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Abstract

We present perfect fluid Friedmann-Robertson-Walker quantum cosmological models in the presence of

negative cosmological constant. In this work the Schutz’s variational formalism is applied for radiation,

dust, cosmic string, and domain wall dominated Universes with positive, negative, and zero constant spatial

curvature. In this approach the notion of time can be recovered. These give rise to Wheeler-DeWitt

equations for the scale factor. We find their eigenvalues and eigenfunctions by using Spectral Method.

After that, we use the eigenfunctions in order to construct wave packets for each case and evaluate the

time-dependent expectation value of the scale factors, which are found to oscillate between finite maximum

and minimum values. Since the expectation values of the scale factors never tends to the singular point,

we have an initial indication that these models may not have singularities at the quantum level.

Pacs :98.80.Qc, 04.40.Nr, 04.60.Ds

1 Introduction

Quantum cosmological models are important subjects on the interface of cosmology and gravitation. At first,

B. DeWitt [1] quantized a Friedmann Universe filled with dust and later, closed isotropic cosmological models

with matter as a conformal and minimally coupled scalar fields were quantized [2, 3]. Misner worked on

the quantization of anisotropic cosmological models [4], and Barabanenkov quantized the Friedmann metric

matched with the Kruskal one [5]. The quantization of a dust-like closed isotropic cosmological model with a

cosmological constant is also investigated in Ref. [6].

In the quantum cosmology the Wheeler-DeWitt (WD) equation which determines the wave function of the

Universe, can be constructed using ADM decomposition of the geometry [7] in the Hamiltonian formalism of

general relativity. However, quantum cosmology has many technical and conceptual problems. In fact, the

WD equation of quantum gravity is a functional differential equation defined in the superspace which is the

∗Email: pouria.pedram@gmail.com
†Email: s-jalalzadeh@sbu.ac.ir

1

http://arxiv.org/abs/0711.3833v1


space of all possible three dimensional spatial metrics, and no general solution is known in this superspace. In

quantum cosmology this problem is avoided by using symmetry requirements to freeze out an infinite number

of degrees of freedom, leaving only a few for quantization process. This procedure defines a minisuperspace,

where exact solutions can often be found. On the other hand, the general covariance will be lost upon applying

the ADM decomposition, and in most cases the notion of time disappears at the quantum level [8]. Even, if

all these problems are solved, the interpretation of the central object, i.e. the wave function of the Universe,

remains unanswered.

The many-worlds interpretations [9] of quantum mechanics is one of the most popular interpretation schemes

for the wave function of the Universe. This interpretation differs noticeably from the Copenhagen interpretation

of quantum mechanics since the conception of probability is abandoned in some sense. In fact, all possibilities

are participated to create new Universes with different possible eigenvalues obtained by measurements. The

evolution of observables such as scale factor is found by evaluating the expectation values. In this case, like in

the Copenhagen interpretation, the structure of Hilbert space and self-adjoint operators are still unchanged.

The presence of the matter in quantum cosmology needs further consideration and can be described by

fundamental fields, as done in Ref. [10]. Using WKB approximation one can predict the behavior of the

quantum Universe which leads to determination of the trajectories in phase space. However, even in the

minisuperspace, general exact solutions are hard to find, the Hilbert space structure is ambiguous and it is

difficult to recover the conception of a semiclassical time [8, 10].

Here, we consider matter as a perfect fluid. This description is basically semiclassical, but it introduces a

variable, which can be identified with time and connected with the matter degrees of freedom, leading to a

well-defined Hilbert space structure. Moreover, this allow us to treat the barotropic equation of state p = αρ

with arbitrary α.

It is very convenient to construct a quantum perfect fluid model. Schutz’s formalism [11, 12] gives dy-

namics to the fluid degrees of freedom in interaction with the gravitational field. Using a proper canonical

transformations, at least one conjugate momentum operator associated with matter appears linearly in the

action integral. Therefore, a Schrödinger-like equation can be obtained where the matter plays the role of

time. Moreover, recently, some applications of the Schutz’s formalism have been discussed in the framework of
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the perfect fluid Stephani Universe [13, 14] and Friedmann-Robertson-Walker (FRW) Universe in the presence

of Chaplygin gas [15, 16].

Until now, quantum perfect fluid models with common equations of state have been constructed in the

absence of cosmological constants [17, 18, 19, 20, 21]. We can study the behavior of the scale factor using the

many-worlds and the de Broglie-Bohm interpretations of quantum mechanics.

