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Abstract

We consider the construction of point processes from tilings, with equal volume tiles, of d-dimensional
Euclidean space R

d. We show that one can generate, with simple algorithms ascribing one or more
points to each tile, point processes which are “superhomogeneous” (or “hyperuniform”), i.e., for
which the structure factor S(k) vanishes when the wavenumber k tends to zero. The exponent of
the leading small-k behavior, S(k → 0) ∝ kγ , depends in a simple manner on the nature of the
correlation properties of the specific tiling and on the conservation of the mass moments of the tiles.
Assigning one point to the center of mass of each tile gives the exponent γ = 4 for any tiling in
which the shapes and orientations of the tiles are short-range correlated. Smaller exponents, in the
range 4 − d < γ < 4 (and thus always superhomogeneous for d ≤ 4), may be obtained in the case
that the latter quantities have long-range correlations. Assigning more than one point to each tile
in an appropriate way, we show that one can obtain arbitrarily higher exponents in both cases. We
illustrate our results with explicit constructions using known deterministic tilings, as well as some
simple stochastic tilings for which we can calculate S(k) exactly. Our results provide, we believe,
the first explicit analytical construction of point processes with γ > 4. Applications to condensed
matter physics, and also to cosmology, are briefly discussed.

PACS numbers: 02.50.-r, 61.43.-j, 98.80.-k

I. INTRODUCTION

“Superhomogeneous” [1] or “hyperuniform” [2] point
patterns in d-dimensional Euclidean space Rd are defined
to be those in which infinite wavelength density fluctu-
ations vanish. In other words, the structure factor (or
power spectrum) S(k) of the number density field at wave
vector k has the following behavior:

lim
k→0

S(k) = 0. (1)

This defining characteristic of superhomogeneity (or hy-
peruniformity) is tantamount to saying that the usual
mean-square particle-number fluctuations increases less
rapidly than Rd for large R, where R denotes the lin-
ear size of an observation window in R

d [1, 2]. Indeed,
the magnitude of such local density fluctuations have
been suggested as a possible “order metric” to quan-
tify the degree of order (disorder) of an arbitrary point
pattern [2]. Any superhomogeneous point pattern can
be seen as a typical configuration of a particular type
of “critical” point in that the direct correlation function
(defined through the Ornstein-Zernike relation) is long-
ranged while the pair correlation function is short-ranged
[2]. Such remarkable behavior is diametric to that seen
in usual thermal critical points in which the inverse is
true, i.e., the pair correlation is long-ranged and the di-
rect correlation function is short-ranged.

Although it is clear that any periodic point pattern
is superhomogeneous, it is less obvious that statistically
translationally and even rotationally invariant random
point patterns in R

d can have this property. We now
know of a variety of intriguing translationally and ro-
tationally invariant random point patterns that are su-
perhomogeneous, including the ground state of liquid
4He [3, 4, 5], maximally random jammed hard-sphere
packings [6], certain one-component plasmas [7, 8, 9],
the matter distribution in the Universe [1, 8], and cer-
tain aperiodic tilings [2, 8, 10]. An interesting applica-
tion of superhomogeneous point patterns in cosmology is
in the preparation of initial conditions for gravitational
N -body simulations [8, 9, 10, 11]. Superhomogeneous
distributions also appear in cosmology in the context of
the determination of bounds, first derived by Zeldovich
[12], on the mass fluctuations at large scales generated
by causal mechanisms (i.e. with physics respecting the
causal constraints of cosmological models). Indeed, we
note that in this context a simplified form of the analysis
we develop here of the small-k behavior of the structure
factor is often used (see e.g. Ref. [13]).

It is desirable to develop both theoretical and compu-
tational methods to generate a wide class of superhomo-
geneous random point patterns. Recently, a collective
coordinate approach [14, 15] has been employed to nu-
merically generate translationally invariant superhomo-
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geneous point processes. This procedure enables one to
produce point patterns that completely suppress density
fluctuations of modes for a positive range of wavenum-
bers around the origin. In Ref. [16] an algorithm for gen-
erating discrete processes in one dimension with super-
homogeneous mass fluctuations has been given (see also
Ref. [17]). An analytical methodology to relate superho-
mogeneous point processes and Voronoi tilings of space
has recently been proposed and studied in Ref. [18].
In this paper, we study the construction of superho-

mogeneous point patterns starting from generic tilings
of Euclidean space R

d with equal volume tiles. We
show how to explicitly generate such point processes in
which the structure factor for small wavenumbers has the
power-law form S(k) ∼ kγ for positive γ, where k ≡ |k|
is the wavenumber. The constructions illustrate the very
specific properties of these superhomogeneous point pat-
terns in which the exponent γ, characterizing the long
wavelength fluctuation in k space, is related to the de-
tailed arrangement of the points on small scales. Our
study also shows how the exponents of the small-k be-
havior of the structure factor for these point processes
encode properties of the tilings, and could thus possibly
be used as a method for classifying them. In a related
article by two of us [19] the two-point correlation proper-
ties of point processes generated by replacing each parti-
cle, in a point process with known two point properties,
by a “cloud” of particles are derived1. One of us [15] nu-
merically generated disordered point distributions within
a cubical box under periodic boundary conditions with
γ > 4. However, to our knowledge, prior to this paper
and [19], explicit analytical constructions of point pro-
cesses with γ > 4 have not been given previously in the
literature.
It is instructive to recall qualitatively why tilings are

a natural starting point for the construction of superho-
mogeneous point processes. A tiling or tessellation is a
partition of Euclidean space Rd into closed regions whose
interiors are disjoint regions [20]. Let us suppose we have
a tiling of space by tiles which are (i) of equal volume
‖T ‖, and (ii) bounded, with maximal length Λ in any
direction. Let us now place one point in each tile and
consider the number fluctuations in the point process so
generated. If N(R) is the number of points in a sphere
of radius R, and of volume V (R), it is simple to see that

V (R− Λ)

‖T ‖ ≤ N(R) ≤ V (R + Λ)

‖T ‖ . (2)

1 Results in this case are derived in [19] under the assumption that
the stochastic process describing the generation of the “clouds”
and the initial point process are independent. In the algorithm
discussed here this is not the case, as the points are ascribed to
each tile in a way which depends, in general, on the tile. For the
particular case of a Bravais lattice tiling, however, both calcu-
lations are valid because of the equivalence of all tiles/points in
such a lattice. Indeed, in this case, the different general formulae
derived in the present article and [19] give the same result.

