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Possibly Large Corrections to the Inflationary Observables
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We point out that the theoretical predictions for the inflationary observables may be generically
altered by the presence of fields which are heavier than the Hubble rate during inflation and whose
dynamics is usually neglected. They introduce corrections which may be easily larger than both the
second-order contributions in the slow-roll parameters and the accuracy expected in the forthcoming
experiments.
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Cosmological inflation [1] has become the dominant paradigm within which one can attempt to understand the initial
conditions for Cosmic Microwave Background (CMB) anisotropies and structure formation. In the inflationary
picture, the primordial cosmological perturbations are created from quantum fluctuations which are “redshifted”
out of the horizon during an early period of accelerated expansion. Once outside the horizon, they remain “frozen”
until the horizon grows during a later radiation- or matter-dominated era. After falling back inside the horizon they
are communicated to the primordial plasma and hence are directly observable as temperature anisotropies in the
CMB. These anisotropies have been mapped with spectacular accuracy by the Wilkinson Microwave Anisotropy
Probe (WMAP) [2] and even a better accuracy will be reached by the Planck satellite [3] and its successors. This
has allowed to put more and more stringent constraints on inflationary models |2, 4, |5, 6].

Given the present and future level of accuracy of the cosmological observations in the CMB anisotropies and
in the large scale structure of the universe, the theoretical predictions for the inflationary observables need to be
as precise as possible. Within single field models of inflation this is not necessarily a hard task since the power
spectrum P¢ of the curvature perturbation ¢, the spectral index n¢, the amount of tensor modes and the way these
observables run with the scale may be computed with the required level of accuracy in terms of series of powers
of the slow-roll parameters [7]. Comparing cosmological data with the predictions of a given model of inflation
to decide whether they are compatible seems therefore quite straightforward. In this short note, we would like to
point out that this may not be the case: there are generic corrections to the theoretically predicted inflationary
observables which have been neglected so far and which may, in principle, be calculated within a given inflationary
model once the latter is rooted in a well-defined particle physics model.

Let us briefly explain the nature of such corrections. In any inflationary model it is a common lore to neglect the
dynamics of those fields which are heavier than the Hubble rate H during inflation. This is because the heavy fields
are stabilized at the minimum of their potential and are thought to play no active role in the inflationary dynamics.
This is certainly correct, they do not play any major role. However, the correct question is if they influence the
inflationary predictions at the level of accuracy needed for a fair comparison with the observations. We believe the
answer may be positive. This may be either fortunate or unfortunate according to the various cases. The key point
is that during inflation the vacuum expectation value (VEV) of these heavy fields is not likely to be constant; on
the contrary it is expected to adiabatically and slowly changing with time to follow the change of the Hubble rate.
This simple effect changes the inflationary predictions.

Let us describe the effect in some detail. Consider the inflationary dynamics driven by a scalar field ¢ with
potential V(¢). We now assume the presence of a heavy scalar field ® with mass m and VEV @ in the present-day
vacuum. We will also assume that the mass of the heavy field is larger than the Hubble rate during inflation, H < m.
The important observation is that, in general, the inflaton field and the heavy field are not totally decoupled from
each other. On the contrary, one expects that during inflation the total potential assumes the form

U (6,8) = V(6)f (/M) + g (@ ~ B)° )

where we have expanded the potential of the heavy field around its present VEV ®( (assuming consistently that
V(¢) is much larger than the heavy field potential at ®g) and the function f(®/M) parametrizes the interaction
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between the inflaton and the heavy fields. The scale M may be the reduced Planck scale M, if the interaction is
of gravitational nature, but may be smaller if f(®/M) arises from the exchange of some heavy fields. The kind of
interaction parametrized by the function f may arise, for instance, in any model of inflation incorporated within
supergravity. Indeed, radiative corrections to the Kéhler potential lead to terms in the effective Lagrangian of the
form
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where C? is a coefficient which can be larger than unity. We can now Taylor-expand the function f(®/M) around
Py to find how much the heavy field VEV is displaced from its present-day value. The full potential becomes
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where fo = f(®o/M), f denotes the derivative of f with respect to its argument evaluated at ® = &y and so on.
One can easily show that the VEV of the heavy field is shifted from ®q to
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Plugging this new VEV back into Eq. (B]) one finds the potential