Recently, the quantization of FRW radiation dominated Universe in the presence of a negative cosmological

constant is discussed by Monerat et al [22]. However, as mentioned in Ref. [23], their results are inaccurate and

their relative errors range between 10−3 for the ground state of k = 1 case, and 1 for the ground state of k = −1,

which make their work unreliable. Here, we generalize the previous investigations by studying quantum perfect

fluid models for barotropic equation of state p = αρ, where α = {1/3, 0,−1/3,−2/3} correspond to radiation,

dust, cosmic string, and domain wall dominated Universes, respectively. Using the many-worlds framework,

the behavior of the scale factor is determined, although the results are independent of the interpretation scheme

employed. The large time average of the expectation value of the scale factor is similar to the classical case.

Moreover, the model predicts an accelerated expansion today if −1/3 > α > −1.

It is important to mention that although recent observations point toward a positive cosmological constant,

it is still possible that at the very early Universe the cosmological constant be negative. Moreover, we think it

is important to understand more about such models which represent bound Universes.

This paper is organized as follows. We quantize three Friedmann-Robertson-Walker perfect fluid models in

the presence of a negative cosmological constant, using the formalism of quantum cosmology. In Sec. 2, the

quantum cosmological model with a perfect fluid as the matter content is constructed in Schutz’s formalism

[11, 12], and the WD equation in minisuperspace is Found to quantize the model. The wave-function depends

on the scale factor a and on the canonical variable associated to the fluid which plays the role of time T , in the

Schutz’s variational formalism. We separate the wave-function in two parts, one depending solely on the scale

factor and the other depending only on the time. The solution in the time sector of the WD equation is trivial,

leading to imaginary exponentials of the type eiEt, where E is the system energy and t = T . In Sec. 3, we

outline the Spectral Method [24, 25, 26], and use it to find the eigenvalues and eigenfunctions of corresponding

WD equations. In Sec. 4, we construct wave packets from the eigenfunctions, for radiation, dust, cosmic string
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and domain wall dominated Universes respectively, and compute the time-dependent expectation values of the

scale factors for k = 1, 0,−1. In Sec. 5, we state our conclusions.

2 Model

Let us start from the Einstein-Hilbert action plus a perfect fluid in the formalism developed by Schutz. For

this, we write down the action for gravity plus perfect fluid as

S =
1

2

∫

M

d4x
√
−g (R − 2Λ) + 2

∫

∂M

d3x
√
hhabK

ab +

∫

M

d4x
√
−g p, (1)

here, Kab is the extrinsic curvature, Λ is the cosmological constant, and hab is the induced metric over the

three-dimensional spatial hypersurface, which is the boundary ∂M of the four dimensional manifold M . We

choose units such that the factor 8πG becomes equal to one. The first two terms were first obtained in [7] and

the last term of (1) represents the matter contribution to the total action, p being the pressure which obeys the

barotropic equation of state p = αρ. In Schutz’s formalism [11, 12] the fluid’s four-velocity can be expressed

in terms of five potentials ǫ, ζ, β, θ and S

uν =
1

µ
(ǫ,ν + ζβ,ν + θS,ν) (2)

where µ is the specific enthalpy. S is the specific entropy, and the potentials ζ and β are connected with

rotation which are absent of models in the FRW type. The variables ǫ and θ have no clear physical meaning.

The four-velocity also satisfies the normalization condition

uνuν = −1. (3)

The FRW metric

ds2 = −N2(t)dt2 + a2(t)gijdx
idxj , (4)

can be inserted in the action (1), where N(t) is the lapse function and gij is the metric on the constant-

curvature spatial section. After some thermodynamical considerations and using the constraints for the fluid,

and dropping the surface terms, the final reduced action takes the form [18].

