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Abstra
t

The Hamiltonian 
onstraint of the 
oupled Einstein�Yang�Mills�Higgs

system with a 
osmologi
al 
onstant is shown to be a pure Poisson bra
ket

of a dimensionless fun
tional on the phase spa
e and the volume of the

three-spa
e. One of its potential 
onsequen
es, a restri
tion on the eigen-

states of the volume operator in a 
lass of 
anoni
al quantum gravity

theories, is also pointed out.

1 Introdu
tion

It has been 
onje
tured for a long time that the Chern�Simons fun
tional, intro-

du
ed originally in pure di�erential geometry [1℄, should play some fundamental

role in physi
s (see e.g. [2℄). In parti
ular, the 
onformally invariant fun
tional

on Riemannian 3-manifolds [3℄ 
an be generalized for initial data sets of general

relativity: the Chern�Simons fun
tional built from an appropriate 
onne
tion

on the pull ba
k to the Cau
hy hypersurfa
e of the spa
etime tangent bundle

is a global 
onformal invariant of the initial data set [4, 5℄. The fun
tional 
an

also be introdu
ed in the 
anoni
al formulation of general relativity too, where

its 
onformal invarian
e implies the vanishing of its Poisson bra
ket with the

3-volume.

The Chern�Simons fun
tional 
an be de�ned on the spinor bundle over the

Cau
hy hypersurfa
e too. In this 
ase it is 
omplex, its real part is the previous

fun
tional, but its imaginary part is not a 
onformal invariant. However, this

is 
onne
ted with the va
uum general relativity: the Chern�Simons fun
tional,

de�ned in the spinor representation, is invariant with respe
t to in�nitesimal


onformal res
alings on every Cau
hy surfa
e pre
isely when the va
uum Ein-

stein equations are satis�ed [6℄. This made it possible to reformulate the Hamil-

tonian 
onstraint of va
uum GR: this 
onstraint is the Poisson bra
ket of the

spinor Chern�Simons fun
tional and the 3-volume.

1

http://arxiv.org/abs/0711.4009v2


Re
ently Soo generalized the above result to in
lude the 
osmologi
al 
on-

stant, and he dis
ussed its impli
ations in a quantum version of 
anoni
al general

relativity [7℄, too.

In the present paper we extend this result further by showing that the Hamil-

tonian 
onstraint even for the 
oupled Einstein�Yang�Mills�Higgs system (with

or without the 
osmologi
al 
onstant) is the Poisson bra
ket of an appropriate

dimensionless fun
tional and the volume of the three-spa
e. In a 
anoni
al quan-

tum theory of gravity this yields a potential restri
tion on the volume eigenstates

of the quantum volume operator.

Our 
onventions followed here are those of [6℄. In parti
ular, the three-

metri
 is negative de�nite, the spa
etime 
urvature is de�ned by −4Ra
bcdX

b :=
2∇[c∇d]X

a
, when Einstein's equations take the form

4Gab = −κTab with κ :=
8πG, and the orientation of the indu
ed volume 3-form of the spa
elike hyper-

surfa
e Σ with future pointing unit normal ta is de�ned by εabc := εabcdt
d
.

2 The Hamiltonian 
onstraint

For the sake of simpli
ity the base manifold Σ is assumed to be 
losed. The


anoni
al variables are (qab, p̃
ab), (φi, π̃i) and (Ai

aj, Ẽ
ai

j) in the gravitational, the
Higgs and the Yang�Mills se
tors, respe
tively. The Hamiltonian 
onstraint of

the 
oupled Einstein�Yang�Mills�Higgs system with the 
osmologi
al 
onstant

λ is

C̃ := C̃0 +
λ

κ

√
|q|+ µH

√
|q|+ µYM

√
|q| = 0, (2.1)

where C̃0 is the Hamiltonian 
onstraint fun
tion of the va
uum GR and µH and

µYM are the energy densities of the Higgs and Yang�Mills �elds, respe
tively,

given expli
itly by

C̃0 := −
1

2κ

(
R−

4κ2

|q|

(
p̃abp̃cdqacqbd −

1

2
[p̃abqab

]2))√
|q|, (2.2)

µH :=
1

2
Gijπiπj −

1

2
Gijq

ab
(
Daφ

i
)(
Dbφ

j
)
+ U

(
φ
)
, (2.3)

µY M := −
1

2
qab

(
Ei

ajE
j
bi +Bi

ajB
j
bi

)
. (2.4)

Thus the gravitational 
anoni
al variables (qab, p̃
ab) are the ADM variables [8℄,

R is the 
urvature s
alar, and p̃ab is built from the metri
 and the extrinsi
 
ur-

vature χab of Σ in the spa
etime as p̃ab = − 1
2κ (χ

ab−χqab)
√
|q|. The Higgs �eld

is a multiplet {φi}, i = 1, ..., n, of real s
alar �elds on Σ, whi
h are transformed

among ea
h other under the a
tion of an n-dimensional representation of some


ompa
t gauge group. This representation of the gauge group is assumed to

be a subgroup of GL(n,R) leaving the symmetri
 positive de�nite metri
 Gij

�xed. The 
anoni
al momentum π̃i is just

√
|q|-times πi, where the latter is
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given in terms of the Lagrange variables (φi, φ̇i) and the lapse N and the shift