The lower bound is the minimal number of tiles which
can overlap the sphere of radius R−Λ [and all such tiles
must contribute a point to N(R)], the upper bound is the
maximal number of tiles which are fully enclosed in the
sphere of radius R+Λ [and only such tiles can contribute
to N(R)]. For R → ∞ we have therefore

|∆N(R)| ≤ cRd−1 (3)

where c is a constant, and ∆N(R) = N(R)−N(R) with
N(R) = V (R)/‖T ‖. Averaging over configurations (or
randomly placed centers for the spheres) one anticipates
that the slowest possible scaling of number fluctuations is

〈∆N2(R)〉 ∝ Rd−1 (4)

where 〈...〉 denotes the ensemble (or volume) average.
This behavior of the variance, proportional to the sur-
face, is a characteristic of superhomogeneous point pro-
cesses. If there is appropriate long-range correlation in
the tiling at arbitrarily large scale, the fluctuations could
however, in principle, add coherently to give the more
rapid growth up to

〈∆N2(R)〉 ∝ R2(d−1) , (5)

which corresponds to the limit equality in Eq. (3). While
in d = 1 this still corresponds to surface fluctuations2,
for any d ≥ 2 it implies only the limiting small-k behav-
ior S(k) ∝ kγ with γ ≥ −d + 2, which means that the
point processes are not necessarily superhomogeneous for
d ≥ 2. We will recover this result below, with the only
difference that the bound is found to be γ > −d + 4,
which implies that even long-range correlations between
tiles give superhomogeneous processes for d ≤ 4. The
difference between this result and our naive estimate is
simply due to the fact that below we constrain the par-
ticles to lie at the center of mass, rather than placing
them randomly. In fact we will show here that by assign-
ing more than one point in an appropriately constrained
manner to each tile, we can increase these bounds on the
exponents without limit, and realize superhomogeneous
processes with an arbitrary positive exponent, in any di-
mension.

II. POINT DISTRIBUTIONS FROM TILINGS:

ONE POINT PER TILE

We consider in this section point processes generated
by ascribing one point to each tile. We first give a general
analysis of the small-k properties of the structure factor
of the density fluctuations, and derive how the leading
behavior is determined by the properties of the tiling. We
then describe some specific explicit constructions which
illustrate the result.

2 Note that the case of d = 1 is rather trivial given our assump-
tions: the only equal volume tiling is the lattice.
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A. Density fluctuations and long-wavelength limit

We start from a generic (regular or irregular) tiling3 of
d-dimensional Euclidean space Rd into equal volume tiles,
which we denote Ti. We consider the point distribution
generated by ascribing one point to each tile, and placing
it at position xi, which coincides with the center of mass
of the tile Ti, i.e.,

xi =
1

‖T ‖

∫

Ti

ddxx (6)

where ‖T ‖ is the volume of the tiles. The density fluctu-
ation field is thus

δn(x) =
∑

i

δ(d) (x− xi)− n0 (7)

where n0 is the mean number density in the infinite-
volume limit4, and δ(d)(x) is the Dirac delta function
in d dimensions. The structure factor (SF) is defined as

S(k) = lim
V →∞

|δ̃n(k;V )|2
n0V

= 1 + n0h̃(k) (8)

where V is the system volume,

δ̃n(k;V ) =

∫

V

ddxe−ik·xδn(x) , (9)

and

h̃(k) =

∫

Rd

ddxe−ik·xh(r) (10)

is the infinite-space Fourier transform of the total pair
correlation function h(r), which vanishes for disordered
systems when the distance r ≡ |r| tends to infinity [2, 18].
For our point process it follows directly that

δ̃n(k;V ) =
∑

i

e−ik·xi

[

1− W̃i(k)
]

(11)

where the sum runs over the points enclosed in the vol-
ume V , and W̃i(k) is the normalized characteristic func-
tion of the tile Ti, given by

W̃i(k) =
1

‖T ‖

∫

Ti(0)

ddxe−ik·x , (12)

where Ti(0) denotes that the center of mass of the tile
has been taken as the origin of axes. If we assume that

3 A regular tiling is periodic in space. An irregular tiling is ape-
riodic in space, including quasiperiodic as well as disordered
tilings. A congruent tiling consists of identical tiles.

4 Since all particles have the same mass no distinction need be
made between the mass and number density fluctuations. For
the case of a single particle per tile n0 = 1/‖T‖.

W̃i is an analytic function at k = 0, we can expand it in
Taylor series, to obtain

W̃i(k) = 1 +

∞
∑

m=2

(−i)m

m!
kα1

...kαm
Mα1...αm

(i) (13)

where

Mα1...αm
(i) =

1

‖T ‖

∫

Ti(0)

ddxxα1
...xαm

(14)

is a (fully symmetric) tensor of rank m corresponding to
the m-th moment of the mass distribution of the tile Ti

(normalized by the volume/total mass) and αj = 1, . . . , d
are indices for the Cartesian components. Note that we
have used Eq. (6), which makes the linear term in the ex-
pansion (13) (corresponding to the dipole moment) van-
ish. The assumption of analyticity corresponds to the
requirement that all these moments are finite. This is
true in particular if the tiles are of finite extent. We
will discuss briefly in our conclusions the possibility of
relaxing this assumption.
Using these expressions in the definition of S(k) we

now obtain

S(k) = (15)
∞
∑

n=2

∞
∑

m=2

(−i)m(i)n

m!n!
kα1

...kαn
kβ1

...kβm
Iα1...αnβ1...βm

(k)

where

Iα1...αnβ1...βm
(k) = lim

V→∞

1

N

∑

i

∑

j

e−ik·(xi−xj)

×Mα1...αn
(i)Mβ1...βm

(j) (16)

where the sums run over the N particles contained in
the volume V . It is straightforward to verify that the
coefficient of the leading term in k (at order k4) is non-
negative, and that the coefficients of all powers of k are
real. Indeed the SF S(k) is by definition a real non-
negative quantity, and Eq. (15) is just the specific form
of its Taylor expansion around k = 0 for the particular
class of distributions we are considering.
It is convenient to rewrite the latter expression as

Iα1...αnβ1...βm
(k) = lim

V→∞

1

n0V

∫

ddx ddy e−ik·(x−y)

Mα1...αn
(x)Mβ1...βm

(y)(17)

where

Mα1...αn
(x) =

∑

i

δ(d)(x − xi)Mα1...αn
(i) . (18)

The distribution M(x) can be viewed as a weighted par-
ticle density. The weight associated with each particle is
the appropriate component of the mass moment of the
tile to which the particle belongs.
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Up to now we have considered implicitly a single parti-
cle placed deterministically in each tile. We now consider
averaging over an appropriately defined ensemble of such
tilings5. If the tiling is statistically translationally invari-
ant, we have that

