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Abstract

We consider a 3-brane embedded in a warped 5-dimensional background with a

dilaton and a Kalb-Ramond 2-form. We show that it is possible to find static solutions

of the form of charged dS/AdS-like black hole with horizon which could have a negative

mass parameter. The motion of the 3-brane in this bulk generates an effective 4-

dimensional bouncing cosmology induced by the negative dark radiation term. This

model avoids the instability that arises for bouncing brane in a Reissner-Nordstrøm-

AdS bulk.
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1 Introduction

Braneworld models [1, 2] have generated, during the past decade, enormous attention, due

to the dramatic change they inspired in our understanding of extra dimensions. According

to this framework, our universe is a “brane” embedded in a higher-dimensional space, on

which the Standard Model fields are confined, while gravity is localized near the brane

by the warped geometry of the extra dimension. It is possible to construct models in

which the brane evolution mimics a Friedmann-Robertson-Walker (FRW) cosmology, with

modifications at small scales due to the gravitational effect of the bulk spacetime on the

brane [3–5]. In particular, provided the bulk is taken to be a Reissner-Nordstrøm-AdS black

hole, such modifications can lead to bouncing 4D cosmological models [6]. Unfortunately

the brane, during its evolution in the bulk, always crosses the Cauchy horizon of the AdS

black hole, which is unstable [7, 8].

In this paper we present a different model, in which this problem is avoided. We consider

a brane embedded in a supergravity background in which both the dilaton and the Kalb-

Ramond 2-form are turned on (but without a dilaton potential). By dualizing the 2-form,

we obtain Einstein-Maxwell like equations of motion, but with a different sign for the

kinetic term of the Maxwell-like field. The static solution is therefore different, and the

term that dominates at high curvature is like “stiff matter” with positive energy density.

Even though this implies that the energy contribution at high curvatures is positive, so that

it can not drive a bounce, this opens an interesting possibility of having negative energy

contributions at intermediate curvatures, by letting the mass of the black hole be negative.

The parameter space allows this while avoiding a naked singularity. In this case, we show

that it is possible that the brane bounces before crossing the black hole horizon, so that the

effective 4-dimensional cosmological evolution will not suffer the instability of [8].

The paper is organized as follows: In section 2 we derive the bulk equations and present

the static solution, which is an asymptotically (A)dS black hole. charged under the Kalb-

Ramond field with the dilaton frozen at its VEV. Section 3 is devoted to the study of the

position of the horizons, and it is shown that in a certain region of the parameter space

(in particular for a negative cosmological constant) there is no naked singularity even if

the mass parameter of the black hole is negative. Then, in section 4 we embed the brane

and allow it to move, to mimic a cosmological evolution for a brane observer [9]. The

occurrence of the bounce and its position is discussed here. Finally, in section 5 we present

our conclusions and discuss open problems.
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2 The 5-D solution

Consider the low-energy string effective action:

S =
M3

2

∫

d5x
√
−g

(

R− 2Λeσ1φ − 1

12
HABCH

ABCeσ2φ − gAB∂Aφ∂Bφ

)

−T3

∫

d4ξ
√
−γeλφ (1)

(with HABC = ∂[ABBC]), which describes a 3-brane embedded in a 5-dimensional bulk with

dilaton and Kalb-Ramond 2-form [10,11]. We set the dilaton potential to zero for simplicity,

and allow the dilaton to be non-minimally coupled with the cosmological constant, the

antisymmetric tensor and the brane [12,13]. However, the brane is taken to be neutral with

respect to the antisymmetric field. The presence of the brane action in (1) gives a singular

part, which we will take into account by the Israel junction condition [9,14], so now we will

consider only the bulk part. The equations of motion are:

GAB =

[

−eσ1φΛ− 1

2
(∂cφ)

2 − 1

24
eσ2φH2

]

gAB + ∂Aφ∂Bφ+
1

4
eσ2φHACEH

CE
B , (2)

∇A∇Aφ− σ1e
σ1φΛ− σ2

24
eσ2φH2 = 0, (3)

∇C

(

eσ2φHCAB
)

= 0, (4)

where H2 = HABCH
ABC .