Ne
by πi = − 1

N
Gij(φ̇

j−NeDeφ
j). De is the gauge 
ovariant derivative operator:

Deφ
i := Deφ

i + Ai
ejφ

j
, and U(φ) is some potential, e.g. typi
ally of the form

1
2m

2Gijφ
iφj + 1

4ν(Gijφ
iφj)2 with the so-
alled rest mass m and self-intera
tion

parameter ν. Finally, the 
anoni
al momentum Ẽai
j for the Yang�Mills �eld

is

√
|q|-times the ele
tri
 �eld strength Eai

j , and Bai
j is the magneti
 �eld

strength. The other 
onstraints (namely the momentum 
onstraint of GR and

the Gauss 
onstraint of the Yang�Mills theory) will not play any role in the

present paper.

On the gravitational se
tor of the phase spa
e we introdu
e the real valued

fun
tions

V
[
N
]
:=

∫

Σ

N
√
|q|d3x, T

[
f
]
:=

2

3

∫

Σ

f p̃abqabd
3x (2.5)

for any real, integrable fun
tions N and f on Σ. If D ⊂ Σ is any measurable

set and N is its 
hara
teristi
 fun
tion, then V [N ] is the 3-volume of D. Es-

sentially V [N ] is Misner's time fun
tion (more pre
isely, it is − 1
3 lnV [1]), while

T [f ] is the smeared version of York's time fun
tion. Their Poisson bra
ket is

{T [f ], V [N ]} = V [fN ].
Let us �x a spinor stru
ture on TΣ. Then the intrinsi
 Levi-Civita 
onne
-

tion De and the extrinsi
 
urvature χab determine a 
onne
tion De on the spinor

bundle, the so-
alled Sen 
onne
tion, a

ording to Deλ
A := Deλ

A− 1
√

2
χe

A
Bλ

B
,

where the se
ond index of the extrinsi
 
urvature χef has been 
onverted to a

(symmetri
) pair AB of unitary spinor indi
es. Denoting the 
orresponding


onne
tion 1-form and 
urvature 2-form in some normalized dual spin frame

{εAA , ε
A

A }, A = 0, 1, by Γ
A

eB and FA
B cd, respe
tively, the Chern�Simons fun
-

tional is de�ned by

Y
[
ΓA

B

]
:=

∫

Σ

(
FA

B deΓ
B

fA +
2

3
Γ
A

dB Γ
B

eC Γ
C

fA

) 1

3!
δ
def
abc . (2.6)

For its basi
 properties (in parti
ular the 
hange under the transformation of

the spinor basis {εAA , ε
A

A } or the 
onformal res
aling of the spa
etime metri
, the


al
ulation of its fun
tional derivatives with respe
t to the 
anoni
al variables as

well as a more detailed dis
ussion of the geometri
 ba
kground) see [6℄. What we

need here is the result that Y modulo 8π2
is invariant with respe
t to the 
hange

of the spinor basis (and hen
e ReY modulo 8π2
and ImY are well de�ned real

valued fun
tions on the ADM phase spa
e), and that

{
ReY, V

[
N
]}

= 0,
{
ImY, V

[
N
]}

= κ2

∫

Σ

C̃0Nd3x; (2.7)

i.e. the Hamiltonian 
onstraint of the va
uum Einstein theory is the pure Pois-

son bra
ket of the Chern�Simons fun
tional built from the Sen 
onne
tion on

the spinor bundle and Misner's time [6℄.

This result 
an be extended to Einstein�Yang�Mills�Higgs systems. In fa
t,

if we de�ne
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G := ImY + T
[
κλ

]
+ κ2 2

3

∫

Σ

(
µH + µY M

)
p̃abqabd

3x, (2.8)

then by the Poisson bra
ket of the Misner and York times, equation (2.7) and

the de�nitions it follows that

{
G, V

[
N
]}

= κ2

∫

Σ

C̃Nd3x =: κ2 H
[
N
]
, (2.9)

whi
h is a generalization of the previous results of [6℄ for the va
uum, and

of Soo [7℄ for the 
osmologi
al 
onstant 
ases. Thus the geometri
 
ontent of

the Hamiltonian 
onstraint is that G must be 
onstant along the �ow of the

Hamiltonian ve
tor �eld of V [N ]. G, being dimensionless and depending on no

smearing fun
tion, appears to be the `universal generator fun
tion' by means of

whi
h the 
onstraint governing the time evolution of the Einstein�Yang�Mills�

Higgs system is generated. The lapse fun
tion N enters the dynami
s only

through V [N ].
Neither G nor V [N ] has weakly vanishing Poisson bra
ket with the 
on-

straints, and, in parti
ular, with the Hamiltonian 
onstraint. Thus they are not


lassi
al observables on the whole phase spa
e. However, these Poisson bra
kets


ould be zero on 
ertain subsets U of the 
onstraint surfa
e (e.g. at the points

representing Einstein's stati
 universe with a 
osmologi
al 
onstant), and in this

they behave as well de�ned 
lassi
al observables on the spe
ial states represented

by the points of U .