〈Mα1...αn
(x)Mβ1...βm

(y)〉 ≡ gn,m(x − y) , (19)

where 〈...〉 denotes the ensemble average. We have
adopted here for the correlation function gn,m(x) the ten-
sorial notation in which the indices are left implicit. In
this notation we can write our result for the SF S(k) as

S(k) =
1

n0

∞
∑

n=2

∞
∑

m=2

(−i)m(i)n

m!n!
kn · g̃n,m(k) · km (20)

where g̃n,m(k) is the Fourier transform of gn,m(x) defined
as

g̃n,m(k) =

∫

ddx e−ik·xgn,m(x) , (21)

and kn denotes a tensor of order n, given by the tensor
product of n vectors k, i.e.,

kn
α1...αn

≡ [k⊗ k...⊗ k]α1...αn
= kα1

kα2
..kαn

. (22)

The symbol · in Eq. (20) denotes the contraction of the
corresponding tensor indices. If the ensemble is also sta-
tistically isotropic the product kn · g̃n,m(k) ·km, and thus
S(k), is a function of k = |k| only.
The behavior of S(k) at small k is thus manifestly de-

termined by that of g̃n,m(k) in this limit. These quanti-
ties are in fact the (tensor) SFs associated to the discrete
stochastic field defined by Eq. (18), the two point cor-
relation function of which is gn,m(x). They thus encode
information about the tiling, and more specifically about
the correlation properties of the second and higher mo-
ments of the tiles. We restrict ourselves to the case that
all these moments are finite, and strictly bounded (which
also ensures, as noted above, the validity of the expansion
of the characteristic function W̃i(k) we have performed).
As noted above, each component of the tensor stochastic
field Mn(x) defined in Eq. (18) above is then a discrete
stochastic process in which the points are located at the
same positions as in the point process we are studying,
but have “masses” given by the corresponding component
of the tensor Mn(i) (or rather “charges” as they are not
strictly positive) which are bounded (above and below).
Just as for a generic stochastic point process such a dis-
crete (or indeed continuous) process can be classified into
three categories according to the small-k behavior of the
g̃n,m(k):

5 For a deterministic tiling, e.g. the cells of a regular lattice, or the
pinwheel tiling in two dimensions discussed below, this average
can be defined by the set of configurations generated by applying
an arbitrary rigid translation to a given configuration.

1. g̃n,m(k = 0) = const. > 0: this means that the cor-
relation functions gn,m(x) of the higher order mo-
ments are integrable at large x, and the correspond-
ing integral is equal to a positive constant, i.e., the
higher moments of the tiles have short-range cor-
relations dominated by the positive contributions.
For the generated point process we have then the
leading behavior S(k → 0) ∝ k4.

2. g̃n,m(k = 0) = 0: the integral of the correlation
functions gn,m(x) converges to zero, i.e., the shapes
and orientations of the tiles have themselves super-
homogeneous properties (i.e. in which the positive
and negative correlations balance exactly in the in-
tegral). In this case we will obtain a leading behav-
ior S(k → 0) ∝ kγ with γ > 4 [and with a value
depending on the leading behavior of the g̃n,m(k)
at small-k].

3. g̃n,m(k = 0) = ∞, with g̃n,m(k → 0) ∝ kα and
−d < α < 0. In this case, in which the correla-
tion functions gn,m(x) are non-integrable, i.e., the
higher moments of the tiles have themselves long-
range correlations, we can obtain a leading behav-
ior for our point process S(k → 0) ∝ kγ with
4− d < γ < 4.

Several remarks on this result are important. Firstly,
for simplicity we have assumed above that the g̃n,m(k)
are in the same class for all m and n. This is, of course, a
priori, not necessarily the case. In the more general case
that the different g̃n,m(k) are in different classes, the de-
termination using Eq. (20) of the exponent γ of the lead-
ing small-k behavior of S(k) is nevertheless straightfor-
ward. Furthermore, it is simple to verify that the bounds
we have given on this exponent remain valid.
Secondly, we have assumed that the g̃n,m(k) obey the

condition

lim
k→0

kdg̃n,m(k) = 0 . (23)

This assumption corresponds to the requirement that the
discrete processes defined by Eq. (18) have well-defined
mean values, i.e, the normalized fluctuations (e.g. inte-
grated in a sphere) of the moments of the tiles converge
to zero in the infinite-volume limit. While this seems a
very weak assumption, it is not a priori true of all tilings.

B. Explicit constructions

We now give various explicit constructions to illustrate
the above results.

1. Regular lattice tilings

Consider first the tiling given by the Voronoi cells of
any Bravais lattice. In a Bravais lattice, the space ℜd can
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be geometrically divided into identical regions F called
fundamental cells, each of which contains just one point
of the lattice. A Voronoi cell associated with a point at
r in a point distribution is defined to be the region of
space nearer to the point at r than to any other point.
Since all Voronoi cells or tiles of a Bravais lattice have the
same shape and orientation, the mass moments Mn(i) in
Eq. (14), calculated with respect to the center of mass,
are identical for all tiles, i.e., Mn(i) does not depend on
i. The discrete processes specified by Eq. (18) are then
simply, up to a constant, equal to the density field of
the lattice, and thus it follows that all the correlation
functions gn,m(x) are proportional to the two point cor-
relation function of the original lattice. Thus g̃n,m(k),
and also S(k) = 0, is zero in some finite region around
k = 06. This result is in fact evident: the point process
generated by placing points at the center of mass of every
cell is of course simply the lattice itself. In this case, of
course, neither the tiling nor the point process are sta-
tistically isotropic (where the statistical average is taken
over lattices rigidly translated within the elementary lat-
tice cell)
The same result can evidently be generalized to any

tiling of equal volume cells constructed from a periodic
point pattern.