S =

∫

dt

[

− 3
ȧ2a

N
− ΛNa3 + 3kNa+N−1/αa3

α

(α + 1)1/α+1
(ǫ̇+ θṠ)1/α+1 exp

(

− S

α

)]

. (5)
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The reduced action may be further simplified using canonical methods [18], resulting in the super-Hamiltonian

H = − p2a
12a

+ Λa3 − 3ka+
pα+1
ǫ eS

a3α
, (6)

where pa = −6ȧa/N and pǫ = −ρ0u0Na3, ρ0 being the rest mass density of the fluid. The following additional

canonical transformations, which generalizes the one used in [18],

T = −pSe−Sp−(α+1)
ǫ , pT = pα+1

ǫ eS ,

ǭ = ǫ− (α+ 1)
pS
pǫ
, p̄ǫ = pǫ, (7)

simplifies the super-Hamiltonian to,

H = − p2a
12a

+ Λa3 − 3ka+
pT
a3α

, (8)

where the momentum pT is the only remaining canonical variable associated with matter and appears linearly

in the super-Hamiltonian. The parameter k defines the curvature of the spatial section, taking the values

0, 1,−1 for a flat, close or open Universes, respectively.

The classical dynamics is governed by the Hamilton equations, derived from Eq. (8) and Poisson brackets

as


































































ȧ = {a,NH} = −Npa6a ,

ṗa = {pa, NH} = − N
12a2 p

2
a + 3Nk

−3NΛa2 +N3αa−3α−1pT ,

Ṫ = {T,NH} = Na−3α ,

ṗT = {pT , NH} = 0 .

(9)

We also have the constraint equation H = 0. Choosing the gauge N = a(t), we have the following solutions

for the system

ä = −ka+ 2

3
Λa3 +

1− 3α

6
a−3αpT , (10)

0 = −3ȧ2 + Λa4 − 3ka2 + a1−3αpT . (11)

The classical equation of motion for the scale factor in absent of the cosmological constant is solved in a unified

form for any α ∈ [0, 1] in terms of hypergeometric functions in Ref. [27]. Moreover, In the radiation dominated
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Universe (α = 1/3) with a negative cosmological constants, the classical solutions have been obtained using

Jacobi’s elliptic sine functions [22]. the WD equation in minisuperspace can be obtained by imposing the

standard quantization conditions on the canonical momenta and (pa → −i ∂
∂a

, pT → −i ∂
∂T

) demanding that

the super-Hamiltonian operator annihilate the wave function (h̄ = 1)

∂2Ψ

∂a2
+ 12Λa4Ψ− 36ka2Ψ− i12a1−3α∂Ψ

∂t
= 0. (12)

where t = T corresponds to the time coordinate. Equation (12) takes the form of a Schrödinger equation

i∂Ψ/∂t = ĤΨ. Demanding that the Hamiltonian operator Ĥ to be self-adjoint, the inner product of any two

wave functions Φ and Ψ must take the form [28, 19]

(Φ,Ψ) =

∫

∞

0

a1−3αΦ∗Ψda, (13)

On the other hand, the wave functions should satisfy the following boundary conditions

Ψ(0, t) = 0 or
∂Ψ(a, t)

∂a

∣

∣

∣

∣

a=0

= 0. (14)

The WD equation (12) can be solved by separation of variables as follows

ψ(a, t) = eiEtψ(a), (15)

where the a dependent part of the wave function (ψ(a)) satisfies

− ψ′′(a) + (36ka2 − 12Λa4)ψ(a) = 12Ea1−3αψ(a). (16)

Since the energy term grows faster than the potential for α < −1, this equation has a discrete spectra (En)

with associated bound state eigenfunctions (ψn(x)) only for α > −1.

We construct a general solution to the WD equation (12) by taking linear combinations of the ψn(a, t)’s,

Ψ(a, t) =

m
∑

n=0

Cn(En)ψn(a)e
iEnt, (17)

where the coefficients Cn(En) will be fixed later. Form pure mathematical point of view, by allowing negative

values of a, the Parity operator can be defined. If the WD equation (Eq. 16) is covariant under the Parity

operator, its eigenfunctions can be separated into even and odd ones. The even or odd wave packets constructed
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from appropriate linear combinations of the eigenstates, have the important property that they will not change

their parity in the course of their time evolution. Therefore, if we choose the initial wave packets to be odd or

even, that is they satisfy either the first or the second condition stated in Eq. 14 respectively, they will satisfy

them for all times. We can compute the expected value for the scale factor a for any wave function, using the

many worlds interpretation of quantum mechanics. This means, we may write the expected value for the scale

factor a as [29]

〈a〉t =
∫

∞

0
a2−3α |Ψ(a, t)|2da

∫

∞

0
a1−3α |Ψ(a, t)|2da . (18)

Before solving the WD equation (16) via Spectral Method, it is worthy to state a brief overview of the

Chhajlany and Malnev method and Variational Sinc Collocation Method (VSCM), which have been recently

used to solve the WD equation (16), for radiation epoch (α = 1/3) in Refs. [22, 23], respectively.

