ + p| ∝ a−3(1+ω) (6)

neglecting all other contributions. The densities of the
radiation, matter and phantom energy terms evolve as repre-
sented in the graphic shown in Figure 1.

✲

✻log(ρi)

log(a)

to Big Rip

ρrad

ρph

ρm
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tph

Fig. 1 Evolution of the radiation, matter and phantom energy densities
with the scale factor. The exact position oftph depends on the densities
and equation of state of the radiation and phantom energy.

As expected, there is an epoch in which the radiation and
phantom energy accretion terms from eq. (5) become com-
parable. We call such an epoch thephantom time, or tph. It
must be noted that this instant is distinct from the one when
the lines of Figure 1 cross each other. The phantom time
represents the cosmological instant when the phantom en-
ergy accretion term dominates the radiation term, changing
drastically the black hole evolution dynamics. We can calcu-
late the value of this time as a function of the initial radiation
and phantom energy densities.

The radiation density as a function of the scale factor is
given by the Friedmann equation,ρrad= ρ0

rad

( a0
a

)4
. During

the matter-dominated era, the scale factor as a function of
time is given by

a(t)
a0

=

(

3H0t
2

)2/3

(7)

Therefore, the radiation density evolves in the matter-
dominated era as

ρrad= ρ0
rad

(

3H0t
2

)− 8
3

(8)

Similarly, with the phantom energy eq. (4) and evolving
according to eq. (6), and with the time dependence of the
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scale factor evolving as of eq. (7), the phantom energy den-
sity as a function of time is

ρph =
ρ0

ph

|1+ω|

(

3H0t
2

)−2(1+ω)

(9)

The epoch when the phantom energy accretion is as im-
portant as the radiation accretion is the instant when, equat-
ing both expressions according to eq. (5)

ρrad=−
16
27

(1+ω)ρph (10)

Inserting the time dependences calculated in eq. (8) and
eq. (9), this equation yields thephantom time.

tph

1 s
=

2
3H0

(

16
27

ρ0
ph

ρ0
rad

)
8
3−2(1+ω)

1 km
1 Mpc·1 s

(11)

with H0 expressed in km
s·Mpc and, as the initial valuesρ0

ph and

ρ0
rad, calculated at the end of the matter-dominated era.

We can express this transition time in terms of the red-
shift, using eq. (10), with the initial conditionsρ0

rad= 8.12×
10−13 erg

cm3 and ρ0
ph = 1.79× 10−8 erg

cm3 appropriate for the
obtained conditions, finally coming tozph ≃ 3.1.

It is reasonable to suppose the transition between radia-
tion and phantom accretion to be instantaneous due to the
very steep radiation/phantom density ratio, which can be
easily seen by rewriting eq. (11) for an arbitrary epoch.

ρrad

ρph
=

ρ0
rad

ρ0
ph

|1+ω|

(

3H0t
2

)− 8
3+2(1+ω)

(12)

The radiation density quickly becomes negligible com-
pared to the phantom energy. The higher the|ω|, the quicker
the transition becomes.

3 Effects of dark matter accretion

3.1 General results

Up to this point we have neglected completely the possible
effects of (cold) dark matter on the PBHs, which is a popular
and reasonable explanation for the structure formation prob-
lem. Within the CDM scenario, right after the decoupling of
dark matter its accretion onto black holes will depend on the
black hole cross-section for point-like particles. Therefore,
the time dependence of the mass would be given by

dM
dt

=
16πG2

c2

ρm
um

M2 (13)

whereum is the dark matter particle density, computed after
the decoupling

um ≃

√

3kBTdec

m
1+ z

(1+ z)dec
(14)

Well before the phantom energy becomes important, the
PBH mass equation, including now the dark matter contri-
bution, is just

dM
dt

=−
A

M2 +
27πG2

c3 ρradM
2+

16πG2

c2

ρm
um

M2 (15)

We must remark that we are always referring to adiffuse
CDM component, an appropriate assumption prior to any
structure formation.

3.2 Numerical predictions

Because we are interested in the fate of a wide range of black
hole masses, we should integrate equation (15) numerically
for several initial conditions and cosmological parameters.

