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Abstract
The Hamiltonian constraint of the coupled Einstein—Yang—Mills—Higgs
system with a cosmological constant is shown to be a pure Poisson bracket
of a dimensionless functional on the phase space and the volume of the
three-space. One of its potential consequences, a restriction on the eigen-
states of the volume operator in a class of canonical quantum gravity
theories, is also pointed out.

1 Introduction

It has been conjectured for a long time that the Chern—Simons functional, intro-
duced originally in pure differential geometry [1]], should play some fundamental
role in physics (see e.g. [2]). In particular, the conformally invariant functional
on Riemannian 3-manifolds [3] can be generalized for initial data sets of general
relativity: the Chern—Simons functional built from an appropriate connection
on the pull back to the Cauchy hypersurface of the spacetime tangent bundle
is a global conformal invariant of the initial data set [4, [5]. The functional can
also be introduced in the canonical formulation of general relativity too, where
its conformal invariance implies the vanishing of its Poisson bracket with the
3-volume.

The Chern—Simons functional can be defined on the spinor bundle over the
Cauchy hypersurface too. In this case it is complex, its real part is the previous
functional, but its imaginary part is not a conformal invariant. However, this
is connected with the vacuum general relativity: the Chern—Simons functional,
defined in the spinor representation, is invariant with respect to infinitesimal
conformal rescalings on every Cauchy surface precisely when the vacuum Ein-
stein equations are satisfied [6]. This made it possible to reformulate the Hamil-
tonian constraint of vacuum GR: this constraint is the Poisson bracket of the
spinor Chern—Simons functional and the 3-volume.
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Recently Soo generalized the above result to include the cosmological con-
stant, and he discussed its implications in a quantum version of canonical general
relativity [7], too.

In the present paper we extend this result further by showing that the Hamil-
tonian constraint even for the coupled Einstein—Yang—Mills-Higgs system (with
or without the cosmological constant) is the Poisson bracket of an appropriate
dimensionless functional and the volume of the three-space. In a canonical quan-
tum theory of gravity this yields a potential restriction on the volume eigenstates
of the quantum volume operator.

Our conventions followed here are those of [6]. In particular, the three-
metric is negative definite, the spacetime curvature is defined by —*R%.4X? :=
2V .V 4 X?, when Einstein’s equations take the form YGup = —kT, with k =
871G, and the orientation of the induced volume 3-form of the spacelike hyper-
surface ¥ with future pointing unit normal ¢¢ is defined by €qpe = Eapeat®.

2 The Hamiltonian constraint

For the sake of simplicity the base manifold ¥ is assumed to be closed. The
canonical variables are (gap, p%°), (¢!, 7:) and (AL;, E%;) in the gravitational, the
Higgs and the Yang—Mills sectors, respectively. The Hamiltonian constraint of
the coupled Einstein—Yang—Mills-Higgs system with the cosmological constant

A is

Y
C:= Co+;\/|€|+MH\/|Q| + pym/ gl =0, (2.1)

where C is the Hamiltonian constraint function of the vacuum GR and py and
wyp are the energy densities of the Higgs and Yang—Mills fields, respectively,
given explicitly by
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Thus the gravitational canonical variables (qqp, 5%°) are the ADM variables [8],
R is the curvature scalar, and p* is built from the metric and the extrinsic cur-
vature Yqp of ¥ in the spacetime as p*° = —%(x“b — xq“b)m. The Higgs field
is a multiplet {¢'}, i =1,...,n, of real scalar fields on X, which are transformed
among each other under the action of an n-dimensional representation of some
compact gauge group. This representation of the gauge group is assumed to
be a subgroup of GL(n,R) leaving the symmetric positive definite metric Gj;

fixed. The canonical momentum 7; is just 4/|g|-times 7, where the latter is



given in terms of the Lagrange variables (¢!, (;5‘) and the lapse N and the shift
N€¢bym = —%Gij (¢5] — N°D.¢}). D, is the gauge covariant derivative operator:
De¢' := D¢ + Al;¢l, and U(¢) is some potential, e.g. typically of the form
Im2Gydidd + 1v(Gy¢'d)? with the so-called rest mass m and self-interaction
parameter v. Finally, the canonical momentum E“ij for the Yang—Mills field
is \/|g|-times the electric field strength E%; | and B%; is the magnetic field
strength. The other constraints (namely the momentum constraint of GR and
the Gauss constraint of the Yang—Mills theory) will not play any role in the
present paper.

On the gravitational sector of the phase space we introduce the real valued
functions

V|[N] I:/EN\/HdBIE, T[f] := ;/Efﬁabqabdgaj (2.5)

for any real, integrable functions N and f on X. If D C ¥ is any measurable
set and N is its characteristic function, then V[N] is the 3-volume of D. Es-
sentially V[N] is Misner’s time function (more precisely, it is —3 In V[1]), while
T[f] is the smeared version of York’s time function. Their Poisson bracket is
{T1f], VIN]} = VIfN].

