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Abstract

In this paper we discuss a model in which the energy density, corresponding to the
effective cosmological constant, after the SU(2) × U(1) symmetry breaking appears to
be of the desired order of 10−48 ÷ 10−47GeV 4. The model contain two different energy
scales, one of which is associated with the Higgs’s vacuum expectation value. Another
scale is of the order of 1021GeV and defines the vacuum expectation value of the Brans-
Dicke scalar field, non-minimally coupled to gravity, and sets the value of the Planck mass.
Other (dimensionless) parameters are assumed not to contain hierarchical differences. The
model is devoid of any fine-tuning and gives a small value of the effective cosmological
constant even if the real ”bare” cosmological constant is quite large.

1 Introduction

During the last years the problem of cosmological constant, its origin and small value attracts
much attention. It is very likely that the vacuum energy is indeed a constant, and there are
a lot of attempts to explain the existence of such constant vacuum energy – see, for example,
reviews [1]–[10] and references therein. One of the most interesting questions is that about
its extremely small value. Nevertheless, most of the mechanisms demand a fine tuning, and
corresponding cancellations do not look quite natural.

In this paper we propose the model admitting any value of the real cosmological constant
and providing a desired value of the effective cosmological constant. In the beginning, let us
consider a simple action describing two interacting scalar fields with the action

S =

∫

d4x
√
−g

[

−1

2
∂µφ∂µφ− 1

2
∂µh∂µh− λ1

(

φ2 −M2
)2 − λ2

(

h2 − v2

2

)2

− γ
h8

φ4

]

, (1)

where λ1 ∼ λ2 ∼ 1, v ≪ M , the signature of the metric is chosen to be (−,+,+,+). The
corresponding vacuum solutions for the fields are given by the equations of motion and look
like

φvac ≈ M +
γv8

32λ1M7
, (2)

hvac ≈
v√
2
− γv5

4
√
2λ2M4

. (3)

Let us suppose that M = MGUT ≈ 1016GeV , v = 250GeV and γ = 0.1. The vacuum energy
density

Λ

8πG
= λ1

(

φ2

vac −M2
)2

+ λ2

(

h2

vac −
v2

2

)2

+ γ
h8
vac

φ4
vac

(4)
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where G is the gravitational constant, under these assumptions takes the value

Λ

8πG
≈ γ

v8

16M4
GUT

∼ 10−47GeV 4, (5)

which is exactly the value of the observed dark energy density. In some sense such a way of
deriving the cosmological constant is similar to obtaining the value of the vacuum energy by
combining the fundamental constants, – such examples are discussed in review [2]. One can
also recall the ”seesaw” mechanism for obtaining a small values of physical parameters using
very different energy scales, which has been recently used in connection with the problem of
cosmological constant [11, 12, 13]. At the same time, at least for the action (1), there can be
other contributions to the vacuum energy density, for example, energy of the quantum fluctu-
ations, which obviously neglects the value obtained above. Nevertheless, the idea discussed in
this section can be used for constructing a model which gives the necessary value of the effective
cosmological constant even in the case when the real vacuum energy density is much larger.
We will discuss this model in the next section.

2 The model

Let us consider the action of the form

S =

∫

d4x
√
−g

[

αφR− ω
∂µφ∂µφ

φ
− λ1

(

φ−M2
)2 − Λ̄− 1

48
FµνρσF

µνρσ− (6)

− (DµH)†DµH − λ2

(

H†H − v2

2

)2

+ γ
(

H†H
)2

(

H†H

φ

)n

+ LSM−Higgs

]

,

where R is the four-dimensional curvature, φ is the Brans-Dicke field, ω is the dimensionless
Brans-Dicke parameter, H is the Higgs field, Λ̄ > 0 is the ”bare” energy density of the vacuum
and is supposed to include, for example, contribution of quantum fluctuations, thus its value
can be large (in this action Λ̄ = ρvac – simply the energy density of the vacuum, in this sense
it is not the cosmological constant defined by Λ = 8πGρvac), LSM−Higgs is the Lagrangian of
the Standard Model fields without Higgs’s kinetic term and potential. The Lagrangian of the
3-form gauge field is also added to the action to make the cosmological constant in the Einstein
equations be integration constant (see [14, 15]). Constants α, γ, λ1 and λ2 are dimensionless.
We also suppose that v ≪ M . Since we discuss a theory which includes gravity, we do not
take into account possible issues concerning renormalizability of such theory. The potential
containing Higgs field can be also represented in another form

[

λ2 − γ

(

H†H

φ

)n]
(

H†H
)2 − λ2v

2H†H +
λ2v

4

4
. (7)

Of course, the constant term λ2v
4/4 can be incorporated into Λ̄, but we retain it for simplicity.

