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Einstein-æther theory is general relativity coupled to a dynamical unit timelike
vector field. A brief review of current theoretical understanding and observational
constraints on the four coupling parameters of the theory is given.

1. Introduction

In general relativity (GR), spacetime structure is determined by a dynam-

ical metric tensor field gab and nothing else, and the theory is both diffeo-

morphism invariant and locally Lorentz invariant. Einstein-æther theory

is the extension of GR that incorporates a dynamical unit timelike vector

field ua—the “æther”—which breaks the local Lorentz symmetry down to

a 3d rotation subgroup. Direct coupling of matter to the æther would vio-

late local Lorentz symmetry yet preserve diffeomorphism invariance. This

paper presents a brief overview of the current theoretical and observational

status of this theory, assuming that matter does not couple directly to the

æther.

The action involving metric and æther is highly constrained. Besides the

cosmological constant term, the only independent diffeomorphism invariant

local terms containing no more than two derivatives are

S = − 1

16πG

∫ √−g (R+Kab
mn∇au

m∇bu
n) d4x, (1)

where R is the Ricci scalar, Kab
mn is defined as

Kab
mn = c1g

abgmn + c2δ
a
mδbn + c3δ

a
nδ

b
m + c4u

aubgmn (2)

with dimensionless coupling constants ci, and the unit timelike constraint

on the æther is implicit. (The metric signature is (+−−−) and the speed of
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light defined by the metric gab is unity.) Higher derivatives would be sup-

pressed by powers of a (presumably) small length, e.g. the Planck length.

It is assumed here that the æther is aligned at large scales with the rest

frame of the microwave background radiation.

Einstein-æther theory—“æ-theory” for short—is similar to the vector-

tensor gravity theories studied by Will and Nordvedt,1 but with the crucial

difference that the vector field is constrained to have unit norm. This

constraint eliminates a wrong-sign kinetic term for the length-stretching

mode,2 hence gives the theory a chance to be viable. An equivalent theory

using the tetrad formalism was first studied by Gasperini,3 and in the above

form it was introduced by Jacobson and Mattingly.4

2. Newtonian and post-Newtonian limits

In the weak-field, slow-motion limit æ-theory reduces to Newtonian

gravity,5 with a value of Newton’s constant GN related to the parameter G

in the action (1) by

GN =
G

1− c14/2
, (3)

where c14 ≡ c1 + c4. (Similar notation is used below for other additive

combinations of the ci.) For any choice of the ci, all parameterized post-

Newtonian (PPN) parameters6 of æ-theory agree with those of GR7,8 except

the preferred frame parameters α1,2 which are given by8

α1 =
−8(c23 + c1c4)

2c1 − c21 + c23
(4)

α2 =
α1

2
− (c1 + 2c3 − c4)(2c1 + 3c2 + c3 + c4)

c123(2− c14)
(5)

(This particular way of expressing α2 was given in Ref. 9. The small ci
form of α2 was first computed in Ref. 10.)

Observations currently impose the strong constraints α1 . 10−4 and

α2 . 4 × 10−7.6 Since æ-theory has four free parameters ci, we may set

α1,2 exactly zero by imposing the conditions8

c2 = (−2c21 − c1c3 + c23)/3c1 (6)

c4 = −c23/c1. (7)

With (6,7) satisfied, all the PPN parameters of æ-theory are equivalent to

those of GR. (The parameters α1,2 can also be set to zero by imposing

c13 = c14 = 0, but this case is pathological, as discussed in section 8.)
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3. Homogeneous isotropic cosmology

Assuming spatial homogeneity and isotropy, ua necessarily coincides with

the 4-velocity of the isotropic observers, and the æther stress tensor is

just a certain combination of the Einstein tensor and the stress tensor of

a perfect fluid with energy density proportional to the inverse square of

the scale factor, like the curvature term in the Friedman equation.11,5 The

latter contribution plays no important cosmological role since the spatial

curvature is small, while the former renormalizes the gravitational constant

appearing in the Friedman equation, yielding5

Gcosmo =
G

1 + (c13 + 3c2)/2
. (8)

Since Gcosmo is not the same as GN the expansion rate of the universe

differs from what would have been expected in GR with the same matter

content. The ratio is constrained by the observed primordial 4He abundance

to satisfy |Gcosmo/GN − 1| < 1/8.5 When the PPN parameters α1,2 are set

to zero by (6,7), it turns out that Gcosmo = GN, so this nucleosynthesis

constraint is automatically satisfied.8

4. Linearized wave modes

When linearized about a flat metric and constant æther, æ-theory posesses

five massless modes for each wave vector: two spin-2, two spin-1, and one

spin-0 mode. The squared speeds of these modes relative to the æther rest

frame are given by12

spin-2 1/(1− c13) (9)

spin-1 (c1 − 1

2
c21 +

1

2
c23)/c14(1− c13) (10)

spin-0 c123(2− c14)/c14(1− c13)(2 + c13 + 3c2) (11)

The corresponding polarization tensors were found in one gauge in Ref. 12

and in another gauge in Ref. 9. The energy density of the spin-2 modes is

always positive, while for the spin-1 modes it has the sign of (2c1 − c21 +

c23)/(1 − c13), and for the spin-0 modes it has the sign of c14(2 − c14).
13,9

(These reduce to the results of Ref. 14 in the decoupling limit where gravity

is turned off.)