Let us fix a spinor structure on 7'3. Then the intrinsic Levi-Civita connec-
tion D, and the extrinsic curvature x ., determine a connection D, on the spinor
bundle, the so-called Sen connection, according to DA := D A — %xeAB)\B,
where the second index of the extrinsic curvature x.; has been converted to a
(symmetric) pair AB of unitary spinor indices. Denoting the corresponding
connection 1-form and curvature 2-form in some normalized dual spin frame
{e4, E% A =01, by FfB and F2 g .4, respectively, the Chern-Simons func-
tional is defined by N

2
3

For its basic properties (in particular the change under the transformation of

Y[M45] ::/(Féﬁdel—‘?fx +
g A

A B +C 1 cde
l—‘gﬁ '’ l—‘j—»é ) §5abcf. (2.6)

the spinor basis {Ej?1 , z’:‘%} or the conformal rescaling of the spacetime metric, the
calculation of its functional derivatives with respect to the canonical variables as
well as a more detailed discussion of the geometric background) see [6]. What we
need here is the result that Y modulo 872 is invariant with respect to the change
of the spinor basis (and hence ReY modulo 872 and Im Y are well defined real
valued functions on the ADM phase space), and that

{Reviv[N]} =0, {myv[v]}= mz/ZéONd3x; 2.7)

i.e. the Hamiltonian constraint of the vacuum Einstein theory is the pure Pois-
son bracket of the Chern-Simons functional built from the Sen connection on
the spinor bundle and Misner’s time [6].

This result can be extended to Einstein—Yang—Mills—Higgs systems. In fact,
if we define
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G:=ImY + T [kA] + /@25 / (pm + py v ) P qapd?z, (2.8)
b
then by the Poisson bracket of the Misner and York times, equation (Z7) and
the definitions it follows that

{e.vin} = nz/ZéNd% — 2 H[N], (2.9)

which is a generalization of the previous results of [6] for the vacuum, and
of Soo [7] for the cosmological constant cases. Thus the geometric content of
the Hamiltonian constraint is that G must be constant along the flow of the
Hamiltonian vector field of V[N]. G, being dimensionless and depending on no
smearing function, appears to be the ‘universal generator function’ by means of
which the constraint governing the time evolution of the Einstein—Yang—Mills—
Higgs system is generated. The lapse function N enters the dynamics only
through V[N].

Neither G nor V[N] has weakly vanishing Poisson bracket with the con-
straints, and, in particular, with the Hamiltonian constraint. Thus they are not
classical observables on the whole phase space. However, these Poisson brackets
could be zero on certain subsets U of the constraint surface (e.g. at the points
representing Einstein’s static universe with a cosmological constant), and in this
they behave as well defined classical observables on the special states represented
by the points of U.

3 A restriction on the eigenstates of the quantum
volume operator

The result (29) can be reformulated in Ashtekar’s phase space, the starting
point of most of the recent approaches of canonical quantum gravity [9]. In-
deed, for the vacuum and the vacuum with cosmological constant cases this is
already given in [6] and [7], respectively. (In fact, Soo used the even more gen-
eral Barbero-Immirzi variables as the basic canonical coordinates.) Thus what
remains be done is to express the metric q“b in pg and py pr and the coefficient
$%qap of pp and py s in the generator function G in terms of the Ashtekar
variables, which is a straightforward calculation.

In the present section we intend to point out a simple consequence of (2.9])
in a class of canonical quantum theories of general relativity that are based on
Dirac’s quantization of constrained systems. First, it is known that well defined
quantum operators for both the area of a surface and the volume of a compact
domain D in the three-space ¥ can be introduced, and the spin network states
are eigenstates of them [10, [1T]. As we mentioned in connection with (23], any
domain D can be characterized by its own characteristic function N, and the
corresponding volume operator, acting as a linear operator on some complex
representation space V, will be represented in the same way and will be denoted



—

by V[N]. Next we will have three assumptions: 1. We assume that the classical
generator functional G and the Hamiltonian constraint function H[N] have a

—

well defined operator form, G and [N], respectively, acting on V. (In fact, what
we use in the subsequent discussion is that they are well defined on the volume
eigenstates.) 2. Suppose that the classical Poisson bracket relation ([2.9) still

—

holds in operator form: [G, V[N]] = ihx2 H[N]. (Indeed, as Soo already showed
[7], in the connection representation for an appropriate (symmetric) ordering

there is an operator form ﬁ[ﬁ] of the Hamiltonian constraint of the vacuum
GR which is the commutator of the Chern—-Simons operator and the three-
volume. Hence in this representation our first two assumptions are satisfied.)
3. Following Dirac, we consider a state |¥) to be a physical state if and only if
it is annihilated by the operator form of all constraints (and the space of these

states will be denoted by V), i.c. in particular |G, V/[N]] |¥) = 0 must hold for
any physical state |¥).

Now let us consider an eigenstate |¥,) of the volume operator V/[]V] with
eigenvalue v. Then the action of the operator form of ([Z9) on the eigenstate
|¥,) gives

VIN(Gwa)) = v(Gw,)) — ihs? HIN] ). (3.1)
Since in general V/[JV] is not (weakly) commuting with the constraint operators,
the volume eigenstates are not expected to be physical states, and hence the
second term on the right hand side of (8) is not vanishing. (The Hamiltonian
constraint is not required to annihilate the volume eigenstates even if the volume
is expected to be a quantum observable in the sense of Kuchar [12].) However,
on certain subspaces U C Vy the volume operator could be commuting with
the constrains, and hence certain volume eigenstates could be physical states as
well.

Thus suppose that |¥,) is a physical state too, and hence it is annihilated by
the Hamiltonian constraint operator. Therefore, by [BI) the volume eigenstate
|W,) can be a physical state only if the operator G maps the eigenstate |U,)
into another eigenstate with the same eigenvalue v. (To have a necessary and
sufficient condition the other constraints also would have to annihilate |¥,).)
However, in general, without additional restrictions on @, the operators G and

V/[]V] are not necessarily simultaneously diagonalizable even on the subspace
spanned by the eigenstates |¥,) with fixed v; and even if, in addition, every
state in this subspace were a physical state: G may still have a non-trivial
Jordan form there. This restriction on the structure of the operator G in these
special states may help finding the operator form of the universal generator
function G (and, in particular, of the Chern—Simons functional) in other (e.g.
the loop) representations.
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