To solve this equation, we first rewrite it in explicitly
time-dependent terms

ρm = ρ0
m(1+ z)3 =

ρdec

(1+ z)3
dec

(1+ z)3 = ρdec

( tdec

t

)

3
2

(16)

Letting m = 100 GeV andTdec≃ 1 GeV, (1+ z)dec≃
4.26×1012 yields

um =

√

3kBTdec

m
1+ z

(1+ z)dec
= 0.173c

( tdec

t

)

1
2

(17)

Settingρ0
m =

3H2
0

8πG Ωm = 2.24× 10−30 g
cm3 and ρrad =

3
32πGt2

, equation (15) reads

dM
dt

=−
A

M2 +
81
32

GM2

c3

1
t2 +

16π(GM)2

c3

ρ0
m(1+ z)3

dec

0.173c
tdec

t
(18)

which can be solved introducing new variablesy = M
M0

,

M0 = αc3t0
G and x = log

(

t
t0

)

, yielding an equation of the

form

dy
dt

=−a1y−2ex +a2y2e−x +a3y2 (19)

with a1 = AG
αc3M2

0
= 1.30×10−13

αM2
0

, a2 = 81
32α = 2.53125α and

a3 = 1.38×10−42M0.
The dark matter accretion should be taken into account

for x ≥ xdec. We may also introduce an instantx∗ similar to
the phantom time, in which the dark matter and radiation
accretion have the same value. An estimate forxdecandx∗ is
given by



4

t0 = 2.47×10−38M0 → xdec= log

(

6.72×1030

M0

)

(20)

a2y2e−x = a3y2 → x∗ = log

(

1.83×1041

M0

)

(21)

Table 1 summarizes a few numerical estimates forxdec
andx∗, covering most of the important PBH masses.

Table 1 Numerical values forxdecandx0 for some initial values for the
black hole mass, along with calculations for the times of evaporation
with (xm

evap) and without (xevap) dark matter.

M0 (g) xdec x∗ xevap xm
evap

108 52.56 76.59 63.99 63.99
109 50.26 74.29 68.59 68.59
1010 47.96 71.98 73.20 73.10
1011 45.65 69.68 77.81 77.81
1012 43.35 67.38 82.41 82.41
1013 41.05 65.08 87.01 87.01
1014 38.75 62.77 91.62 91.62
1015 36.44 60.47 96.23 96.22
1016 34.14 58.17 100.83 100.83

An inspection of Table 1 shows that only black holes
with masses greater than 109 g should be influenced by the
dark matter accretion at early times. However, this effect
of the dark matter term happens to be small, because it is
rapidly overcome by the accretion of radiation. This can be
expected on physical grounds because the geometrical dilu-
tion of the dark matter component “starves” the PBHs by
quickly diminishing the flux of particles coming into them.
Note that this particular evolution doesnot refer to much
later epochs where dark matter halos had formed, possibly
then contributing to the growth of PBHs as seeds for the ul-
timate supermassive galactic residents.

The numerical results for the evolution through time are
depicted in Figure 2 for the highest initial condition, as an
example. The resulting bump in the mass (Fig. 2) has been
exaggerated for the sake of clarity.

4 Behavior of the critical mass function

With expression eq. (11) for the time, we can calculate the
value of the critical massMc in the instanttph. From Custódio
and Horvath [9], the expression for the critical mass is

Mc(t)∼ 10MHaw

( t
1s

)

1
2

g (22)

During the late phantom energy accretion dominance era,
a critical mass function would be meaningless, since there
is no longer a relevant mass increase mechanism. Thus, the
largest value reachable by the critical mass in a Universe
filled only by radiation and phantom energy is

Mmax
c ∼ 10MHaw

2
3H0

(

16
27

ρ0
ph

ρ0
rad

)
8
3−2(1+ω)

g (23)

After this time, the Hawking evaporation is no longer a
relevant mechanism for black hole mass decrease, until its
mass reaches the transition value discussed in section 5.

It is also convenient to calculate the initial mass of the
black hole which disappears attph. For that purpose, it is
enough to consider only the Hawking term in eq. (1), which
yields the well-known solution

τ =
1

3A(M)
M3

i (24)

whereτ is the evaporation timescale. Restoring the cgs units
τ reads

τ ∼ 1071
(

Mi

M⊙

)3

(25)

Combining eq. (22) and eq. (24), we find a third degree
equation inMc, whose solution is the critical mass of the
black hole that will evaporatecompletely at t = tph

M3
c

3A(M)
+

M2
c

100M2
Haw

= tph (26)

We use the numerical values ofA(M) ≤ 7,8× 1026 g3

s [9]
andMHaw ≡ 1015 g, as well as the numerical values ofρph,
ρrad, ω andH0 necessary to computetph. The instant when
the critical mass assumes this value is found by inverting
eq. (22).

Since the mass gain due to radiation accretion is not sub-
stantial [9], all black holes withMi . Mph

c , which reach crit-
ical mass atTcross. tc, will disappear beforetph and will
never reach the phantom era.