The equation for the antisymmetric tensor (4) can be solved by the ansatz1

HCAB = ǫCABDE∇DAEe
−σ2φ. (5)

Substituting this into eq. (4) we get

∇C

(

eσ2φǫCABDE∇DAEe
−σ2φ

)

= ǫABCDE∇C∇DAE =
1

2
ǫABCDE (∇C∇D −∇D∇C)AE

=
1

4
ǫABCDER M

CDE AM = 0. (6)

The last equality follows from the second Bianchi identity R D
[ABC] = 0. Now the equation

for AM can be obtained by the identity ∂[AHBCD] = 0, while we have to substitute the

expression we get forH in eqs. (2) and (3) to get the correct equations of motion. Observing

that

H2 = 12e−2σ2F 2,

HAMNH MN
B = 2e−2σ2

(

2F 2gAB − 4FACF
C

B

)

, (7)

1See also [15], though our solutions differ from theirs.
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where

FMN =
1

2
(∇MAN −∇NAM ) , (8)

we get the following equations:

GAB =

[

−eσ1φΛ− 1

2
(∂cφ)

2 +
1

2
e−σ2φF 2

]

gAB + ∂Aφ∂Bφ− 2e−σ2φFACF
C

B , (9)

∇A∇Aφ− σ1e
σ1φΛ− σ2

2
e−σ2φF 2 = 0, (10)

∇B

(

e−σ2φFAB
)

= 0, (11)

which look like the equations of motion of an Einstein-Maxwell model, but in this case the

signs of the Maxwell fields are reversed.

Now, following [9] we search for a static solution with a maximally symmetric 3-space.

The metric ansatz is:

ds2 = −f(R)dt2 +R2

(

dr2

1− kr2
+ r2dΩ2

)

+
dR2

f(R)
. (12)

We also assume that the gauge field is purely electric, i.e. AM ≡ (A(R),0, 0), and that the

dilaton also depends only on the radial coordinate, φ = φ(R). Then the Einstein equations

read:

−3

2

f ′

R
− 3

f

R2
+ 3

k

R2
= Λeσ1φ − 1

4
A′2e−σ2φ +

1

2
fφ′,

3

2

f ′

R
+ 3

f

R2
− 3

k

R2
= −Λeσ1φ +

1

4
A′2e−σ2φ +

1

2
fφ′,

f ′′

2
+ 2

f ′

R
+

f

R2
− k

R2
= −Λeσ1φ − 1

4
A′2e−σ2φ − 1

2
fφ′. (13)

It is easy to see that, summing up the first and second equations, we get that the dilaton

must be constant, φ′(R) = 0, so that we can reabsorb it into the definition of the coupling

constant. So, we are left with only the vector field; the equations are

3

2

f ′

R
+ 3

f

R2
− 3

k

R2
= −Λ+

1

4
A′2,

1

2
f ′′ + 2

f ′

R
+

f

R2
− k

R2
= −Λ− 1

4
A′2,

A′′ + 3
A′

R
= 0. (14)

As usual, by the conservation of the energy-momentum tensor, only two of these equations

are independent. A solution of these equation can be cast in the form

f(R) = − Q2

3R4
− µ

R2
+ k − Λ

6
R2,

A(R) = ± Q

R2
. (15)
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Notice that this solution is quite similar to the one that was found in [6], but the term

proportional to the charge is opposite in sign. Because of this, it is possible to avoid a

naked singularity even if µ is negative. In the next section we will discuss the location of

horizons for different values of the physical constants.

