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We outline three new ideas in a program to obtain standard physics, includ-
ing standard supersymmetry, from a Planck-scale statistical theory: (1) The
initial spin 1/2 bosonic fields are transformed to spin 0 fields together with
their auxiliary fields. (2) Time is defined by the progression of 3-geometries,
just as originally proposed by DeWitt. (3) The initial (D-1)-dimensional “path
integral” is converted from Euclidean to Lorentzian form by transformation of
the fields in the integrand.

In earlier work it was shown that a fundamental statistical theory (at

the Planck scale) can lead to many features of standard physics1–3. In

some respects, however, the results had nonstandard features which ap-

pear to present difficulties. For example, the primitive supersymmetry of

the earlier papers is quite different from the standard formulation of su-

persymmetry which works so admirably in both protecting the masses of

Higgs fields from quadratic divergences and predicting coupling constant

unification at high energy. Also, the fact that the theory was originally

formulated in Euclidean time seems physically unsatisfactory for reasons

mentioned below. Here we introduce some refinements in the theory which

eliminate these two problems. The ideas in the following sections respec-

tively grew out of discussions of the first author with Seiichirou Yokoo (on

the transformation of spin 1/2 to spin 0 fields) and Zorawar Wadiasingh

(on the transformation of the path integral from Euclidean to Lorentzian

form).

1. Transformation of Original Spin 1/2 Fields Yields

Standard Supersymmetry

In Refs. 2 and 3, the action for a fundamental bosonic field was found to

have the form

http://arxiv.org/abs/0711.3816v1
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Sb =

∫

d4xψ†
b iσ

µ∂µψb (1)

at energies that are far below the Planck energy mP (with ~ = c = 1)

and in a locally inertial coordinate system. This is the conventional form of

the action for fermions, described by 2-component Weyl spinors, but it is

highly unconventional for bosons, because a boson described by ψb would

have spin 1/2. We can, however, transform from the original 2-component

field ψb to two 1-component complex fields φ and F by writing

ψb (x) = ψ+ (x) + ψ− (x) (2)

ψ+ (~x, t) =
∑

~p,ω

φ (~p, ω)u+ (~p) ei~p·~xe−iωt (ω + |~p|)
1/2

(3)

ψ− (~x, t) =
∑

~p,ω

F (~p, ω)u− (~p) ei~p·~xe−iωt (ω + |~p|)
−1/2

(4)

with

~σ · ~pu+ (~p) = + |~p|u+ (~p) , ~σ · ~p u− (~p) = − |~p|u− (~p) (5)

φ (~p, ω) =

∫

d4xφ (~x, t) e−i~p·~xeiωt , F (~p, ω) =

∫

d4xF (~x, t) e−i~p·~xeiωt .

Substitution then gives

Sb = V −1
∑

~p,ω

[

φ∗ (~p, ω)
(

ω2 − |~p|
2
)

φ (~p, ω) + F ∗ (~p, ω)F (~p, ω)
]

(6)

=

∫

d4x [−∂µφ∗ (x) ∂µφ (x) + F ∗ (x)F (x)] (7)

where ∂µ = ηµν∂ν , η
µν = diag (−1, 1, 1, 1), and V is a 4-dimensional nor-

malization volume. This is, of course, precisely the action for a massless

scalar boson field φ and its auxiliary field F .

With the fermionic action left in its original form, we now have the

standard supersymmetric action for each pair of susy partners:

Sfb =

∫

d4x
[

ψ†
f iσ

µ∂µψf − ∂µφ∗ (x) ∂µφ (x) + F ∗ (x)F (x)
]

. (8)

There is a major point that will be discussed at length elsewhere, in a

more complete treatment of the present theory: The above transformation

works only for ω + |~p| ≥ 0, since otherwise the sign of the integrand would

be reversed. However, a stable vacuum already requires ω ≥ 0, so we must

define time for would-be negative-frequency fields in such a way that this

condition is satisfied.
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2. Time is Defined by Progression of 3-Geometries in