3 A restri
tion on the eigenstates of the quantum

volume operator

The result (2.9) 
an be reformulated in Ashtekar's phase spa
e, the starting

point of most of the re
ent approa
hes of 
anoni
al quantum gravity [9℄. In-

deed, for the va
uum and the va
uum with 
osmologi
al 
onstant 
ases this is

already given in [6℄ and [7℄, respe
tively. (In fa
t, Soo used the even more gen-

eral Barbero�Immirzi variables as the basi
 
anoni
al 
oordinates.) Thus what

remains be done is to express the metri
 qab in µH and µYM and the 
oe�
ient

p̃abqab of µH and µY M in the generator fun
tion G in terms of the Ashtekar

variables, whi
h is a straightforward 
al
ulation.

In the present se
tion we intend to point out a simple 
onsequen
e of (2.9)

in a 
lass of 
anoni
al quantum theories of general relativity that are based on

Dira
's quantization of 
onstrained systems. First, it is known that well de�ned

quantum operators for both the area of a surfa
e and the volume of a 
ompa
t

domain D in the three-spa
e Σ 
an be introdu
ed, and the spin network states

are eigenstates of them [10, 11℄. As we mentioned in 
onne
tion with (2.5), any

domain D 
an be 
hara
terized by its own 
hara
teristi
 fun
tion N , and the


orresponding volume operator, a
ting as a linear operator on some 
omplex

representation spa
e V , will be represented in the same way and will be denoted
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by V̂ [N ]. Next we will have three assumptions: 1. We assume that the 
lassi
al

generator fun
tional G and the Hamiltonian 
onstraint fun
tion H [N ] have a

well de�ned operator form, Ĝ and Ĥ [N ], respe
tively, a
ting on V . (In fa
t, what
we use in the subsequent dis
ussion is that they are well de�ned on the volume

eigenstates.) 2. Suppose that the 
lassi
al Poisson bra
ket relation (2.9) still

holds in operator form: [Ĝ, V̂ [N ]] = i~κ2 Ĥ [N ]. (Indeed, as Soo already showed
[7℄, in the 
onne
tion representation for an appropriate (symmetri
) ordering

there is an operator form Ĥ [N ] of the Hamiltonian 
onstraint of the va
uum

GR whi
h is the 
ommutator of the Chern�Simons operator and the three-

volume. Hen
e in this representation our �rst two assumptions are satis�ed.)

3. Following Dira
, we 
onsider a state |Ψ〉 to be a physi
al state if and only if

it is annihilated by the operator form of all 
onstraints (and the spa
e of these

states will be denoted by V0), i.e. in parti
ular [Ĝ, V̂ [N ]] |Ψ〉 = 0 must hold for

any physi
al state |Ψ〉.

Now let us 
onsider an eigenstate |Ψv〉 of the volume operator V̂ [N ] with
eigenvalue v. Then the a
tion of the operator form of (2.9) on the eigenstate

|Ψv〉 gives

V̂
[
N
](
Ĝ|Ψv〉

)
= v

(
Ĝ|Ψv〉

)
− i~κ2 Ĥ [N ]|Ψv〉. (3.1)

Sin
e in general V̂ [N ] is not (weakly) 
ommuting with the 
onstraint operators,

the volume eigenstates are not expe
ted to be physi
al states, and hen
e the

se
ond term on the right hand side of (3.1) is not vanishing. (The Hamiltonian


onstraint is not required to annihilate the volume eigenstates even if the volume

is expe
ted to be a quantum observable in the sense of Ku
ha° [12℄.) However,

on 
ertain subspa
es U ⊂ V0 the volume operator 
ould be 
ommuting with

the 
onstrains, and hen
e 
ertain volume eigenstates 
ould be physi
al states as

well.

Thus suppose that |Ψv〉 is a physi
al state too, and hen
e it is annihilated by

the Hamiltonian 
onstraint operator. Therefore, by (3.1) the volume eigenstate

|Ψv〉 
an be a physi
al state only if the operator Ĝ maps the eigenstate |Ψv〉
into another eigenstate with the same eigenvalue v. (To have a ne
essary and

su�
ient 
ondition the other 
onstraints also would have to annihilate |Ψv〉.)

However, in general, without additional restri
tions on Ĝ, the operators Ĝ and

V̂ [N ] are not ne
essarily simultaneously diagonalizable even on the subspa
e

spanned by the eigenstates |Ψv〉 with �xed v; and even if, in addition, every

state in this subspa
e were a physi
al state: Ĝ may still have a non-trivial

Jordan form there. This restri
tion on the stru
ture of the operator Ĝ in these

spe
ial states may help �nding the operator form of the universal generator

fun
tion G (and, in parti
ular, of the Chern�Simons fun
tional) in other (e.g.

the loop) representations.
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