2. Congruent rotationally invariant tilings

We consider next deterministic congruent tilings with
the additional property of rotational invariance, i.e., in
which all orientations of the identical tiles are equiproba-
ble. Known examples are the pinwheel tiling [21] in d = 2
(see Fig. 1) and the quaquaversal tiling [22] in d = 3. In
these cases each tile Ti can be characterized solely by its
center of mass xi and by a matrix R(i) ∈ 0(d), the lat-
ter giving the orientation with respect to some arbitrary
chosen orientation.
We can then write, in tensorial notation,

Mn(x) =
∑

i

δ(d)(x− xi)R
n(i) · M̃n (24)

where Rn(i) is the tensor product, giving a tensor of rank
2n of which n indices are contracted with the correspond-
ing moment M̃n of a tile with the reference orientation,
i.e.,

[R(i)n · M̃n]α1...αn
≡ Rα1β1

(i)...Rαnβn
(i)M̃n

β1...βn
(25)

where, as everywhere above, the sums over the indices
which appear twice are implicit. The correlation func-
tions gn,m(x) are thus direct measures of the correlation

6 More precisely S(k) = 0 at all k different from non-zero recipro-
cal lattice vectors.

FIG. 1: Portion of a pinwheel tiling. The prototile of the
pinwheel tiling is a right triangle with sides of length one,
two, and

√
5. The tiling is produced by performing certain

“decomposition” and “inflation” operations on the prototile.
In the first step, the prototile is subdivided into five copies of
itself and then these new triangles are expanded to the size of
the original triangle. These decomposition and inflation oper-
ations are repeated ad infinitum until the triangles completely
cover the plane.

of the orientations of tiles with center of mass separated
by x.
The case of the quaquaversal tiling has been studied

numerically in Ref. [10], and an approximate small-k be-
havior S(k) ∝ k4 found. In Ref. [23] it is noted, however,
that the numerical results agree better with S(k) ∝ kγ

and γ ≈ 3.4. While the former behavior would corre-
spond, as discussed above, to a short-range correlation
of the orientation of the tiles, the latter would instead
correspond to a weak long-range correlation (with a cor-
relation function characterizing the orientations decay-
ing with distance r as ∼ r−2.4). Further, superimposed
on this power-law behavior there are residual peaks at
certain wavenumbers, with a spacing which appears to
be consistent [10] with the hierarchical nature of the
tiling [24]. As we have discussed the small-k behavior
of the constructed point process thus probes the correla-
tion properties of the underlying tiling.

3. Random Binary Rectangular (RBR) tiling

It is instructive to illustrate our result with a non-
trivial example which, albeit not statistically isotropic,



6

allows us to calculate exactly the SF of a point process
constructed by the algorithm we have described. The
example we now give is of a stochastic congruent tiling.
For simplicity we work in d = 2, but a generalization to
any d is straightforward.
We generate the tiling as follows. We start from a

regular tiling of the plane with congruent squares. We
then divide each square tile in half, defining two identical
rectangular sub-tiles, as shown in Fig. 2. The choice

σ=−1

σ=1m=1

l

l

FIG. 2: Elementary binary rectangular tiling, with a unit
mass particle in the center of mass of each rectangle, and its
description in terms of an Ising-like spin variable.

of the orientation of each tile is given by a stochastic
process, which can be cast as the value of a simple up-
down spin variable. The density of the point process
generated using the algorithm analyzed in the previous
section, in which a point is placed at the center of mass
of each tile, can then be written

n(x) =
∑

R

2
∑

n=1

δ

[

x−Rx − 1 + σR

2
(−1)n

]

×δ

[

y −Ry −
1− σR

2
(−1)n

]

(26)

whereR ≡ (Rx, Ry) are the lattice sites of the underlying
square lattice placed at the center of each square cell, and
σR = ±1 is the spin variable specifying the orientation
of the two elementary rectangular tiles at the lattice site
R as in Fig. 2. We assume that the lattice spacing of the

underlying square lattice is l. Consequently the volume of
the elementary rectangular tile is l2/2 and therefore the
average number density of the point process is n0 = 2/l2.
It is simple to show that the Fourier transform (FT) of
[n(x)− n0] is

δ̃n(k;V ) = 2
∑

R

e−ik·R

[

cos

(

kxl
1 + σR

8
+ kyl

1− σR

8

)

− sin(kxl/2)

kxl/2

sin(kyl/2)

kyl/2

]

. (27)

To calculate the SF averaged over the ensemble of pos-
sible configurations of the binary tiles we assume that
〈σR〉 = 0 (i.e. both orientations of the binary tiles
are equiprobable), and write χ(R) = 〈σR0

σR0+R〉 using
the lattice statistical translational invariance. Moreover,
since σR = ±1, we have that

cos

(

kxl
1 + σR

8
+ kyl

1− σR

8

)

=
1 + σR

2
cos

(

kxl

4

)

+
1− σR

2
cos

(

kyl

4

)

. (28)

It is then straightforward to obtain the following exact
expression for the SF:

S(k) =
[cos(kxl/4)− cos(kyl/4)]

2

2

∑

R

e−ik·Rχ(R)

+ SML(k) (29)

where

SML(k) = A(k)
∑

R

e−ik·R = π2
∑

H6=0

A(H)δ(k−H)

(30)
is a “modulated lattice” SF which is different from zero
only at the non-zero reciprocal lattice vectors H, and

A(k) =
1

2

[

cos

(

kxl

4

)

+ cos

(

kyl

4

)

− 2
sin(kxl/2)

kxl/2

sin(kyl/2)

kyl/2

]2

. (31)

At small-k only the first term of Eq. (29) contributes,
and expanding the factor outside the sum we thus obtain
a leading small-k behavior

S(k) ≃
(

l

4

)4

(k2x − k2y)
2χ̃(k) (32)

where

χ̃(k) = lim
N→∞

1

N

∑

R

e−ik·Rχ(R) . (33)

This exact result is of course a special case of the general
analysis given above, in which the moments characteriz-
ing the tiles are particularly simple as there are only two
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orientations. All the two-point properties of the point
process are then contained in the single correlation func-
tion χ(R) of these orientations for pairs of tiles with cen-
ters separated by R. As χ̃(k) is a power spectrum of a
stochastic process with a well defined mean, at small k
we have χ̃(k) ∼ kb with b > −d ≡ −2. If χ̃(0) = c > 0,
i.e., in the case in which the orientations of the tiles are
short-range correlated, then S(k) = O(k4) at small k.
If instead χ̃(k → ∞) = ∞ there are long-range positive
correlations in the orientations of the tiles which induce
a slower decay of the fluctuations in the associated point
process at large scales. Finally if χ̃(0) = 0 the stochastic
spin process is itself superhomogeneous, with a balance
between positive and negative correlations creating a sort
of “stochastic order” in the spin configuration. In this
case S(k) vanishes faster than k4 at small k. In Appendix
A we describe explicitly an algorithm for generating such
spin configurations.