In Chhajlany and Malnev method [30, 31], one adds an extra term to the original anharmonic oscillator

potential to find a subset of normalizable solutions of the modified Hamiltonian. In the case of equation (16)

this extra term is c a6 where c is constant. Now, the solution can be written as a polynomial where the larger

the degree of the polynomial, the smaller the constant, c is. In fact, by increasing the order of polynomial, the

energy eigenvalues predicted by this method approach monotonically to the energy eigenvalues of the original

Hamiltonian.

On the other hand, to obtain highly accurate numerical results, both for the energy eigenvalues and eigen-

functions, one can use Variational Sinc Collocation Method (VSCM) [32]. It is shown that the errors decay

exponentially with the number of elements (sinc functions) used for discretization of the Hamiltonian. Diago-

nalization of the resulting matrix, by specification of the otherwise arbitrary grid spacing h (spacing between

two contiguous sinc functions), yields energy eigenvalues and eigenfunctions. As shown by Amore et al, for a

specified number of sinc functions, there exists an optimal value of h which yields the minimum errors [32].

this optimal value can be found using the Principle of Minimal Sensitivity (PMS) [33] to the trace of the

Hamiltonian matrix.

As indicated by Lemos et al, the need for a modified potential instead of the original one in the Chhajlany

and Malnev method, gives rise to significant errors, particularly for k = −1 [34]. In fact, VSCM is more

uniformly accurate and converges more rapidly than the Chhajlany and Malnev method.
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3 The Spectral Method

In this section we introduce Spectral Method (SM) [24, 25] as a tool for solving differential equation. We have

recently used the Spectral Method for constructing the appropriate wave packets which are solutions to a WD

equation [26]. This method is simple, fast, accurate and stable.

Let us consider the general time-independent WD equation (EQ. (16)),

− d2ψ(x)

dx2
+ f̂ [x]ψ(x) = E ĝ[x] ψ(x), (19)

where f̂ and ĝ are arbitrary, but with derivative operators less than two. For the usual eigenvalue problem

ĝ = 1, which includes the time-independent Schrödinger equation. The method SM can be easily extended

to solve the general case which ĝ is a operator in the x space. This generalize problem can be named a

generalized eigenvalue problem. Throughout this paper, we only examine the bound states of this problem,

i.e. the states which are the square integrable. The configuration space for most physical problems are defined

by −∞ < x < ∞. Since the bound states fall off sufficiently fast for large |x|, a finite region suffices, and

the proper choice for this region, say −L/2 < x < L/2. The use of a finite domain is also necessary since we

need to choose a finite subspace of a countably infinite basis. We find it convenient to shift the domain to

0 < x < L. In particular, we need to shift the potential energy functions also. This means that we can expand

the solution as,

ψ(x) =

∞
∑

n=1

An

√

2

L
sin

(nπx

L

)

. (20)

We can also make the following expansions,

f̂ ψ(x) =
∑

n

Bn

√

2

L
sin

(nπx

L

)

, (21)

ĝ ψ(x) =
∑

n

B′

n

√

2

L
sin

(nπx

L

)

, (22)

where Bn B
′

n are coefficients that can be determined once f̂ and ĝ are specified. By substituting Eqs. (20,21,22)

into Eq. (19) and using the differential equation of the Fourier basis we obtain,

∑

n

[

(nπ

L

)2

An +Bn

]

sin
(nπx

L

)

= E
∑

n

B′

n sin
(nπx

L

)

. (23)
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Because of the linear independence of sin
(

nπx
L

)

, every term in the summation must satisfy,

(nπ

L

)2

An +Bn = E B′

n. (24)

It only remains to determine the matrices B and B′. Using Eqs. (21,22) and Eq. (20) we have,

∑

n

Bn sin
(nπx

L

)

=
∑

n

Anf̂ sin
(nπx

L

)

, (25)

∑

n

B′

n sin
(nπx

L

)

=
∑

n

Anĝ sin
(nπx

L

)

, (26)

By multiplying both sides of the above equations by sin
(

nπx
L

)

and integrating over the x-space and using the

orthonormality condition of the basis functions, one finds,

Bn =
∑

m

Cm,n Am, (27)