Thus, we introduced explicit interaction between the Brans-Dicke and Higgs fields. It should
be noted that the idea to consider interaction of the Higgs field with the fields related to gravity
was already discussed in the literature, see some examples in papers [16, 17]. As for the use
of the two interacting scalar fields in cosmology, such constructions are widely used in hybrid
inflation models, see, for example, review [18]. The Brans-Dicke field itself was also discussed
in cosmology [19].
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We suppose that the vacuum expectation value of the field φ is

φvac = M2. (8)

Correspondingly, from equation of motion for the Higgs field we get

(

H†H
)

vac
≈ v2

2
+

(n+ 2) γv2n+2

2n+2λ2M2n
. (9)

Equation for the field φ gives us

αR = γ
(

H†H
)n+2 n

φn+1
vac

, (10)

which means that
R = γ

(

H†H
)n+2 n

αφn+1
vac

. (11)

Thus, the value of the effective cosmological constant is

Λeff =
γn
(

H†H
)n+2

vac

2αφn+1
vac

. (12)

The solution of equations of motion for the 3-form gauge field is

F µνρσ ∼ cǫµνρσ, (13)

where c is a constant, and contribution of this 3-form field to the action reduces to

− 1

48
FµνρσF

µνρσ → +
c2

2
. (14)

The constant c in (13) is not fixed by the equations of motion for the 3-form field. It is fixed by
the Einstein equations in accordance with (11). Indeed, it follows from the contracted Einstein
equations that

αφvacR = 2

(

Λ̃− c2

2

)

, (15)

where Λ̃ includes Λ̄ and the constant contributions coming from Higgs and Brans-Dicke poten-
tials. Finally

c2 = 2
(

Λ̃− αφvacΛeff

)

. (16)

Thus, this field makes the whole set of equations of motion non-contradictory.
Now let us discuss possible energy scales of the model. The first one is associated with the

scale at which Higgs acquires its vacuum expectation value. The second one, associated with
M , can be chosen by the following reasons. In the beginning of inflation the gravity should
be already ”formed” at the classical level, otherwise we would be unable to perform classical
analysis of the evolution. For the simplest model with the quartic inflaton potential the initial
value of inflaton field is roughly equal to 1021GeV [20]. We suppose that the field’s φ vacuum
expectation value is of the same order and take M ∼ 1021GeV . In this case its potential does
not contribute considerably to the energy density of the Universe, which appears to be defined
at that time only by the inflaton field. The vacuum expectation value of φ also defines the
value of the Planck mass MP l =

√
αφvac.
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Of course, there arises a question: why interaction of the Brans-Dicke field with the Higgs
has the form used in (6)? Moreover, why these fields, one of which acquires its vacuum ex-
pectation value before the beginning of the inflation, interact one with another? We have no
reasonable answers to these questions and note that action (6) should be interpreted only as a
phenomenological model.

For α ∼ 10−4, n = 3/2 and γ = 1 we get

ρeffvac = αφvacΛeff ≈ 3 (2462/2)
7/2

4(1063)
GeV 4 ≈ 3.6 · 10−48GeV 4 (17)

and
MP l =

√

αφvac ∼ 1019GeV. (18)

We would like to note that the choice of the energy scales made above is not the only one
possible. One can choose other values of parameters of the model. Moreover, the gravitational
constant can be defined not by the Brans-Dicke field. Indeed, we can add the following term
to the action (6):

Sextra = M2

P l

∫

d4x
√
−gR, (19)

and suppose that the Brans-Dicke field is associated, for example, with the energy scale of
the symmetry breaking in a possible theory of Grand Unification. In this case one can choose
M ∼ MGUT ∼ 1016GeV , which clearly shows that for α ∼ 1 the gravitational constant is mainly
defined by MP l, not by the Brans-Dicke field. This field is now simply the field non-minimally
interacting with gravity. Nevertheless, if one chooses γ ∼ 1, α ∼ 1, n = 2.3, the necessary value
of Λeff (see (12)) also appears to be obtained.