These squared speeds correspond to (frequency/wavenumber)2, so must

be non-negative to avoid imaginary frequency instabilities. They must

moreover be greater than unity (super-luminal), to avoid the existence of

vacuum Čerenkov radiation by matter.2 (The strongest constraints arise
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from the existence of ultra high energy cosmic rays.) And the mode en-

ergy densities should be positive, to avoid dynamical instabilities. With the

α1,2 = 0 conditions (6,7) imposed, all of these conditions are met for all of

the modes if and only if c± = c1 ± c3 are restricted by the inequalities8

0 ≤ c+ ≤ 1 (12)

0 ≤ c− ≤ c+/3(1− c+). (13)

Interestingly, if the mode speeds are instead required to be less than unity

(sub-luminal), then the spin-1 and spin-0 energy densities are negative.

Hence not only the Čerenkov constraint, but also energy positivity (together

with α1,2 = 0) requires mode speeds greater than unity.

Note that when (7) holds, we have c14 = 2c+c−/(c+ + c−), which sat-

isfies 0 ≤ c14 < 2 when the constraints (12,13) hold. Thus in particular

the condition for attractive gravity mentioned in section 2 need not be

separately imposed, and c14 is non-negative.

5. Primordial perturbations

Given the same GN, and assuming the PPN parameters α1,2 vanish, the pri-

mordial power in cosmological spin-0 and spin-1 perturbations is unchanged

relative to GR, while the power in spin-2 perturbations differs from that in

GR by the factor (1− c14/2)(1− c13)
1/2.14,15 When the constraints (12,13)

are satisfied this factor is smaller than unity, hence these spin-2 perturba-

tions are even more difficult to detect than in GR. As for the late time

evolution of these perturbations, neutrino stresses in the radiation domi-

nated epoch source the spin-1 mode, which leads to modified matter and

CMB spectra. The effect is rather small however, and is degenerate with

matter-galaxy bias and with neutrino masses.15

6. Radiation damping and strong self-field effects

If the fields are weak everywhere (including inside the radiating bodies),

and the PPN parameters α1,2 vanish, radiation is sourced only by the

quadrupole. Waves of spins 0, 1 and 2 are radiated, and the net power is

given by (GNA/5)
...
Q

2

ij , where Qij is the quadrupole moment and A = A[ci]

is a function of the coupling parameters ci that reduces to unity in the case

of GR.9 Agreement with the damping rate of GR (confirmed to ∼ 0.1%

in binary pulsar systems6) can be achieved by imposing the condition

A[ci] = 1, which is consistent with the constraints (12,13).
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Compact sources with strong internal fields such as neutron stars or

black holes can be handled16 using an “effective source” dynamics specified

by a worldline action integral

S = −m0

∫
dτ [1 + σ(vaua − 1) + σ′(vaua − 1)2 + . . . ], (14)

where va is the 4-velocity of the body, ua is the local background value

of the æther, and σ and σ′ are constants characterizing the body, called a

“sensitivity parameters” or just “sensitivities”. The sensitivites scale as ci
for small ci.

The effects of nonzero sensitivities on two-body dynamics and radiation

rates lead to a number of phenomena that are constrained by observations,

including violations of the strong equivalence principle, modifications of the

post-Newtonian dynamics, modifications of quadrupole sourced radiation,

and both monopole and dipole sourced radiation. When α1,2 = 0, all of

these constraints are met provided the sensitivities are less than ∼ 0.001,

which will certainly be the case if ci . 0.01.16a To be more precise would

require knowing the actual dependence of the sensitivities on the ci, which

has so far only been determined for σ and only at leading order (where σ

vanishes when α1,2 = 0). (The speed V of the observed binaries with respect

to the background æther frame can be neglected in formulating these con-

straints provided V . 10−2, which is easily satisfied for any known proper

motion relative to the rest frame of the microwave background radiation.16)