B′

n =
∑

m

C′

m,n Am, (28)

where,

Cm,n =
2

L

∫ L

0

sin
(mπx

L

)

f̂ sin
(nπx

L

)

dx, (29)

C′

m,n =
2

L

∫ L

0

sin
(mπx

L

)

ĝ sin
(nπx

L

)

dx, (30)

Therefore we can rewrite Eq. (24) as,

(nπ

L

)2

An +
∑

m

Cm,n Am = E
∑

m

C′

m,n Am. (31)

It is obvious that the presence of the operators f̂ and ĝ in Eq. (19), leads to nonzero coefficients Cm,n and

C′

m,n in Eq. (31), which in principle could couple all of the vector elements of A. It is easy to see that the

more basis functions we include, the closer our solution will be to the exact one. We select a finite subset of

the basis functions i.e. the first N ones, by letting the index m run from 1 to N in the summations. Equation

(31) can be written as,

DA = ED′A, (32)

or,

D′−1DA = E A, (33)
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where D and D′ are square matrices with N × N elements. Their elements can be obtained from Eq. (31).

The solution to this matrix equation simultaneously yields N sought after eigenstates and eigenvalues. It is

important to note that the optimized value of L crucially depends on the number of basis functions N (L(N)),

which results in the maximum accuracy and the stability of the solutions (for a comprehensive study about

the optimization procedure see [25]).

4 Results

In this section we will solve the equation (16) using SM. By choosing N = 100 basis functions, and we report

our results with 10 significant digits. Note that, although, we are free to choose other values of Λ, but the

accuracy of results for small |Λ| reduces in comparison with large values of |Λ| for a given number of basis

N , particularly for k = −1. This means that we need to increase the number of basis N to obtain the same

accuracy which increases the computations. With regard to these considerations, the results are robust under

changes of Lambda.

4.1 Radiation (α = 1/3)

In the radiation dominated Universe time-independent WD equation has the following form,

− d2ψ(a)

da2
+ (36ka2 − 12Λa4)ψ(a) = 12Eψ(a), (34)

In this form it is obvious that the system is absolutely stable for Λ < 0. Note that equation is covariant under

the Parity operator. For ease of comparison of our results with those of Refs. [22, 23], we select the first

condition of the equation (14) and choose the coefficients Cn s in equation (17) to be 1 and zero for the odd

and even eigenfunctions, respectively. We can find the energy eigenvalues and eigenvectors of this equation

with ease using SM where f̂ = 36kx2 − 12Λx4 and ĝ = 12 in comparison with Eq. (19). Table 1 shows the

first 26 odd eigenvalues for k = 1, 0,−1 respectively. Figures (1,2,3) show the resulting expectation values of

the scale factor a, versus t for the various values of k. As can be seen from the table, the results are as same

as those reported in Ref. [23]. To show the arbitrariness in choosing initial odd wave packet, we can use the

coefficients of odd coherent state of the quantum simple harmonic oscillator. Figure 4 shows the 3D plot of

resulting wave packet for k = 1 case.
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Figure 1: Behavior of the expectation value of the scalar factor for Λ = −0.1, k = 1, and Cn = 1, 0 for odd
and even n, respectively, in radiation regime.
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Figure 2: Behavior of the expectation value of the scalar factor for Λ = −0.1, k = 0, and Cn = 1, 0 for odd
and even n, respectively, in radiation regime.
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Figure 3: Behavior of the expectation value of the scalar factor for Λ = −0.1, k = −1, and Cn = 1, 0 for odd
and even n, respectively, in radiation regime.
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Figure 4: 3D plot of the square of the wave packet for k = 1 in radiation regime with the coefficients of odd
coherent state of the quantum simple harmonic oscillator.