In the end of this section we would like to say a few words about our choice of the vacuum
expectation value for the field φ. The choice (8) is not the only possible. One can take,
for example, a value slightly different from that used in (8). In this case the solution of
corresponding equations of motion would lead to another value of an effective cosmological
constant, as well as to another value of constant c. Thus, φvac is a free parameter in some
sense. At the same time we suppose that Brans-Dicke field φ acquires its vacuum expectation
value (and defines the Planck mass) at very high energies independently from the Higgs field
(as well as from other fields), and it is defined only by the term λ1 (φ−M2)

2
of the potential

(or by an additional mechanism leading to (8)). This assumption seems to be reasonable from
the physical point of view. When the Higgs field and the corresponding interaction with Brans-
Dicke field come to play at much lower energies, the Higgs’s vacuum expectation value appears
to depend on φvac.

It should be also noted that the Higgs field was used only because its vacuum expectation
value is quite convenient for obtaining the necessary value of the cosmological constant. One
can choose another scalar field, even with a larger vacuum expectation value. Anyway, a Brans-
Dicke field (or another scalar field non-minimally coupled to gravity) with a very large vacuum
expectation value should be used, since it ”connects” different energy scales.

3 Cosmological evolution

Now let us discuss how the Brans-Dicke field can affect cosmological evolution. First, we very
briefly discuss the period of inflation for the simplest case of a single inflaton field. During the
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slow-roll regime the energy density of the universe is supposed to be Vinf . (1019GeV )4. Let
us consider contracted Einstein equation

M2
P lR ≈ 2Vinf + 2λ1ϕ

2, (20)

and equation for the Brans-Dicke field

αR ≈ 2λ1ϕ. (21)

Here φ = M2 + ϕ, ϕ ≪ M2, λ1 ∼ 1, we neglect the contribution of Λeff and time derivatives
of the inflaton and Brans-Dicke field (indeed, during the slow-roll period the curvature R and
inflaton field vary slowly, thus the Brans-Dicke field also varies slowly as follows from (21)).
We also neglect contribution of the Higgs field, which appears to be reasonable for such energy
scale.

Multiplying (21) by M2 and combining with (20) we get

ϕ ≈ Vinf

λ1M2
. 10−8M2. (22)

We see that the assumption ϕ ≪ M2 is satisfied.
The contribution of the Brans-Dicke field to the energy density can be approximated by the

relation

λ1ϕ
2 ∼ Vinf

M4
Vinf .

M4
P l

M4
Vinf ≪ Vinf . (23)

We see, that the Brans-Dicke field does not make a significant contribution to the energy density,
and in this case inflation is driven by the inflaton. Moreover, the Brans-Dicke field self-tunes
itself in an appropriate way to make the equation for the Brans-Dicke field be satisfied.

Of course, corresponding analysis should be made much more carefully, here we presented
only rough reasonings.

Now let us turn to the evolution of the Universe at the present time. Indeed, the evolution
is governed not only by the cosmological constant, but by ordinary and dark matter also. We
denote the (average) energy-momentum tensor of ordinary and dark matter by tµν .

Let us again consider contracted Einstein equation and equation for the Brans-Dicke field
with φ = M2 + ϕ. We also suppose that ϕ ≪ M2 and neglect time derivatives of the Brans-
Dicke field (indeed, Brans-Dicke’s kinetic term takes the form ∼ ω ∂µϕ∂µϕ

M2 , which can be dropped
in comparison with λ1ϕ

2 for the evolution scale defined by Λeff). Below we will show that these
assumptions indeed are satisfied (at the same time we should remember that actually field ϕ
depends on time because of the time dependence of the trace of the energy-momentum tensor
t = tµµ).

The corresponding contracted Einstein equation and equation for the Brans-Dicke field look
like

M2

P lR ≈ 2M2

P lΛeff + 2λ1ϕ
2 − t. (24)

M2

P lR ≈ 2M2

P lΛeff + 2λ1M
2ϕ, (25)

from which it follows that

ϕ ≈ − t

2λ1M2
. (26)

We see that for the present average density of the Universe ϕ ≪ M2, and our assumption is
indeed satisfied. The contribution of this field to the energy density

λ1ϕ
2 ∼ t2

4λ1M4
,

5



which is much smaller even than M2
P lΛeff (we realize that t ∼ M2

P lΛeff), and thus can be
neglected. Again we see that the Brans-Dicke field does not affect the evolution, its contribution
to the energy-momentum tensor can be dropped, and again it self-tunes itself in accordance
with the ”ordinary” evolution governed by the Einstein equations.