External Space

In our earlier work, the time coordinate x0 was initially defined in exactly

the same way as each spatial coordinate xk, so x0 was initially a Euclidean

variable. For reasons given in the following section, however, this does not

seem to be as physically reasonable as a picture in which time is Lorentzian

when it is first defined. In this section, therefore, we move to a new picture

in which the initial “path integral” ZE still has the Euclidean form

ZE =

∫

D (Reφ) D (Imφ) e−S , S =

∫

dD−1xφ∗ (~x) Aφ (~x) (9)

but there is initially no time. We are then confronted with the well-known

situation in canonical quantum gravity4, where the “wavefunction of the

universe” is a functional of only 3-geometries, with no time dependence.

Roughly speaking, cosmological time is then defined by the cosmic scale

factor R (except that there can be different branches for the state of the

universe, corresponding to, e.g., expansion and contraction, as well as dif-

ferent initial conditions). More precisely, the progression of time is locally

defined by the progression of local 3-geometries.

An analogy is a stationary state for a proton with coordinates ~X passing

a hydrogen atom with coordinates ~x. The time-independent Schrödinger

equation can be written

(

−
~
2

2mp
∇2

p +He

)

Ψ
(

~X
)

ψ
(

~x, ~X
)

= EΨ
(

~X
)

ψ
(

~x, ~X
)

(10)

with Ψ required to satisfy

−
~
2

2mp
∇2

p Ψ
(

~X
)

= EΨ
(

~X
)

. (11)

Then the equation for ψ is

(

−
~
2

mp
Ψ−1~∇pΨ · ~∇p −

~
2

2mp
∇2

p +He

)

ψ
(

~x, ~X
)

= 0. (12)

The first term involves a local proton velocity

~vp = ~ ~∇pθ/mp , Ψ = |Ψ| eiθ. (13)

For a state in which the proton is moving rapidly, with

Ψ = Ψ0e
i~P · ~X/~, (14)
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and in which
(

~
2/2mp

)

∇2
p ψ is relatively small, we obtain

i~
∂

∂t
ψ (~x, t) = He ψ (~x, t) ,

∂

∂t
≡

~P

mp
· ~∇p . (15)

One then has an “internal time” defined within a stationary state5. Simi-

larly, one can define time as a progression of 3-geometries, just as proposed

40 years ago by DeWitt, whose formulation of canonical quantum gravity

(following the classical canonical decomposition of Arnowitt, Deser, and

Misner, and the work of Dirac, Wheeler, and others) involves the local

canonical momentum operator

πkl (~x) = − i
δ

δgkl (~x)
, (16)

which corresponds to the proton momentum operator − i ~~∇p in the anal-

ogy above. After introducing the 3-dimensional metric tensor in the way

described in Refs. 1-3, and the gravitational action in a way that will be

described in a more complete treatment, we move from the original path-

integral quantization to canonical quantization, with a state

Ψtotal = Ψgravity [gkl (~x)] Ψotherfields [φotherfields (~x) , gkl (~x)] (17)

and time is defined essentially in the same way as in the analogy.

3. Transformation of 3-Dimensional “Path Integral”

Changes Euclidean Factor e−S to Lorentzian Factor eiS

A Euclidean path integral with the form of (9), but with time included, is

formally transformed into a Lorentzian path integral

ZD
L =

∫

D (ReφL) D (ImφL) e
iSD

L , SD
L =

∫

dDxLL (18)

through an inverse Wick rotation x0E = tE → ix0L = itL. S
D
L has the usual

form of a classical action, and it leads to the usual description of quantized

fields via path-integral quantization. In other words, the standard equa-

tions of physics follow from SD
L , and are therefore formulated in Lorentzian

time. The Euclidean formulation, in either coordinate or momentum space,

is ordinarily regarded as a mere mathematical tool which can simplify cal-

culations and make them better defined.