k = 1 k = 0 k = −1
E1 1.510262538 0.3364795921 -21.79569604
E2 3.550647291 1.031199050 -20.39848969
E3 5.621893706 1.880761581 -19.01885126
E4 7.722777814 2.842487493 -17.65745105
E5 9.852194220 3.894746211 -16.31503013
E6 12.00913857 5.024091561 -14.99241327
E7 14.19269339 6.221192430 -13.69052532
E8 16.40201655 7.479120856 -12.41041248
E9 18.63633173 8.792490724 -11.15327022
E10 20.89492047 10.15697184 -9.920481041
E11 23.17711552 11.56899282 -8.713666752
E12 25.48229516 13.02554815 -7.534763378
E13 27.80987836 14.52406697 -6.386132854
E14 30.15932069 16.06232038 -5.270738293
E15 32.53011067 17.63835396 -4.192437789
E16 34.92176669 19.25043737 -3.156519423
E17 37.33383429 20.89702582 -2.170719225
E18 39.76588373 22.57673016 -1.246288323
E19 42.21750793 24.28829319 -0.3899963301
E20 44.68832056 26.03057067 0.4337198672
E21 47.17795441 27.80251593 1.300741394
E22 49.68605987 29.60316715 2.243855391
E23 52.21230364 31.43163692 3.256001774
E24 54.75636750 33.28710339 4.326509414
E25 57.31794728 35.16880284 5.448058248
E26 59.89675181 37.07602341 6.615611361

Table 1: The lowest calculated energy levels for the cases k = 0, k = 1, and k = −1 in radiation dominated
Universe (in all cases, Λ = −0.1).
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4.2 Dust (α = 0)

In dust dominated Universe time-independent WD equation has the following form,

− d2ψ(a)

da2
+ (36ka2 − 12Λa4)ψ(a) = 12Eaψ(a), (35)

We can find the energy eigenvalues and eigenvectors of this equation with ease using SM where f̂ = 36kx2 −

12Λx4 and ĝ = 12x in notation displayed in Eq. (19). Table 2 shows the first 20 positive eigenvalues for

k = 1, 0,−1 respectively. Note that, for any positive eigenvalues (E+
n ), there is an negative counterpart (E−

n )

which E−

n = −E+
n . The above equation, is not invariant under the Parity operator. Therefore, its eigenfunctions

can not in general satisfy either of the conditions of equation (14. However, we can construct wave packets,

from linear combinations of the eigenfunctions, which vanishes at a = 0 and t = 0. Then we need to check that

the constraints (Eq. 14 remain valid for all t for our choice of initial condition. For example we can choose

the coefficients Cn s so as to construct a gaussian initial wave packet (Ψ(a, 0)) which is centered e.g. at a = 1.

Figures (5,6,7) show the resulting expectation values of the scale factor a, versus t for the various values of k.

As can seen from the figures these wave packets always satisfy the first boundary condition (Eq. 14).

In the case Λ = 0, the time-independent WD equation (35) reduces to

− d2ψ(a)

da2
+ 36ka2ψ(a) = 12Eaψ(a), (36)

In terms of the new variable x = 6a− E we find

− d2ψ(x)

dx2
+

[

x2

36
− E2

36

]

ψ(x) = 0, (37)

Equation (37) is formally identical to the time-independent Schrödinger equation for a harmonic oscillator with

unit mass and energy λ:

− d2ξ

dx2
+
[

−2λ+ w2x2
]

ξ(a) = 0, (38)

where 2λ = E2/36 and w = 1/6. Therefore, the allowed values of λ are (n+ 1/2)w and the possible values of

E are

En = ±
√

6(2n+ 1) , n = 0, 1, 2, ... . (39)

Thus the stationary solutions are

Ψn(a, t) = e−iEntϕn (12a− En) , (40)
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Figure 5: Behavior of the expectation value of the scalar factor for Λ = −15, k = 1, and Ψ(a, 0) = exp(−8(a−
1)2) in dust regime.
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Figure 6: Behavior of the expectation value of the scalar factor for Λ = −15, k = 0, and Ψ(a, 0) = exp(−8(a−
1)2) in dust regime.

where

ϕn(x) = Hn

(

x√
12

)

e−x2/24 , (41)

and Hn are the n-th Hermite polynomial.

4.3 Cosmic Strings (α = −1/3)

In Cosmic Strings dominated Universe time-independent WD equation has the following form,

− d2ψ(a)

da2
+ (36ka2 − 12Λa4)ψ(a) = 12E a2ψ(a), (42)

This differential equation is covariant under parity operator and hence its eigenstates can be separated into

even and odd ones. We can find the energy eigenvalues and eigenvectors of this equation with ease using SM

where f̂ = 36kx2 − 12Λx4 and ĝ = 12x2 in comparison with Eq. (19). Table 3 shows the first 20 eigenvalues

for k = 1, 0,−1 respectively. By choosing the first condition of the equation (14), the resulting wave packets

should consist of only the odd eigenfunctions. Therefore, the coefficients Cn s in equation (17) are arbitrary
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Figure 7: Behavior of the expectation value of the scalar factor for Λ = −15, k = −1, and Ψ(a, 0) = exp(−8(a−
1)2) in dust regime.