5 The competition between phantom accretion and
Hawking evaporation

We have emphasized before that, since aftertph there is no
efficient mechanism that could increase the mass of the black
holes, there is no longer a critical mass function. However,
due to the presence of a phantom field, there are nowtwo dis-
tinct regimes of mass decrease, whose relative importance
depends on the mass of a given PBH entering the phantom
era.

Taking eq. (5) and neglecting the radiation term, we can
describe the evolution of black hole masses during the phan-
tom era. Let us define a ratio between the two remaining
terms,

ξ (M) =
Ṁph

ṀHaw
=

G2

c3

16π(1+ω)ρph

A(M)
M4 (27)
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or, in terms of atransition mass

ξ (M) =

(

M
Mt

)4

(28)

with

Mt =

[

c3

16πG2

A(M)

(1+ω)ρph

]1/4

(29)

Substituting numerical values for the constants, we ob-
tain an expression forMt in terms of the phantom field den-
sity

Mt
∼= 5.5×1017[(1+ω)ρph]

−1/4 g (30)

with ρph given in g/cm3.
Since both regimes are of massdecrease, the black hole

mass will diminish mostly due to phantom accretion un-
til it reachesMt . After this, the predominant effect will be
Hawking evaporation, since eq. (28) shows that the change
in regimes is sufficiently sudden for us to make this approx-
imation.

To find the time dependence of the transition mass, we
must first know the evolution of the phantom density. Ac-
cording to the Friedmann equations for the phantom fluid,
we finally obtain [5]

(ρph)
− 1

2 = (ρ0
ph)

− 1
2 +

3(1+ω)

2

(

8πG
3

)
1
2

t (31)

with (ρ0
ph)

− 1
2 being the initial density of the phantom field.

Inserting this result on equation eq. (30) the time depen-
dence ofMt is obtained

Mt
∼=

8.29×1021

(1+ω)
1
4

[

(ρ0
ph)

− 1
2 +

3(1+ω)

2

(

8πG
3

)

t

]
1
2

g

(32)
The initial value of the transition mass depends on both

the initial value of the phantom density and onω. It is worth
remarking that this transition mass is meaningless in the
radiation-accretion regime.

The differences between the three regimes is depicted in
Figure 2.

It is important to stress that the Hawking evaporation
does not become negligible aftertph if taken into account
as an independent process. However, the masses for which
it becomes important (M < Mt) drop by a factor of 105 after
the transition. This suddenly drives many black holes, but
not all, into the new regime. When, however, the black holes
reach the Planck mass, a full quantum gravity analysis be-
comes necessary to properly determine its fate, since it has
been shown that the Hawking evaporation no longer behaves
as expected on such scales [13,14].

✲

✻

t

M

tph tBR

Mmax
c

Mc

Mt

Mi & Mmax
c

Mi ≃ Mph
c

Fig. 2 Primordial black hole evolution in the matter-radiation-
phantom energy scenario. The thick lines represent the different trajec-
tories of black holes of different initial masses. The Big Rip singularity
occurs attBR.

6 Conclusions

We have studied in the present work the evolution of PBH
for various regimes of accretion/evaporation in the very early
and contemporary Universe. In particular, we have extended
and clarified the evolution in the radiation-dominated and
matter-dominated eras, including the features of diffuse CDM
accretion producing only a small bump in the mass of the
PBHs at early times. We have generally confirmed previ-
ously known features of the semiclassical pictures of PBH
evolution from a general point of view. Novel features are
introduced in this scenario when a phantom energy compo-
nent is introduced, as suggested by Babichev, Dokuchaev
and Eroshenko [5].

Broadly speaking, a phantom field introduces another
evaporation regime that competes with the celebrated Hawk-
ing evaporation. We have found that the joint consideration
of the relevant terms quenches the asymptotic approach to a
common mass resulting from the phantom term only. This
conclusion should, however, not be considered as definitive.
Its validity rests on the assumption of the entropy for the
phantom fluid being negligible, which is not the most gen-
eral possibility. In fact, the enforcement of the Generalized
Second Law (GSL) of thermodynamics wouldforbid the
evaporation of the PBHs by phantom accretion [15,18] In
addition, it is not clear whether the GSL should be valid in
presence of the phantom fluid not respecting the dominant
energy condition, as pointed out by Izquierdo and Pavón
[15], and models may be constructed in which the GSL must
be modified. There is a rich variety of behaviors [16,17]
within phantom energy models that remains to be explored
in connection with the PBH evolution problem. In particular,
late evaporation may conflict with the generalized second
law of thermodynamics [18].
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