In the end of this section it is necessary to discuss the problem concerning the value of
constant c. Indeed, it is defined in accordance with equations (12) and (16), which were
obtained for the case of absence of any matter except Higgs and Brans-Dicke fields in their
vacuum states. At the same time c is a constant and does not depend on time. In the limit
x0 → ∞ the ordinary and dark matter average densities tend to zero, ϕ → 0, solution for the
metric tends to dS4 and only the cosmological constant contributes to the energy density and
pressure (the value of Λ̄ in (2) is supposed to be that after all the phase transitions such as
electro-weak and QCD). Thus, the constant c should be such that equations of motion in this
asymptotic case be satisfied, i.e. it is defined by the boundary conditions at the time infinity.
This is exactly the value given by (12).

We would like to note that in this section only a very brief discussion of cosmological evolu-
tion is presented. One should make a thorough analysis to make sure that the existence of the
Brans-Dicke field does not affect the cosmological evolution significantly. But we suppose that
since the parameter M is very large, the Brans-Dicke field would self-tune itself correspond-
ing to Einstein equations at all stages of the evolution, at least at the classical level. At the
same time the mechanism discussed in Section 2 could ”switch on” after the inflation period or
even later (for example, if the scalar field coupled to gravity is not connected with definition
of the Planck mass and acquires its vacuum expectation value after this stage) and could not
produce any effect at these early stages. Anyway, at the present time, when the energy/mass
densities of usual baryonic matter, dark matter and vacuum (defined by ρeff ) are comparable,
our mechanism indeed works.

4 Stability and Brans-Dicke–Higgs fields mixing

In this section we will discuss how this model can modify Higgs sector of the Standard model
and its influence on the classical Newtonian gravity. To this end we consider second variation
Lagrangian of the theory. Let us denote gµν = g0µν + 1

MPl
hµν , where g0µν is the background

metric, φ = M2 + ϕ and

H =

(

0
√

(H†H)vac +
Φ√
2

)

, (27)

then substitute it into action (6) and retain the terms quadratic in metric and scalar fields. We
get

S =

∫

d4x
√

−g0
[

L2[hµν ]−
ω

M2
∂µϕ∂

µϕ− λ1ϕ
2 − 1

2
∂µΦ∂µΦ− m2

H

2
Φ2− (28)

− 1

MP l
hµνα

(

ϕR0

µν − ϕ
1

2
g0µνR

0 −∇µ∇νϕ+ g0µν∇ρ∇ρϕ

)

− γ
n(n+ 2)

√
2
(

H†H
)n+ 3

2

vac

M2n+2
Φϕ+

+
1

2MP l

hµνg0µν
√
2Φ
√

(H†H)vac

(

γ (n+ 2)
(

H†H
)n+1

vac

M2n
− 2λ2

(

(

H†H
)

vac
− v2

2

)

)

−
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− 1

2MP l
hµνg0µνϕ

nγ
(

H†H
)n+2

vac

M2n+2
+

1

2MP l
hµνtµν

]

.

Here L2[hµν ] is the Lagrangian containing terms of the second order in hµν , ∇µ is the covariant
derivative with respect to the background metric g0µν , mH is the mass of Higgs field Φ in the
unitary gauge, R0

µν and R0 contain only g0µν , ω ∼ 1, λ1 ∼ 1 and other parameters are the same as
those used in Section 2. We neglect contributions ∼ ϕ2, ∼ Φ2, coming from the term describing
Higgs–Brans-Dicke fields interaction, in comparison with λ1ϕ

2 and m2
HΦ

2 respectively. We also
include interaction of the graviton with matter with the energy-momentum tensor tµν .

With the help of equations (9), (11) for the background solution this action takes a simpler
form, where we have also replaced

(

H†H
)

vac
by v2

2
in the term ∼ Φϕ

S =

∫

d4x
√

−g0
[

L2[hµν ]−
ω

M2
∂µϕ∂

µϕ− λ1ϕ
2 − 1

2
∂µΦ∂µΦ− m2

H

2
Φ2− (29)

− 1

MP l
hµνα

(

ϕR0
µν −∇µ∇νϕ+ g0µν∇ρ∇ρϕ

)

− γ
n(n+ 2)v2n+3

2n+1M2n+2
Φϕ +

1

2MP l
hµνtµν

]

.

We see that some non-diagonal terms have vanished from the action. For simplicity, we neglect
the effect of the cosmological constant. In this case g0µν → ηµν , where ηµν is the flat Minkowski

metric, R0
µν → 0 and ∇µ → ∂µ. In addition, let us make redefinition hµν ⇒ hµν −

√
α

M
ηµνϕ.

Substituting it into action (29), we get

S =

∫

d4x

[

LFP [hµν ]−
1

2

(

2ω + 3α

M2

)

∂µϕ∂
µϕ− λ1ϕ

2 − 1

2
∂µΦ∂µΦ− m2

H

2
Φ2− (30)

−γ
n(n + 2)v2n+3

2n+1M2n+2
Φϕ+

1

2MP l
hµνtµν −

√
α

2MP lM
ϕt

]

.