k = 1 k = 0 k = −1
E0 4.660967538 3.354101966 1.955113416
E1 11.92641527 10.06230590 8.159825054
E2 18.98089410 16.77050983 14.53079652
E3 25.95270272 23.47871376 20.97932418
E4 32.87827896 30.18691770 27.47251428
E5 39.77369328 36.89512163 33.99515040
E6 46.64761142 43.60332556 40.53888200
E7 53.50529876 50.31152949 47.09859109
E8 60.35022067 57.01973343 53.67089213
E9 67.18479286 63.72793736 60.25341729
E10 74.01077406 70.43614129 66.84443864
E11 80.82948903 77.14434522 73.44265237
E12 87.64196335 83.85254916 80.04704775
E13 94.44900906 90.56075309 86.65682363
E14 101.2512814 97.26895702 93.27133299
E15 108.0493176 103.9771610 99.89004490
E16 114.8435643 110.6853649 106.5125177
E17 121.6343972 117.3935688 113.1383797
E18 128.4221359 124.1017728 119.7673145
E19 135.2070546 130.8099767 126.3990507
E20 141.9893905 137.5181806 133.0333530

Table 2: The lowest calculated energy levels for the cases k = 0, k = 1, and k = −1 in dust dominated Universe
(in all cases, Λ = −15). As mentioned in the text for every positive eigenvalue there exist a corresponding
negative one with identical absolute value.
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Figure 8: Behavior of the expectation value of the scalar factor for Λ = −15, k = 1, and Cn = 1, 0 for odd and
even n, respectively, in cosmic strings regime.
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Figure 9: Behavior of the expectation value of the scalar factor for Λ = −15, k = 0, and Cn = 1, 0 for odd and
even n, respectively, in cosmic strings regime.

for the odd eigenfunctions zero for the even ones. To be able to extend the results of Refs. [22, 23] for the

radiation case to the present one, we choose the same initial state as their’s. That is the odd ones are all chosen

to be equal to one. Figures (8,9,10) show the resulting expectation values of the scale factor a, versus t for the

various values of k.

4.4 Domain Walls (α = −2/3)

In Domain Walls dominated Universe (α = −2/3) the time-independent WD equation has the following form,

− d2ψ(a)

da2
+ (36ka2 − 12Λa4)ψ(a) = 12E a3ψ(a), (43)

We can find the energy eigenvalues and eigenvectors of this equation with ease using SM where f̂ = 36kx2 −

12Λx4 and ĝ = 12x3 in comparison with Eq. (19). Table 4 shows the first 20 eigenvalues for k = 1, 0,−1

respectively. Note that, for any positive eigenvalues (E+
n ), there is an negative counterpart (E−

n ) which E−

n =

−E+
n . This case is similar to the Dust case and in particular its differential equation is not covariant under
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Figure 10: Behavior of the expectation value of the scalar factor for Λ = −15, k = −1, and Cn = 1, 0 for odd
and even n, respectively, in cosmic strings regime.

k = 1 k = 0 k = −1
E1 11.63722935 8.637229353 5.637229353
E2 19.36451595 16.36451595 13.36451595
E3 25.54276474 22.54276474 19.54276474
E4 30.96152618 27.96152618 24.96152618
E5 35.89633715 32.89633715 29.89633715
E6 40.48441592 37.48441592 34.48441592
E7 44.80660320 41.80660320 38.80660320
E8 48.91557892 45.91557892 42.91557892
E9 52.84808309 49.84808309 46.84808309
E10 56.63102596 53.63102596 50.63102596
E11 60.28486358 57.28486358 54.28486358
E12 63.82560554 60.82560554 57.82560554
E13 67.26607937 64.26607937 61.26607937
E14 70.61676389 67.61676389 64.61676389
E15 73.88635930 70.88635930 67.88635930
E16 77.08218981 74.08218981 71.08218981
E17 80.21050097 77.21050097 74.21050097
E18 83.27676241 80.27676241 77.27676241
E19 86.28668819 83.28668819 80.28668819
E20 89.25169642 86.25169642 83.25169642

Table 3: The lowest calculated energy levels for the cases k = 0, k = 1, and k = −1 in cosmic strings dominated
Universe (in all cases, Λ = −15).
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Figure 11: Behavior of the expectation value of the scalar factor for Λ = −15, k = 1, and Ψ(a, 0) = exp(−8(a−
1.5)2) in domain walls regime.
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Figure 12: Behavior of the expectation value of the scalar factor for Λ = −15, k = 0, and Ψ(a, 0) = exp(−8(a−
1.5)2) in domain walls regime.