3 Horizons in the Kalb-Ramond Black Hole

We can track the location of the horizons by finding the zeros of the metric function f in

(15). For simplicity we will assume the spatial part of the metric to be flat, k = 0 The

zeroes of the function f can be found by solving the equation:

x3 + 6
µ

Λ
x+ 2

Q2

Λ
= 0, (16)

with x = R2 (so that we are interested only in positive solutions). This equation is conve-

niently solved by use of the Chebyshev radicals. We can identify three different cases (let

us stress that we will assume µ < 0 from now on):

Case 1 When

Λ > −8µ3

Q4
, (17)

we have one real solution

x = −2

√

−2µ

Λ
cosh

[

1

3
cosh−1

(

Q2
√
Λ

(−2µ)3/2

)]

, (18)

but this solution is always negative, so it is not acceptable. Therefore in this part of

the parameter space the background has a naked singularity.

Case 2 When

0 < Λ < −8µ3

Q4
, (19)

we have three real solutions:

x1 = 2

√

−2µ

Λ
cos

[

1

3
arccos

(

− Q2
√
Λ

(−2µ)3/2

)]

,

x2 = −2

√

−2µ

Λ
cos

[

1

3
arccos

(

Q2
√
Λ

(−2µ)3/2

)]

,

x3 = −x1 − x2, (20)

of which the second one is negative, x2 < 0 thus unacceptable, and x1 > x3. In this

case we have two horizons, just as in the usual Reissner-Nordstrøm black hole. The
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horizons can be written as:

R+ =
√
2

(

−2µ

Λ

)1/4

√

√

√

√cos

[

1

3
arccos

(

− Q2
√
Λ

(−2µ)3/2

)]

, (21)

R− =
√
2

(

−2µ

Λ

)1/4

√

√

√

√cos

[

1

3

(

π + arccos

(

Q2
√
Λ

(−2µ)3/2

))]

. (22)

Case 3 This case occurs when

Λ < 0, (23)

and we have, again, one real solution, which can be written as

x = 2

√

2µ

Λ
cos

[

1

3
arccos

(

Q2
√
−Λ

(−2µ)3/2

)]

for
8µ3

Q4
< Λ < 0,

x = 2

√

2µ

Λ
cosh

[

1

3
cosh−1

(

Q2
√
−Λ

(−2µ)3/2

)]

for Λ <
8µ3

Q4
. (24)

This solution is always positive, so that in this case we have only one horizon, which

can be written as

R0 =

(

2µ

Λ

)1/4
√

C1/3

(

2Q2
√
−Λ

(−2µ)3/2

)

, (25)

where the Chebyshev polynomial C1/3 is intended to be

C1/3(t) ≡

{

2 cos
(

1
3 arccos(

t
2)
)

0 < t < 2

2 cosh
(

1
3 cosh

−1( t2)
)

t > 2.
(26)

Since the bulk is asymptotically AdS, this is the most interesting case. As we will

see in the next section, it is in this case that the cosmological evolution on the brane

undergoes a viable bounce.

4 Cosmological evolution of the moving brane

In this section we embed a 3-brane in the bulk described previously, by cutting out R > a,

and imposing a Z2 symmetry at the edge. We then let the brane move through the bulk,

a = a(τ), where τ is proper time on the brane. The movement of the brane in the 5D bulk

induces a cosmological evolution on the brane via the Israel junction condition [9]. To see

this, we need to calculate the extrinsic curvature of the brane. The unit vectors tangent

and normal to the moving brane are:

uA =

(

−
√

f + ȧ2

f
,0, ȧ

)

; vAi = δAi,
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nA =



ȧ,0,−

√

f + ȧ2

f



 , (27)

so that the (spatial part of) the extrinsic curvature is

Kij =
1

2

√

f + ȧ2

a
γij , (28)

where γµν is the induced metric on the brane, which is FRW with scale factor a, and the dot

represents a derivative with respect to proper time on the brane. The modified Friedman

equations are obtained from the junction conditions,

Kij =
1

M3

(

Tij −
1

3
Tγij

)

. (29)

where Tµν is the brane energy-momentum tensor. For Tµν = λγµν + (ρ + p)uµuν + pγµν ,

where λ is the brane tension, we find that:

H2 =
ρ

3M2
4

+
Λ4

3
− k

a2
+
( ρ

3M3

)2
+

Q2

3a6
+

µ

a4
, (30)

where

M4 =
2

3

λ

M6
, Λ4 =

1

3

λ2

M6
+

Λ

2
. (31)

If w = p/ρ is constant, then by energy conservation on the brane, ρ = ρ0a
−3(1+w), and the

effective Friedmann equation (30) can be expressed in terms of the sole a.