Here LFP is the standard Fierz-Pauli Lagrangian. After redefining the fluctuations of the
Brans-Dicke field as ϕ̃ =

√
2ω+3α
M

ϕ, (30) takes the form

S =

∫

d4x

[

LFP (hµν)−
1

2
∂µϕ̃∂

µϕ̃− m2

2
ϕ̃2 − 1

2
∂µΦ∂µΦ− m2

H

2
Φ2− (31)

− b

2
Φϕ̃ +

1

2MP l

hµνtµν −
√
α√

2ω + 3α

1

2MP l

ϕ̃ t

]

.

Where

m2 =
2λ1M

2

2ω + 3α
∼ M2,

b =
2γn(n+ 2)v2n+3

2n+1
√
2ω + 3αM2n+1

∼ v6

M4
.

The Lagrangian for the scalar fields can be easily diagonalized with the help of the substi-
tution

Φ = Φ′ cos θ + ϕ̃′ sin θ, (32)

ϕ̃ = ϕ̃′ cos θ − Φ′ sin θ (33)
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with

tan 2θ =
b

m2 −m2
H

.

Since θ ≪ 1, we get

Φ = Φ′ +
b

2m2
ϕ̃′, (34)

ϕ̃ = ϕ̃′ − b

2m2
Φ′ (35)

and

m′
H

2
= m2

H +m2O

(

b2

m4

)

≈ m2

H , (36)

m′2 = m2 +m2O

(

b2

m4

)

≈ m2. (37)

Here
b

m2
∼ v6

M6
∼ 10−112.

The action takes the form

S =

∫

d4x

[

LFP (hµν)−
1

2
∂µϕ̃

′∂µϕ̃′ − m2

2
ϕ̃′2 − 1

2
∂µΦ′∂µΦ

′ − m2
H

2
Φ′2+ (38)

+
1

2MP l
hµνtµν −

√
α√

2ω + 3α

1

2MP l
ϕ̃′ t +

b
√
α

2m2
√
2ω + 3α

1

2MP l
Φ′ t

]

.

Quadratic action (38) can be also obtained in another way. First, we can make a conformal
rescaling in (6) and pass to the Einstein frame, then consider quadratic approximation for the
Lagrangian of the scalar fields and fluctuations of the metric taking into account the equations
for the background metric, then make the diagonalization with the help of (32), (33) and only
finally pass to the flat metric.

We see that the linearized theory does not contain tachyons or ghosts, i.e. it is stable.
The Brans-Dicke field and Higgs field appear to be mixed, which leads to new interactions, for
example, of the Higgs field with matter through the trace of the energy-momentum tensor t.
But the corresponding new interactions can be completely neglected because of the suppression
by the factor 10−112 for our choice of the parameters of the model. We also see that the mass of
the Brans-Dicke field m ∼ 1021GeV , so that this field decouples from the low-energy effective
theory. Thus, in the linear approximation, in fact, we have ordinary tensor massless gravity.

5 Conclusion

In this paper we discussed a model which provides the necessary value of the effective cosmo-
logical constant at the classical level. We used interacting Higgs and Brans-Dicke fields and
the 3-form gauge field. It is necessary to note that the Higgs and Brans-Dicke fields are not
the only possible fields which can be used in the mechanism described above. The Higgs field
was used because of the value of the Standard Model’s symmetry breaking scale, while Brans-
Dicke field was used because the corresponding theory is one of the most known which can be
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used to define the Planck mass within the framework of the classical field theory. Obviously
one can use any two interacting (in an appropriate way) scalar fields with different vacuum
expectation values, one of which is non-minimally coupled to gravity, or even only one scalar
field, non-minimally coupled to gravity. But in the latter case one should either introduce some
energy scale ”by hands” (in our case it is provided by the Higgs mechanism), or use potentials
including, for example, exponential terms to make the hierarchy of scales. Indeed, the idea is
simple – the effective cosmological constant appears due to the interaction with Brans-Dicke
field, and the Higgs mechanism sets only the second energy scale. But since we already have
this scale, it is reasonable to use it, than to introduce a new one. At the same time the 3-form
gauge field is necessary to make the ”bare” cosmological constant be an integration constant.

We think that it is also interesting to make a thorough study of how the Brans-Dicke
field in our model affects the whole cosmological evolution. But this problem calls for further
investigations.
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