Parity Operator and therefore, its eigenfunctions can not in general satisfy either of the conditions stated in

equation (14. However, we can construct wave packets, from linear combinations of the eigenfunctions, which

vanishes at a = 0 and t = 0. Then we need to check that the constraints (Eq. 14 remain valid for all t for our

choice of initial condition. For example we can choose the coefficients Cn s so as to construct a gaussian initial

wave packet (Ψ(a, 0)) which is centered e.g. at a = 1.5. Figures (11,12,13) show the resulting expectation

values of the scale factor a, versus t for the various values of k. As can seen from the figures these wave packets

always satisfy the first boundary condition (Eq. 14).

It is important to note that we have repeated the simulations for all cases (α = 1/3, 0,−1/3,−2/3) with

other values of Λ and different initial conditions (subject to Ψ(0, 0) = 0). In particular, we have also repeated

simulations for Λ = −10,−12.5,−17.5,−20 rather than Λ = −15 which studied in detail, and found the

corresponding eigenvalues and eigenfunctions with desired accuracy. Moreover, we chose other initial conditions

in the form Ψ(a, 0) = exp(−γ(a−a0)δ) with various choices of γ (2, 5, 10, 20), δ (2, 4, 6), and a0 (1, 1.2, 1.4, 1.6).
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Figure 13: Behavior of the expectation value of the scalar factor for Λ = −15, k = −1, and Ψ(a, 0) =
exp(−8(a− 1.5)2) in domain walls regime.

k = 1 k = 0 k = −1
E1 17.07778092 12.54649750 7.458961879
E2 21.41791925 18.18718412 14.81583000
E3 24.32147857 21.57780684 18.75859852
E4 26.60465935 24.14422756 21.63352524
E5 28.52359398 26.25664404 23.95258205
E6 30.19749314 28.07460050 25.92257362
E7 31.69296487 29.68328712 27.64978790
E8 33.05153398 31.13420271 29.19682156
E9 34.30107228 32.46114131 30.60396527
E10 35.46131513 33.68761746 31.89883581
E11 36.54683096 34.83073057 33.10127373
E12 37.56911074 35.90336205 34.22606529
E13 38.54199370 36.91577767 35.28463557
E14 39.50080454 37.87984925 36.28735433
E15 40.512127 38.825301 37.253593
E16 41.627809 39.812705 38.232631
E17 42.859939 40.895275 39.288909
E18 44.203790 42.088418 40.454402
E19 45.653137 43.388462 41.730668
E20 47.203213 44.789203 43.111449

Table 4: The lowest calculated energy levels for the cases k = 0, k = 1, and k = −1 in domain walls
dominated Universe (in all cases, Λ = −15). As mentioned in the text for every positive eigenvalue there exist
a corresponding negative one with identical absolute value.
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We found that, for all these cases the behavior of the expectation value of the scale factor is similar to ones

depicted in Figs. 1 to 13 and never tends to the singular point.

5 Conclusions

In this work we have investigated closed, flat, and open minisuperspace FRW quantum cosmological models

(k = 1, 0,−1) with perfect fluid for the radiation, dust, cosmic strings, and domain walls dominated Universes

({α = 1/3, 0,−1/3,−2/3}, respectively). The use of Schutz’s formalism for perfect fluids allowed us to obtain a

Schrödinger-like WD equation in which the only remaining matter degree of freedom plays the role of time. We

have used Spectral Method and obtained accurate results for the eigenfunctions and eigenvalues. Physically

acceptable wave packets were constructed by appropriate linear combination of these eigenfunctions. The

time evolution of the expectation value of the scale factor has been determined in the spirit of the many-

worlds interpretation of quantum cosmology. Since the expectation values of the scale factors for the cases

considered here never tend to the singular point, we have an initial indication that these models may not have

singularities at the quantum level. The similar conclusions have been obtained on general grounds in [18] and

for the radiation case in [22].
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