7. Spherically symmetric stars and black holes

Unlike GR, æ-theory has a spherically symmetric mode, corresponding to

radial tilting of the æther. For each mass, there is a two parameter fam-

ily of spherically symmetric static vacuum solutions, rather than a unique

solution as in GR.18 Asymptotic flatness reduces this to a one parameter

family.7,18 The solution outside a static star is the unique solution for a

given mass in which the æther is aligned with the Killing vector.18 This

“static æther” vacuum solution depends on the ci only through the combi-

nation c14, and was found analytically (up to inversion of a transcendental

equation).18 It is stable to linear perturbations under the same conditions

as for stability of flat spacetime, with the exception of the case c123 = 0.19

aThis corrects an error in version 1 of Ref. 16, where σ is said to scale as c
2

i
. (Also the

a prefactor c14 in Eqn. (70) should be deleted.) As a result of this correction, the likely
constraints on ci are an order of magnitude stronger, as stated here.17
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The solution inside a fluid star has been found by numerical integra-

tion, both for constant density18 and for realistic neutron star equations of

state.20 The maximum masses for neutron stars range from about 6 to 15%

smaller than in GR when c14 = 1, depending on the equation of state. The

corresponding surface redshifts can be as much as 10% larger than in GR

for the same mass. Measurements of high gravitational masses or precise

surface redshifts thus have the potential to yield strong joint constraints on

c14 and the equation of state. The radius of the innermost stable circular

orbit (ISCO) differs from the GR value 6GNM by a small term of relative

order about 0.03c14.

For black holes, the condition of regularity at the spin-0 horizon selects

a unique solution from the one-parameter family for a given mass.21 When

a black hole forms from collapse of matter, the spin-0 horizon develops in

a nonsingular region of spacetime, where the evolution should be regular.

This motivated the conjecture that collapse produces a black hole with

nonsingular spin-0 horizon, which has been confirmed for some particular

examples in numerical simulations of collapse of a scalar field.22

The black holes with nonsingular spin-0 horizons are rather close to

Schwarzschild outside the horizon for a wide range of couplings; for instance,

the ISCO radius differs by a factor (1+0.043c1+0.061c21), in the case with

c3 = c4 = 0 and c2 fixed so that the spin-0 speed is unity.23 (This expansion

is accurate at least when c1 ≤ 0.5. No solution with regular spin-0 horizon

exists in this case when c1 >∼ 0.8.) Inside the horizon the solutions differ

more, but like Schwarzschild they contain a spacelike singularity. Black

hole solutions with singular spin-0 horizons have been studied in Ref. 24.

These solutions can differ much more outside the horizon. Quasi-normal

modes of black holes in æ-theory have been investigated in Refs. 25.

8. Special values of ci?

The first case to be examined in detail26,4 was c13 = c2 = c4 = 0, i.e.

the “Maxwell action” together with the unit constraint on the vector. The

PPN result for α2 (5) is infinite in this case, and the spin-0 mode speed is

zero. The perturbation series used in the PPN analysis is thus evidently

not applicable. Independently of that however, other problems with this

case have been identified, such as the formation of shock discontinuities4,27

and a possibly related instability.19

Assuming now that α1,2 = 0 and the constraints (12,13) are satisfied,

and putting aside the case c1 = c3 = 0 which is not covered by existing
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PPN analyses, all but one of the cases in which one of the ci vanishes,

or in which one of c13, c14, or c123 vanishes, have the property that the

spin-1 mode speed (10) diverges while the energy of that mode is nonzero.

It seems very unlikely that such cases are observationally viable, although

they have not been examined carefully. The exception is the special case

c3 = c4 = 2c1 + 3c2 = 0, with 2/3 < c1 < 1. This large value of c1 is

probably inconsistent with the strong field constraints from orbital binaries,

but as mentioned above those are not yet precisely known because the

sensitivity parameters have not yet been computed for neutron stars, so

this case is not yet ruled out.

9. Conclusion

Einstein-æther theory is an intriguing theoretical laboratory in which grav-

itational effects of possible Lorentz violation can be meaningfully studied.

There is a large (order unity) two-parameter space of Einstein-æther the-

ories for which (i) the PPN parameters are identical to those of GR, (ii)

the linear perturbations are stable and carry positive energy, (iii) there is

no vacuum Čerenkov radiation, (iv) the dynamics of the cosmological scale

factor and perturbations differ little from GR, (v) non-rotating neutron star

and black hole solutions are close to those of GR, but might be distinguish-

able with future observations. Radiation damping from binaries, imposes

an order 0.001 constraint on one combination of the parameters. Strong

self-field effects in neutron stars and black holes produce violations of the

strong equivalence principle and higher order post-Newtonian effects which

will constrain all the parameters ci to be less than around 0.01, presum-

ing that the sensitivity parameters for neutron stars (which have not yet

been computed with the required precision) turn out to have the expected

magnitude.
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