III. POINT DISTRIBUTIONS FROM TILINGS:

n > 1 POINTS PER TILE

The algorithm described in Sect. II B 3 can in fact be
thought of in a different way to that in which we have
presented it: one can consider it instead as a direct as-
signment of two points to the tiles of the original square
lattice, without any construction of an intermediate SBR
tiling. The pair of particles then have two possible ori-
entations, which are chosen stochastically. Note that in
each case the center of mass of the particles is located
at the center of the square cell. Our results above shows
that if this stochastic process is short-ranged correlated
we obtain a small-k behavior S(k) ∝ k4, while with a
single point at the center of mass of the lattice cell we
recovered (evidently) the lattice. We now consider quite
generally what small-k behavior of S(k) of a point pro-
cess we can obtain by ascribing more than one point per
tile in a generic tiling with equal volume tiles.

A. Density fluctuations and long-wavelength limit

We ascribe p points to each tile, denoting their posi-
tions by

xi,ℓ = xi + ui,ℓ (34)

with ℓ = 1...p and xi is, as above, the center of mass
of the tile Ti (so that ui,ℓ is the position relative to the
center of mass). We assume further that the center of
mass of the points coincides with that of the tile, i.e.,

p
∑

ℓ=1

ui,ℓ = 0 . (35)

Following the same steps as in Sect. II, we arrive at

δ̃n(k;V ) =
∑

i

e−ik·xi

[

1

p

p
∑

ℓ=1

e−ik·ui,ℓ − W̃i(k)

]

(36)

where W̃i(k) is precisely the same normalized character-
istic function of the tile as defined in Eq. (12) [and 1/p
is the fraction of the mass of the tile ascribed to each
particle]. Expanding in Taylor series we obtain

1

p

p
∑

ℓ=1

e−ik·ui,ℓ−Wi(k) =

∞
∑

m=2

(−i)m

m!
kα1

...kαm
Mα1...αm

(i)

(37)
where now

Mα1...αm
(i) =

1

p

p
∑

ℓ=1

ui,ℓ
α1
...ui,ℓ

αm
− 1

‖T ‖

∫

Ti(0)

ddxxα1
...xαm

(38)
is the totally symmetric rank m tensor corresponding to
the difference of the m-th moments of the mass distri-
bution of the points associated with the tile Ti and that
of the tile itself. As in the derivation with one point,
we have assumed the analyticity of the quantity we ex-
panded. This means that we require that all the moments
in Eq. (38) are finite, which is true in particular if all the
tiles are of finite extent and the lengths of the vectors
ui,ℓ are bounded.
All the expressions, and notably the result for S(k) in

Eq. (20), derived in the case with one point per tile, are
thus valid. The only difference is that the tensors Mn(i)
[and correspondingly Mn(x)] are now given by Eq. (38).
The small-k properties thus depend, assuming statisti-
cal translational invariance, on those of the FT of the
correlation functions of the differences of the moments
of the discrete mass distribution of the points ascribed
to each tile and that of the continuous mass distribution
represented by the tile itself.
The most important implication of this result is the

following: the coefficients in the small-k expansion of
Eq. (37) are now proportional to a difference of two quan-
tities in Eq. (38). Any given coefficient will vanish iden-
tically if our assignment of the p points satisfies the con-
straints

1

p

p
∑

ℓ=1

ui,ℓ
α1
...ui,ℓ

αm
b =

1

‖T ‖

∫

Ti(0)

ddxxα1
...xαm

(39)

in each tile, i.e., if the (tensorial) moments of the mass
distribution of the points are equal to those of the tile in
which they are placed. With a sufficiently large number of
points per tile one can evidently make any desired finite
number of terms vanish in the expansion of S(k), i.e.,
construct a stochastic point mass distribution for each
tile which has all moments up to a certain order equal to
those of the continuous mass distribution of the tile.
This procedure allows one to obtain an arbitrarily large

exponent γ in the small-k behavior of the SF of the point
process.

B. Explicit constructions

We again illustrate these results with some explicit ex-
amples.
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1. Regular lattice tiling

In a Bravais lattice, as we have discussed above, the
tensorial moments of all tiles are equal so that the second
term in Eq. (38) does not contribute to S(k) in a finite
region around k = 0. This can most easily be seen by us-
ing Eq. (38) directly in the expressions Eqs. (15) and (16)
for S(k): the i-independent second term in each compo-
nent of the tensor Mn(i), when summed over i, gives a
delta function proportional to the SF of the lattice. If we
have more than one point per tile (i.e., p ≥ 2) we may
have, however, an i-dependent contribution from the first
term in Eq. (38), i.e., from the moments of the mass dis-
tribution constituted by the points assigned to the single
tile, which are not constrained (beyond the dipole mo-
ment). If we allow the distribution of these points to
vary stochastically from cell to cell, we will generically
have a non-zero contribution for the SF (ensemble aver-
aged over the stochastic process) at all k, i.e., we will
have a continuous SF7.

As a simple example let us consider first the RBR algo-
rithm analyzed above, cast as the ascription of two points
to each cell of a simple cubic lattice, but now allowing the
pair of particles ascribed to each cubic cell have a ran-
dom orientation, i.e., we take two points in each lattice
cell with coordinates

x1(R) = R+ u(R) , x2(R) = R− u(R) (40)

where R is the generic lattice site (which is the center
of mass of the corresponding tile), and the vectors u(R)
are generated by a stochastic process. We assume fur-
ther that the vectors u(R) in different lattice cells are
uncorrelated. The ensemble is thus fully specified by the
one point probability distribution function p(u). We call
this stochastic point process the split shuffled lattice 8,
as it is a generalization of the shuffled lattice discussed
in Ref. [1] (see also Refs. [11, 26]), in which one point is
randomly displaced off a perfect lattice.

The leading small-k behavior of S(k) in this case may
be found easily by taking the ensemble average of the
leading term in Eq. (15):

S(k) =
1

4
kαkβkγkδ〈Iαβγδ(k)〉 (41)

7 If, on the other hand, the points are placed in the same way with
respect to the center of mass of each tile, S(k) is again zero in
the same region. The remaining non-zero piece has a modulated
delta-function structure which can be easily calculated. Indeed
the point distribution so generated is in this case again a periodic
lattice, i.e., the initial Bravais lattice with basis of p points per
cell.