The effective Friedman equation contains, apart from the quadratic term in the brane

energy density, a dark radiation term proportional to µ [3, 4] and a term that behaves like

“stiff matter”, proportional to Q [6]. But, as pointed out in the previous section, in our

case this last term, which dominates at high curvature, has a positive contribution, hence

it cannot drive a bounce in the cosmological evolution. Nevertheless, we can allow for a

negative contribution from the dark radiation term, by letting µ be negative. There is

always an “intermediate” curvature regime in which the negative dark radiation dominates,

so that it can be responsible for a possible bounce. Notice that the bounce would happen at

a larger radial coordinate in the bulk than in the case discussed in [6], so that the instabilities

which seem to rule out the bounce [8] could be avoided. In order to discuss these issues,

let us simplify the setup by considering a pure tension, spatially flat brane. The Friedman

equation reduces to

H2 =
Λ4

3
+

µ

a4
+

Q2

3a6
. (32)

Notice that, the 4D cosmological constant becomes dominant at late time, so that, in order

to have an asymptotically de Sitter universe, it must be positive. This is always true in the

dS bulk, while in the AdS case the tension has to satisfy the inequality

λ >

√

−3

2
ΛM6. (33)
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A bounce occurs if the scale factor a(t) reaches a minimum: ȧ = 0, ä > 0. The first

condition can only be met when µ < 0. The behaviour of H as a function of a is depicted

in Fig. 1 for different values of the parameter

Q2
√
Λ4

2(−µ)3/2
≡ RKR

ℓ4
, (34)

which corresponds to the ratio between the 4D de Sitter curvature radius and the charac-

teristic length of the Kalb-Ramond black hole obtained by the charge to mass ratio.

Figure 1: The Hubble parameter H as a function of the scale factor a. The three colors

represent decreasing values of RKR
ℓ4

: 15.81 (red, dotted), 1.41 (blue, dashed), 0.70 (black,

solid.

There are two values of a for which H = 0, but, of course, the only one compatible with

a late time de Sitter evolution is the one located at the largest value of a. As the scale

factor shrinks, the Hubble parameter follow the negative branch of the plot backwards to

zero, then it start to grow again, following the positive branch. Note that this heuristic

observations prove that the point at which the Hubble parameter goes to zero (for the

largest branch) is actually a minimum of the scale factor2. Quantitatively, the zeroes of the

2Quite interestingly, the smallest branch that starts from a = 0 can mimic the evolution of a closed

universe, in which the scale factor reaches a maximum and then starts to decrease, even if the space geometry

of the brane is assumed to be flat. But we will not discuss this issue any further.
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equation (32) can be obtained by solving the equation:

x3 +
3µ

Λ4
x+

Q2

Λ4
= 0. (35)

We require Λ4 > 0 to have a well behaved late time evolution and µ < 0 for the bounce to

occur. We find that there are three real solutions to eq. (35) when

0 < Λ4 < −4µ3

Q4
⇔ RKR < ℓ4, (36)

The solutions can again be expressed in terms of the Chebyshev radicals given by eq. (20)

with Λ replaced by 2Λ4. The second solution is negative so it has to be discarded. We are

only interested in the larger of the two solutions x1. So we conclude that a bounce can

actually occur at the scale factor

ab =
√
2

(

− µ

Λ4

)1/4
√

cos

[

1

3
arccos

(

− Q2
√
Λ4

2(−µ)3/2

)]

. (37)

Next we need to discuss the sign of the second derivative of a, to prove that ab is actually

a minimum as expected. Taking the derivative of (32) we find:

ä

a
= −2

3

Q2

a6
− µ

a4
+

Λ4

3
, (38)

The sign of ä at the bounce can be deduced by studying the function:

3a5

Λ4
ä

∣

∣

∣

∣

a=ab

= a6b −
3µ

Λ4
a2b −

2Q2

Λ4
= −6µ

Λ4
a2b −

3Q2

Λ4

= 12

(

− µ

Λ4

)3/2

cos

[

1

3
arccos

(

− Q2
√
Λ4

2(−µ)3/2

)]

− 3Q2

Λ4
, (39)

where the second equality comes from using (35). Now, observing that cos[. . .] > 1/2 and

using inequality (36) we get

a5

Λ4
ä

∣

∣

∣

∣

a=ab

> 2

(

− µ

Λ4

)3/2

− Q2

Λ4
> 2

(

Λ4Q
4

4

)

1

(Λ4)3/2
− Q2

Λ4
= 0, (40)

which proves that there is actually a bounce at a = ab.

The crucial requirement for a bounce to be acceptable is that it occurs before the brane

crosses the black hole horizon. So we have to check that there exist a non-empty region of

the parameter space in which ab > R+ or ab > R0.
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Figure 2: Plot of ab as a function of the tension λ for different values of RKR
ℓ5

: 0.5 (black,

darker), 0.02 (red, lighter). Dashed curves of the same color represent the position of the

horizons for the same value of RKR
ℓ5

. The case with 2 horizons is on the left, the case with

one horizon is on the right.

We discuss briefly the case in which the bulk black hole has two horizons, i.e. case 2

of the previous section, so that the physical parameters satisfy the inequality (19). As we

will see, this case has to be discarded. In fact, Fig. 2 (left) shows a plot of ab as a function

of the brane tension λ, and the position of the two horizons R+ and R−. We see that the

position of the bounce is always inside the external horizon, and coincides with it for the

tensionless brane. Analytically, it is easy to see that ab is a decreasing function of λ, and,

since Λ4 → Λ/2 as λ → 0, we readily get ab → R+ in the tensionless limit. So, this case is

expected to have an instability similar to the one discussed in [8] (even though in that case

the brane actually bounces after crossing both horizons).

Next, we discuss the most interesting case of a negative bulk cosmological constant

and a single horizon, case 3 of the previous section. Fig. 2 (right) shows ab(λ), and the

corresponding value of R0. In contrast to what happens with two horizons, there is a

region, when the brane tension is close to the critical value expressed in eq. (33), in which

the bounce radius is greater than the horizon position, so that the entire evolution of the

brane lies in the physically viable region outside the horizon. This feature is quite general,

and the reason is easy to understand, since we can see from (37) that ab → ∞ as Λ4 → 0.

Analytically, we have to solve the inequality ab > R0. After some algebra, we find that Λ4

9



has to satisfy the following inequalities:

Λ4 < −Λ

2

3
2C1/3

(

2 Q2
√
−Λ

(−2µ)3/2

)

− Q2
√
−Λ

(−2µ)3/2

3
2C1/3

(

2 Q2
√
−Λ

(−2µ)3/2

)

+ Q2
√
−Λ

(−2µ)3/2

for
Q2

√
−Λ

(−2µ)3/2
< 5, (41)

Λ4 < −Λ

4
C−2
1/3(2

Q2
√
−Λ

(−2µ)3/2
) for

Q2
√
−Λ

(−2µ)3/2
> 5, (42)

where the Chebyshev polynomials have been defined in (26). So there is always an allowed

value of the brane tension for which the brane evolution lies entirely outside the horizon.

Finally, to get the full dynamical evolution from a 4D perspective, we need to solve

the effective Raychaudhuri equation (38). It can not be solved analytically, but numerical

solution confirms that the scale factor undergoes a bounce from a contracting phase to an

expanding one, as illustrated in Fig. 3.

50

100

a

–4 –2 2 4

t

Figure 3: Plot of the numerical solution of a(t). The initial conditions used for the numerical

integration are a(t = −5) = 125, ȧ(t = −5) = −125.