Hawking, on the other hand, has suggested that Euclidean spacetime

may actually be more fundamental than Lorentzian spacetime. In his well-

known popular book, he says6 “So maybe what we call imaginary time is



October 28, 2018 17:29 WSPC - Proceedings Trim Size: 9in x 6in Allen˙Dark2007˙Nov24

5

really more basic, and what we call real is just an idea that we invent to

help us describe what we think the universe is like.” And in a more technical

paper he states7 “In fact one could take the attitude that quantum theory

and indeed the whole of physics is really defined in the Euclidean region

and that it is simply a consequence of our perception that we interpret it

in the Lorentzian regime.”

However, there is a fundamental problem with this point of view, be-

cause the factor eiS
D

L in the Lorentzian formulation results in interference

effects, whereas the factor e−SD

E in the Euclidean formulation does not.

Also, a formal transformation from tE to tL mixes all of the supposedly

more fundamental Euclidean times in the single Lorentzian time that we

actually experience. Finally, it appears difficult to formulate a mathemati-

cally well-founded and physically well-motivated transformation of a general

path integral from Euclidean to Lorentzian spacetime.

Here we adopt a very different point of view: (1) Nature is fundamen-

tally statistical, essentially as proposed in Refs. 1-3, but the initial path

integral (or partition function) does not contain the time as a fundamental

coordinate. Instead time is defined by the local 3-space geometry (or more

generally, (D-1)-space geometry). (2) It is, however, still necessary to trans-

form from the Euclidean form (9), with e−S , to the Lorentzian form (18),

with eiS (but also with no time coordinate, so that D → D − 1 in (18)),

and this is our goal in the present section.

Consider a single complex scalar field φ with a 3-dimensional “Euclidean

path integral”

ZE =

∫

D (Reφ) D (Imφ) e−S , S =

∫

d3xφ∗ (~x) Aφ (~x) . (19)

In a discrete picture, the operator A is replaced by a matrix with elements

A (~x, ~x′):

S =
∑

x,x′

φ∗ (~x) A (~x, ~x′) φ (~x′) . (20)

A can be diagonalized to A
(

~k,~k′
)

= a
(

~k
)

δ~k,~k′
. Then

ZE ≡

[

∏

~x

∫ ∞

−∞

d (Reφ (~x))

∫ ∞

−∞

d (Imφ (~x))

]

exp



−
∑

~x,~x′

φ∗ (~x) A (~x, ~x′) φ (~x′)




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becomes8

ZE =





∏

~k

∫ ∞

−∞

dReφ
(

~k
)

∫ ∞

−∞

d Imφ
(

~k
)



 exp



−
∑

~k

φ∗
(

~k
)

a
(

~k
)

φ
(

~k
)



 .

(21)

The Gaussian integrals over Reφ
(

~k
)

and Imφ
(

~k
)

may be evaluated as

usual at each ~k to give

ZE =
∏

~k

π

a
(

~k
) =

∏

~k π

detA
. (22)

Here, and in the earlier papers, two representations of the path integral

are taken to be physically equivalent if they give the same result for all

operators A (including those which produce zero except for arbitrarily re-

stricted regions of space and sets of fields). For example, we might define a

path integral Z ′ with fields φ′ and φ̄′ which are treated as independent and

which each vary along the real axis. It is then appropriate to include the

formal Jabobian, with a value of 1/2, which would correspond to a transfor-

mation from Reφ and Imφ to φ′ = Reφ+ i Imφ and φ̄′ = i (Reφ− i Imφ).