8 In the context of the context of causality bounds on fluctuations
in cosmology, this construction has been studied in Ref. [25].

where, using Eq. (38) in Eq. (16), we have

〈Iαβγδ(k)〉 = lim
V →∞

1

N

∑

R

∑

R′

e−ik·(R−R′)

×〈uα(R)uβ(R)uγ(R
′)uδ(R

′)〉 . (42)

Since the vectors u(R) are, by assumption, uncorrelated
at different sites, we have

〈uα(R)uβ(R)uγ(R
′)uδ(R

′)〉 = 〈uαuβ〉〈uγuδ〉 . (43)

for R 6= R′. Using the fact, again, that the sum
1
N

∑

R

∑

R′ e−ik·(R−R′) is proportional to the SF of the
original lattice, which is zero around k = 0, we can then
write the leading small-k behavior as

S(k) =
1

4

[

〈(k · u)4〉 − 〈(k · u)2〉2
]

. (44)

If we choose a probability distribution which is isotropic
in u, i.e., p(u) ≡ p(u) (with u = |u|), we then have

S(k) =
k4

4d2
[

C(d)〈u4〉 − 〈u2〉2
]

. (45)

where C(d) ≥ 1 is a constant [C(1) = 1, C(3) = 9/5].
We thus obtain the same exponent γ as in the RBR tiling
model, but now the fluctuations at small k are isotropic
at leading order because of the isotropy in the attribution
of the displacement vectors. Note that we have assumed
here, as we do throughout this paper, that the moments
of the mass distribution in each tile are finite, which re-
quires here manifestly in Eq. (45) the finiteness of at least
the first four moments of p(u). It is simple, however, to
generalize this kind of model to the case when moments
of order lower than the fourth diverge, just as done for
the shuffled lattice in Ref. [26] (see also [16]). In this case
one can obtain any small-k behavior (0 < γ ≤ 4).
This kind of algorithm can easily be generalized, con-

serving a sufficiently large number of moments in such a
way as to obtain higher powers of the small-k behavior, in
principle producing any desired leading behavior. Let us
suppose that we generate mass moments Mn(R) at each
lattice site R defined by Eq. (38), with an uncorrelated
stochastic process, i.e., so that

〈Mn(R)Mm(R′)〉 = 〈Mn(R)〉〈Mm(R′)〉 (46)

for each tensor component of the tensor product, for R 6=
R′, (and any n, m). As in the example given above
starting from Eqs. (15) and (16), it is straightforward to
show that S(k) may then be written, in a finite region
around k = 0, as

S(k) =

∞
∑

n=2

∞
∑

m=2

(−i)m(i)n

m!n!
(47)

×kn · [〈MnMm〉 − 〈Mn〉〈Mm〉] · km

where all the tensors Mn are evaluated at the same ar-
bitrary lattice cell, i.e.,

[〈MnMm〉]α1...αnβ1...βm
≡ 〈Mα1...αn

(R)Mm
β1...βm

(R)〉
(48)
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and kn ≡ kα1
kα2

...kαn
etc..

Thus, for example, we can obtain γ = 6 with an algo-
rithm of this type which allows the third moment M3 of
the mass distribution to vary from cell to cell while keep-
ing the second (quadrupole) moment M2 fixed. This can
be done in a rotationally invariant manner by using a con-
figuration of points with a quadrupole moment (relative
to its center of mass) proportional to the identity matrix,
e.g., points placed at the corners of a regular tetrahedron
in d dimensions. Placing such a configuration at each lat-
tice site, but rotated by a random rotation in SO(d), the
variance in the second moment of the cell is thus zero.
However it is easy to verify that the random rotation
engenders a variation in the third moment, so that one
obtains the leading small-k behavior S(k) ∝ k6. The co-
efficient of the k6 term can most easily be made zero by
taking instead a configuration whose quadrupole moment
is again diagonal, but whose third mass moment M3 is
zero. Since the latter is in fact zero for any configuration
of points which is invariant under inversion symmetry, a
possible choice is to add to each tetrahedron a reflection
of itself in its center of mass. Alternatively, and using
fewer points, one can use a randomly rotated configura-
tion consisting of d couples of points with equal separa-
tion placed orthogonally with common center of mass.
In this case we obtain a leading order small-k behavior
S(k) ∝ k8. Further discussion of this kind of point pro-
cess generation can be found in Ref. [19]. In this context
they arise as a special case of “cloud processes”, in which
points in a generic initial point process, of which the cor-
relation properties are assumed known, are replaced by
a “cloud” of point particles.

2. Congruent rotationally invariant tilings

We have seen that superhomogeneous point processes
with a small-k behavior S(k) ∝ kγ and γ > 4 can be
generated starting from a regular lattice tiling, by using
a stochastic process to determine the positions of an ap-
propriately constrained set of points in each cell. While
the point process so generated is not statistically transla-
tionally and rotationally invariant, we saw that a leading
behavior proportional to k was obtained if the stochastic
process assigning the points had itself no preferred direc-
tion. Thus at large scales the system approximates very
well statistical translational and rotational invariance.
Starting from a translation and rotation invariant

tiling we can obtain a statistically translation and ro-
tation invariant point process in an analogous way. It
suffices in this case, however, to assign the points deter-
ministically to each tile, in the same way relative to each
tile (e.g. at the center of mass of the tile). We do not
need now the additional stochasticity provided either by
taking more points per tile or random positions inside the
tile. The reason is that the moments of the tiles given
by Eq. (14) already depend on the tile itself because of
the orientation. Consequently the quantities g̃n,m(k) are

non-zero around k = 0 just as in the case when we had
one point per tile. The difference is, as we have discussed
at length above, that we can make certain terms zero so
that the leading term appears at higher order in k.
To see how this can be done in a little more detail, let

us consider, to be specific, a pinwheel tiling (d = 2) or
quaquaversal tiling (d = 3) as in Sect. II B 2 above. It
is convenient to study the SF S(k) as given in Eq. (20),
where now the Mn in Eq. (14) are given by the expres-
sions in Eq. (38). To define a point distribution in which
the leading term in this expression vanishes, one can pro-
ceed as follows. First one determines the location of the
center of mass and the quadrupole moment of the elemen-
tary tile. From the latter one can then find the principal
axes, in which it is diagonal. In each tile of the tiling one
then places on each such axis a pair of points, with their
center of mass at that of the tile, at the appropriate dis-
tance to produce the component of the second moment
along the corresponding axis. The leading contribution
to S(k) should then be determined by the small-k be-
havior of g̃3,3(k), i.e., by the correlation properties of the
third momentM3 as in Eq. (38). Because of the inversion
symmetry in the point distribution in each tile, the first
term in Eq. (38) vanishes. It is therefore the correlation
properties of the third moment of the tiles alone which
determines the coefficient of the term at order k6. Given
the results discussed above of the numerical studies [10]
for the quaquaversal tiling with a single point at the cen-
ter of mass, we expect that such correlations are short-
range, or at most very weakly long-range. One would
expect therefore to obtain an S(k) ∝ kγ with γ ≈ 6.
The generalization of this algorithm to higher orders

is, in principle, straightforward (albeit evidently cumber-
some as the order increases). Further one can seek to de-
termine the minimal number of points per tile required
to make the desired number of terms in Eq. (20) van-
ish. Indeed the specific algorithm described above uses
2d points, while it is easy to see that one needs only a
smaller number to make the leading term in Eq. (20) van-
ish: in d = 2, for example, it suffices to have three (rather
than four) points to represent the quadrupole moment of
the elementary triangular tile of the pinwheel tiling.