5 Conclusions and outlook

In this paper we presented a braneworld model in which the cosmological evolution of the

brane is non-singular, and the brane universe bounces smoothly from a phase of contraction

to a subsequent expanding phase. The cosmological evolution on the brane is induced by its

movement through a static bulk AdS black hole supported by a non-trivial Kalb-Ramond

antisymmetric 2-form. The solution is similar to the Reissner-Nordstrøm-AdS solution
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presented previously in the literature [6], but in our model the bounce is induced by a

negative dark radiation term sourced by the black hole mass term. In order for this to

be possible, the integration constant µ which appears in the metric solution (15), and

which is proportional to the mass of the black hole, must be negative. Black holes with

negative mass have been considered in the literature [16,17]. This does not lead to a naked

singularity, as we have shown in section 3. But it may create some difficulties related with

the overall stability of the solution (and possibly to its physical interpretation). Stability

analysis of charged black holes in 5 dimensions has proven to be a very difficult task,

and there appears to be no definitive answer for the standard Reissner-Nordstrøm-(A)dS

black hole [18]. More recently, it has been proved [19] that a class of topological black

holes with negative mass is stable in every dimension, which can be regarded as hint of

the good behaviour of 5-dimensonal negative mass black holes against perturbations. The

thermodynamical interpretation of the black hole solution requires the temperature of the

black hole to be positive. The temperature can be related to the value of the derivative of f

at the horizon, so the latter must be positive in order to have an acceptable thermodynamical

behaviour. In our solution this is always the case, whatever the value of µ. Stability and

thermodynamics of the bulk solution presented in this paper are worth further investigation,

which we plan to do in a forthcoming paper.

Future investigation also should extend the study to more general settings. For example,

we have only considered the case of a spatially flat, pure tension brane. While the curvature

term is not expected to change dramatically the picture, it is possible that the presence of

matter could spoil the bouncing behaviour. In fact, the bounce is driven by the negative

dark radiation term, so a sufficiently large amount of positive “ordinary” radiation could

possibly compensate for the negative energy term, thus making the singularity appear again.

The study of the case of a non-empty brane is also important to test the model against

the observational constraints on the early universe evolution, such as nucleosynthesis. In

practice, it is a nice feature that the bounce occurs at a large scale, but it should not be

“too large”, so that the universe would have enough time to undergo its standard evolution.

Another interesting development would be to consider a charged brane. The string

theory embedding of the braneworld scenario would require the interpretation of the brane

as a D-brane on which the open strings, which represent gauge particles, are confined. Of

course, a full string theory derivation of braneworld models is still lacking. Nevertheless, a

D-brane is naturally coupled to the Kalb-Ramond 2-form via, for example, a Dirac-Born-

Infeld action, which can be implemented also in the present model. But in this case the

ansatz (5) is not expected to hold, so the calculation becomes much more complicated.

Bouncing cosmologies have been proposed in various contexts [20–33] as an alternative

to inflation. They have of course the remarkable feature of avoiding the initial singularity,
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but also provide for an alternative, but still perfectly acceptable, solution of the kinematic

problems of the standard cosmological model, without invoking an unknown inflaton. Nev-

ertheless, scalar fluctuations observed by the WMAP and SDSS [34] experiments seem to

favour a nearly scale-invariant spectrum, which is in agreement with the prediction from

chaotic inflation, but very difficult to obtain in a bouncing model. So, as a second step, it

would be essential to study the behaviour of the scalar (and tensor) perturbations.

Acknowledgements

It is a pleasure to thank Valerio Bozza, Olindo Corradini, Maurizio Gasperini, Francisco

Lobo, Roy Maartens, Sanjeev Sehara and David Wands for helpful discussions and com-

ments on the manuscript. GDR is supported by INFN.

12



References

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221].

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].

[3] P. Binetruy, C. Deffayet and D. Langlois, Nucl. Phys. B 565, 269 (2000) [arXiv:hep-

th/9905012].

[4] P. Binetruy, C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B 477, 285 (2000)

[arXiv:hep-th/9910219].