N L (f o)
U(6) = V(o)fo — 5202 V(9), )
where we have assumed |f{/|V (¢)/M? < m? for the sake of simplicity. We obtained what advertised earlier: because

of the small change durmg inflation of the VEV of the heavy field with respect to its value in the present vacuum,
the starting inflaton potential receives a generic correction

SV (¢) ~ (VZ(¢)/M*m?) ~ (H(¢)/m)*(My/M)?V (). (6)

Let us now compute the corresponding changes in the inflationary observables. First of all, the number of e-folds
to go till the end of inflation becomes
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where V' = dV (¢)/d¢ and so on. The slow-roll parameters become
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and are to be computed at ¢ = ¢ when there are N e-folds to go till the end of inflation. From these expressions

we conclude that the spectral index ne = 1+ 2n — 6e, the tensor-to scalar ratio » and their running with the scales
(or e-folds) dn¢/dN and dr/dN get corrections of the form
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These corrections may be large as H is not necessarily much smaller than the mass m of the heavy field, M can be
smaller than the Planck scale and there may be many heavy fields. The corrections (@) have to be compared to the
corrections which are second-order in the slow-roll parameters, e.g. dne = O(€2,7%, en). The corrections due to the
presence of the heavy field can be clearly larger.

Consider for example the large-field models of inflation characterized by a potential V(¢) = (u*~?/p)¢P where
(1 is a mass scale and p is a positive integer. One can easily check that the spectral index n¢ is not modified as
a function of the number of e-folds N given in Eq. () and we find ne — 1 = —(2 4+ p)/(2N) [8]. However, the
tensor-to-scalar perturbation ratio r is modified. Since in single-field inflation r = 16¢, we can easily calculate
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Notice that the correction is always negative (this in fact holds for any inflaton potential). Thus, for example, for a
quartic potential, V(¢) o< ¢?, which has been put under strong pressure from the recent data analyses, this means
that a slight red tilt could still be accommodated with an amplitude of the gravity waves that is lower than the
usual standard predictions. Also, we conclude that the corrections from the presence of the heavy fields may be
even larger than the expected accuracy r ~ 10™* of forthcoming experiments aimed to measure the presence of
tensor modes through the B-type polarization of the CMB [9].

The running of r will also change (while that of n¢ is not affected by the presence of the heavy field) into

dr 16p 3(p=2)(p+1) ,(f5)* My H*(¢n)
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Notice that for p > 1, the running of r is due only to the heavy field correction. As another example, let us consider
an inflaton potential of the form

Vo) =Vo (1+0¢1n%), (12)

which is typical in supersymmetric hybrid inflation [1] (here « is usually a loop-factor and A is a mass scale). After
some simple algebra, one finds that
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The almost unavoidable presence of heavy fields during inflation leads therefore to corrections to the inflationary
observables which may be larger than both the second-order contributions in the slow-roll parameters and of the
accuracy of future experiments. Indeed, while H < m for the field ® to be considered heavy during inflation,
one might have easily M < M, and a large contribution from the (f{)?/fo. Moreover, while here we have just
considered the case of a single heavy scalar field, the size of these effects could be increased by the presence of many
of such heavy fields (for instance, in inflationary string-motivated scenarios one has plenty of moduli fields, such as
the complex structure moduli, which are usually disregarded). In a well-defined model of inflation, well-rooted in
a given particle theory model, these corrections can (and should) be computed. On the other hand, if one wishes
to see if a generic (toy) inflaton potential is in agreement with present and future observations, these corrections
should be regarded as an unavoidable source of uncertainty in the theoretical predictions. This is rather unfortunate.
However, one could also try to make use of these corrections to gain something. For instance, since the corrections
to r, € and 7 are generically negative, one could try to relax the so-called Lyth bound on the total variation of the
inflaton field [10] and to obtain inflation from potentials which are too steep.
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