IV. DISCUSSION AND CONCLUSIONS

We have studied a class of point processes generated
by placing one or more points in each tile of a tiling of
R

d. We have assumed that the tiles have equal volume
as this is expected to lead to the suppression of fluctua-
tions at large scales characteristic of superhomogeneous
point processes. We have shown explicitly that one can
build superhomogeneous point processes with an arbi-
trarily large exponent characterizing the small-k behav-
ior of the structure factor, and we have presented various
examples. To our knowledge exact constructions of such
point processes for the case γ > 4 have not previously
been given in the literature.
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We have shown how in these algorithms the exponent
γ depends (i) on the arrangements of the points ascribed
to the tiles in the algorithm, and (ii) on the correlation
properties of the shapes and orientations of the tiles. For
the specific case of regular lattice tilings a non-trivial con-
tribution to the small-k behavior of S(k) arises only from
the former, with the coefficients in the small-k expansion
depending explicitly only on the variance of the (tenso-
rial) mass moments of the points assigned to each cell.
By arranging a sufficient number of points in a way which
makes this variance zero for the first n moments, one can
obtain γ > 2n. In the case of an irregular tiling — we
have considered the example of pinwheel and quaquaver-
sal tilings — an identical arrangement of the points in
each tile can be sufficient to produce continuous SF and
translational and rotational invariant superhomogeneous
point processes. The exponent γ then encodes informa-
tion about the correlation properties of the shapes and
orientations of the tiles. If these are short-range corre-
lated, one obtains γ = 4 placing a single point at the
center of mass of each tile, and γ = 2(n+1) if one places
a number of points with all mass moments up to the n-th
equal to that of the elementary tile. If there is, on the
hand, long-range correlation in the shapes and orienta-
tions of tiles, the exponent obtained will be modified in
a way which depends on the nature of this correlation.

Our results shed light on the meaning of the exponent
γ > 0 characterizing a superhomogeneous point process.
Up to the value γ = 4 previous explicit constructions of
discrete processes (see, e.g., [16, 26]) have shown that
the increase of γ can be associated with a suppression
of fluctuations at large scales. Here we have seen that
values γ > 4 correspond indeed to an increased order in
the arrangement of the points, but now at small scales: it
is by changing how points are arranged within each tile,
i.e., below a finite length scale (but subject always to the
global constraints on fluctuations imposed by the tiling),
that we can increase the exponent. Thus to “undo” the
order represented by an exponent γ > 4 with respect to a
system with γ = 4 requires only the rearrangement of the
system at small scales, while to “undo” that in a system
with γ ≤ 4 require a coherent rearrangement of points
on arbitrarily large scales (i.e. on scales inverse to the
wavenumber range in which the exponent is measured).

We have mentioned that our results are relevant in
cosmology. Firstly the analysis given here makes more
rigorous certain heuristic arguments used in this context
regarding “causal constraints” on the generation of fluc-
tuations from a uniform background [12, 13]. An algo-
rithm like that described here, for the case of a single
point placed at the center of mass of each tile, has been
considered [13] as a toy model for the generation of fluc-
tuations starting from an exactly uniform mass density,
by a physical process which conserves mass and momen-
tum locally. The result γ = 4 is obtained by assuming
that space is divided into finite cells whose positions are
uncorrelated. The latter assumption is in fact not consis-
tent: the division of space into equal volume cells implies

that their positions are necessarily correlated. Our more
rigorous analysis shows that this exponent γ = 4 does re-
sult generically, however, if the shapes and orientations
of these cells (i.e. tiles) are short-range correlated, i.e.,
have integrable correlation functions.
Secondly, the generation of very uniform point pro-

cesses is of relevance to the generation of initial condi-
tions for numerical simulations of structure formation in
the universe. In this context, to represent a given set
of initial conditions, one must perturb appropriately (see
[27] for a detailed discussion) a point distribution rep-
resenting as well as possible the uniform (unperturbed)
universe. To understand the effects coming from this
chosen point distribution (which are non-physical) it is
desirable to have different algorithms which can generate
such configurations. It is for this reason that a special
case of the algorithm we have studied here has been built
explicitly and studied numerically in this context [10].
The analytical results we have given here complement
these studies and give further algorithms for producing
even more uniform point processes which may be useful
in this context. We note again in this respect that ex-
plicit algorithms for producing γ > 4 have not previously
been given. Such distributions in themselves provide in-
teresting initial conditions (without any perturbation) for
gravitational clustering, which have not previously been
studied.
We conclude with some further remarks on our results

and some other directions for further work:

• In our constructions of point processes we have al-
ways constrained the center of mass of the points
in each tile to coincide with that of the tile. We
have done so because our goal here has been to
generate point processes which are as uniform as
possible. It is a simple exercise to redo our calcu-
lation leading to Eqs. (15) and (16) when this con-
straint is relaxed, i.e., allowing the center of mass
of the particles (or particle) in each tile to be dis-
placed randomly from that of the tile. The result
is that the leading term in Eqs. (15) is now at or-
der k2 rather than k4. For short-range correlated
tilings the leading behavior of the SF will then be
proportional to k2. This result will be valid if the
displacements of the center of mass of the particles
within a tile with respect to the center of mass of
the associated tiles have a finite variance. On the
other hand, if the variance of these displacements
diverges, the small-k behavior of the SF is given
by S(k) ∝ kγ where 0 < γ < 2, the value of the
exponent depending on the precise behavior dis-
placements PDF for large arguments. A detailed
calculation of these cases for a randomly perturbed
lattice can be found in Ref. [11, 26].