[5] T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000) [arXiv:gr-

qc/9910076].

[6] S. Mukherji and M. Peloso, Phys. Lett. B 547, 297 (2002) [arXiv:hep-th/0205180].

[7] P. Kanti and K. Tamvakis, Phys. Rev. D 68, 024014 (2003) [arXiv:hep-th/0303073].

[8] J. L. Hovdebo and R. C. Myers, JCAP 0311, 012 (2003) [arXiv:hep-th/0308088].

[9] P. Kraus, JHEP 9912, 011 (1999) [arXiv:hep-th/9910149].

[10] K. Behrndt and S. Forste, Nucl. Phys. B 430, 441 (1994) [arXiv:hep-th/9403179].

[11] E. J. Copeland, A. Lahiri and D. Wands, Phys. Rev. D 50, 4868 (1994) [arXiv:hep-

th/9406216].

[12] K. i. Maeda and D. Wands, Phys. Rev. D 62, 124009 (2000) [arXiv:hep-th/0008188].

[13] G. De Risi, Phys. Rev. D 73, 124015 (2006) [arXiv:gr-qc/0601132].

[14] R. Maartens, Living Rev. Rel. 7, 7 (2004) [arXiv:gr-qc/0312059].

[15] S. Das, A. Dey and S. SenGupta, Class. Quant. Grav. 23, L67 (2006) [arXiv:hep-

th/0511247].

[16] R. B. Mann, Class. Quant. Grav. 14, 2927 (1997) [arXiv:gr-qc/9705007].

[17] D. Birmingham, Class. Quant. Grav. 16, 1197 (1999) [arXiv:hep-th/9808032].

[18] H. Kodama and A. Ishibashi, Prog. Theor. Phys. 111, 29 (2004) [arXiv:hep-

th/0308128].

[19] D. Birmingham and S. Mokhtari, arXiv:0709.2388 [hep-th].

13



[20] M. Gasperini, J. Maharana and G. Veneziano, Nucl. Phys. B 472, 349 (1996)

[arXiv:hep-th/9602087].

[21] M. Giovannini, Phys. Rev. D 59, 083511 (1999) [arXiv:hep-th/9807049].

[22] G. De Risi and M. Gasperini, Phys. Lett. B 521, 335 (2001) [arXiv:hep-th/0109137].

[23] M. Gasperini, M. Maggiore and G. Veneziano, Nucl. Phys. B 494, 315 (1997)

[arXiv:hep-th/9611039].

[24] R. H. Brandenberger, R. Easther and J. Maia, JHEP 9808, 007 (1998) [arXiv:gr-

qc/9806111].

[25] D. A. Easson and R. H. Brandenberger, JHEP 9909, 003 (1999) [arXiv:hep-

th/9905175].

[26] S. Foffa, M. Maggiore and R. Sturani, Nucl. Phys. B 552, 395 (1999) [arXiv:hep-

th/9903008].

[27] C. Cartier, E. J. Copeland and R. Madden, JHEP 0001, 035 (2000) [arXiv:hep-

th/9910169].

[28] A. Ashtekar, T. Pawlowski and P. Singh, Phys. Rev. Lett. 96, 141301 (2006) [arXiv:gr-

qc/0602086].

[29] A. Ashtekar, T. Pawlowski and P. Singh, Phys. Rev. D 74, 084003 (2006) [arXiv:gr-

qc/0607039].

[30] G. De Risi, R. Maartens and P. Singh, arXiv:0706.3586 [hep-th].

[31] J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt and N. Turok, Phys. Rev. D 65,

086007 (2002) [arXiv:hep-th/0108187].

[32] P. J. Steinhardt and N. Turok, Phys. Rev. D 65, 126003 (2002) [arXiv:hep-

th/0111098].

[33] C. Germani, N. E. Grandi and A. Kehagias, arXiv:hep-th/0611246.

[34] D. N. Spergel et al. [WMAP Collaboration], Astrophys. J. Suppl. 170, 377 (2007)

[arXiv:astro-ph/0603449].

14