Since

Z ′ ≡





∏

~k

1

2

∫ ∞

−∞

d
(

φ′
(

~k
))

∫ ∞

−∞

d
(

φ̄′
(

~k
))



 exp





∑

~k

i φ̄′
(

~k
)

a
(

~k
)

φ′
(

~k
)





=
∏

~k

1

2

∫ ∞

−∞

d
(

φ′
(

~k
))

∫ ∞

−∞

d
(

φ̄′
(

~k
))

exp
(

i φ̄′
(

~k
)

a
(

~k
)

φ′
(

~k
))

=
∏

~k

1

2a
(

~k
)

∫ ∞

−∞

d
(

a
(

~k
)

φ′
(

~k
))

2π δ
(

a
(

~k
)

φ′
(

~k
))

(23)

=
∏

~k

π

a
(

~k
) (24)

= ZE (25)

for any operator A, we regard ZE and Z ′ as being physically equivalent.

Now let us define a “Lorentzian path integral” ZL by

ZL =

∫

D (Reφ) D (Imφ) eiS (26)

≡

[

∏

~x

1

i

∫ ∞

−∞

d (Reφ (~x))

∫ ∞

−∞

d (Imφ (~x))

]

exp



i
∑

~x,~x′

φ∗ (~x) A (~x, ~x′) φ (~x′)



 .
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Diagonalization of A gives

ZL =





∏

~k

1

i

∫ ∞

−∞

dReφ
(

~k
)

∫ ∞

−∞

d Imφ
(

~k
)



 exp



i
∑

~k

φ∗
(

~k
)

a
(

~k
)

φ
(

~k
)





=
∏

~k

1

i

i π

a
(

~k
) (27)

= ZE . (28)

Then ZE can be replaced by ZL, which involves the original operator A and

the original spatial coordinates ~x, but a different form for the integrand.

This replacement is possible because time is introduced only after Z is in

Lorentzian form.

The transformation from ZE to ZL can be regarded as a transformation

of the fields in the integrand, with the lines along which Reφ and Imφ are

integrated each being rotated by 45◦ in the complex plane9.

4. Outline of Broad Program: From a Planck-Scale

Statistical Theory to Standard Physics with

Supersymmetry

The ideas above are part of a broad program to obtain standard physics,

including supersymmetry, from a description at the Planck scale which is

purely statistical. The major steps in the complete program are as follows:

(1) The fundamental statistical picture gives a D−1 “Euclidean action”

for bosons only (and with no time yet):

ZD−1
b =

∫

D (Reφ) D (Imφ) e−Sb , Sb =

∫

dD−1xLD−1
b . (29)

(2) Random fluctuations then give a “Euclidean action” with bosons,

fermions, and a primitive supersymmetry:

ZD−1
E =

∫

D (Reφ) D (Imφ) D (Reψ) D (Imψ) e−S , S =

∫

dD−1xLD−1 .

(30)

(3) Transformation of the integrand in the “path integral” changes the

“Euclidean factor” e−S to the “Lorentzian factor” eiS :

ZD−1
L =

∫

D (Reφ) D (Imφ) D (Reψ) D (Imψ) eiS , S =

∫

dD−1xLD−1 .

(31)

(4) The 3-dimensional gravitational metric tensor gkl and SO(N) gauge

fields Ak (and their initial, primitive supersymmetric partners) result from
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rotations of the vacuum state vector, in both 3-dimensional external space

and D − 4 dimensional internal space.

(5) Time is defined by the progression of 3-geometries in external space.

(6) The Einstein-Hilbert action for the gravitational field (as well as the

cosmological constant), the Maxwell-Yang-Mills action for the gauge fields,

and the analogous terms for the gaugino and gravitino fields are assumed

to arise from a response of the vacuum that is analogous to the diamagnetic

response of electrons.

(7) The gravitational field is approximately quantized via first a path-

integral formulation and then the canonical formulation of Ref. 4.

(8) Heisenberg equations of motion are then obtained for all fields.

(9) Transformation of the initial spin 1/2 bosonic fields, followed by

definition of standard gaugino and gravitino fields, gives standard super-

symmetry.

(10) One finally obtains an effective action which is the same as that of

standard physics with supersymmetry, except that particle masses, Yukawa

couplings, and self-interactions are assumed to arise from supersymmetry

breaking and radiative corrections.

A more complete treatment will be given in a much longer paper.
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