• While we have shown analytically the existence of
point processes with arbitrarily large exponents γ,
we have not done so for a case which is statistically
translation and rotation invariant. In the latter
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case our results for the exponent are expressed in
terms of the small-k behavior of the g̃n,m(k) which
encode, as we have explained, information about
the correlation properties of the shapes and ori-
entations of the tiles. For the one such example
which has been numerically studied (in Ref. [10],
the quaquaversal tiling with a single point at the
center of mass) the result indicates an asymptotic
behavior close to (but, as noted in Ref. [23], slightly
different to) that which would arise from a purely
short-range correlation of the orientations of the
tiles. Further numerical and analytical study of
these points processes would clearly be of interest,
in particular of the simpler pinwheel tiling.

• We have made in our derivations here an assump-
tion of analyticity at k = 0 of the window function
of the tiles, which corresponds to all moments of
their mass distribution being finite. This is cer-
tainly valid if the tiles are of finite extent. It may,
however, include other cases which might be of in-
terest, e.g., in d > 1 one may envisage that there is
a non-trivial distribution of the shapes of the equal
volume tiles, in which the extent of a tile is not lim-
ited. One could also consider relaxing the assump-
tion that the volumes of the tiles are strictly equal,
admitting a distribution of volumes with specified
correlation properties. In analogy with what has
been found in certain algorithms for γ ≤ 4 [16, 26],
one would expect that such modifications would al-
low the generation of point processes with leading
non-analytic behavior, and any value of the expo-
nent γ. Indeed one would expect non-analytic ex-
ponents to be related either to the divergence of
moments of such a distribution of extent or volume
or to the presence of long-range tile-tile correla-
tions.

• While all our explicit examples have employed
tilings which are congruent, our results for the
small-k behavior of the SF S(k) all apply only on
the much weaker assumption of equal volume of
the tiles. Thus for example we can apply these re-
sults to any tiling generated by a deformation of
tiles which leaves their volume fixed, which could
encompass a large range of systems of physical in-
terest (cells, foams, etc.). We recall in this respect,
as remarked above, that a point placed randomly
in each cell, rather than at the center of mass, leads
to the restoration of the order k2 term in the ex-
pression given in Eqs. (15).

• It is useful to briefly remark on the physical real-
izability of superhomogeneous point distributions
with arbitrary positive but bounded values of γ.
Such distributions are disordered to some degree
and, although they are unusual, can be physically
constructed. For example, the maximally random
jammed (MRJ) state in three dimensions [28] is a

special disordered sphere packing that can be re-
garded to be a prototypical glass because it is per-
fectly rigid and yet is maximally disordered. It is
a superhomogeneous point distribution character-
ized by an exponent γ = 1 [6], but it is inherently
a system out of equilibrium. While we have ex-
amples like the equilibrium one-component plasma
that has γ = 2, can one devise equlibrium super-
homogeneous point distributions in which γ is ar-
bitrarily large? The answer is apparently in the
affirmative but it requires more than just pair in-
teractions, namely, two-, three- and four-body in-
teractions as shown in Ref. [14].
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APPENDIX A: FROM GAUSSIAN TO SPIN

FIELDS

In this appendix we show explicitly how to generate a
regular lattice spin configuration with a given two-point
correlation function. Such a configuration has been used
as the starting point in the RBR algorithm described in
Sect. II B 3.
The algorithm we propose is based on a mapping be-

tween a set of correlated Gaussian variables {x(R)} with
zero mean, and the spin set {s(R)} (whereR is, as above,
the generic lattice vector). We do so because to generate
a lattice set of correlated Gaussian variables with any
possible desired correlation function is very simple.
We denote by

c(R) = 〈x(R0)x(R0 +R)〉 (A1)

and

χ(R) = 〈s(R0)s(R0 +R)〉

the two-point correlation functions of the Gaussian and
the spin sets, respectively. We have used here the statisti-
cal lattice translational invariance. Both c(R) and χ(R)
must have non-negative FTs as required by the Khint-
chine theorem for stochastic processes (see e.g. Ref. [11]).
The starting point is the two variable joint PDF for

correlated and monovariate Gaussian variables. Denot-
ing by x1 and x2 two Gaussian variables at two lattice
sites separated by the vector R, we have

p(x1, x2;R) =
1

2
√

σ4 − c2(R)

× exp

[

−σ2(x2
1 + x2

2 − 2c(R)x1x2

2[σ4 − c2(R)]

]

,(A2)
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where c(R) is defined in Eq. (A1), and σ2 = c(0) is the
common variance of the Gaussian variables.
The mapping we consider is the simplest possible: at

the site R we fix s(R) = 1 if x(R) > 0 and s(R) = −1
otherwise. We want now to find the relation between
χ(R) and c(R). This can be done simply by noting that
we can write

s(R) = 2θ[x(R)]− 1 ,

where θ(x) is the usual Heaviside step function. There-
fore we can write

χ(R) = 4

∫ +∞

0

∫ +∞

0

dx1 dx2

2
√

σ4 − c2(R)

× exp

[

−σ2(x2
1 + x2

2 − 2c(R)x1x2

2[σ4 − c2(R)]

]

− 1 .(A3)

Performing the double change of integration variables

{

y1 = x1

y1 = x2 − [c(R)/σ2]x1

}

it is simple to rewrite Eq. (A3) as

χ(R) = 2

∫ ∞

0

dy1√
2πσ2

e−y2

1
/(2σ2)erf(Ay1) , (A4)

where A = c(R)

σ
√

2[σ4−c2(R)]
and

erf(x) =
2√
π

∫ x

0

dt e−t2

is the usual error function. We now use the known equal-
ity:

∫ ∞

0

dx e−px2

erf(qx) =
1√
πp

arctg

(

a√
p

)

which implies finally that

χ(R) =
2

π
arctg

[

c(R)
√

σ4 − c2(R)

]

. (A5)

Therefore, given a lattice set of monovariate correlated
Gaussian variables, we can map it onto a lattice set
of spin variables with 〈s(R)〉 = 0 and χ(R) given by
Eq. (A5).

1. Asymptotics

From Eq. (A5) it is simple to verify that

χ(0) =
〈

σ2
〉

= 1 .

Moreover, as for R = |R| → ∞ the correlation function
c(R) must vanish, it is simple to verify that for suffi-
ciently large R we have

χ(R) ≃ 2

π

c(R)

σ2

, i.e., χ(R) and c(R) have the same asymptotic behavior.
In particular if the Gaussian variables are long-/short-
range correlated the spin variables are also long-/short-
range correlated with the same scaling behavior.

We can also give the condition of superhomogeneity for
the spin lattice set. For the spin system this condition is
simply

∑

R

χ(R) = 0 .

which gives the following more complicated relation for
the correlation function of the Gaussian variables:

∑

R

2

π
arctg

[

c(R)
√

σ4 − c2(R)

]

= 0 .
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