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Abstract

Classical and quantum entropic properties of holographic dark energy (HDE) are considered in

view of the fact that its entropy is far more restrictive than the entropy of a black hole of the same

size. In cosmological settings (in which HDE is promoted to a plausible candidate for being the dark

energy of the universe), HDE should be viewed as a combined state composed of the event horizon

and the stuff inside the horizon. By any interaction of the subsystems, the horizon and the interior

become entangled, raising thereby a possibility that their quantum correlations be responsible for

the almost purity of the combined state. Under this circumstances, the entanglement entropy is

almost the same for both subsystems, being also of the same order as the thermal (coarse grained)

entropy of the interior or the horizon. In the context of thermodynamics, however, only additive

coarse grained entropies matter, so we use these entropies to test the generalized second law (GSL)

of gravitational thermodynamics in this framework. While we find that the original Li’s model

passes the GSL test for a special choice of parameters, in a saturated model with the choice for

the IR cutoff in the form of the Hubble parameter, the GSL always breaks down.
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The concept of holographic principle, first formulated by ’t Hooft [1] and Susskind [2]

as a possible window to quantum gravity, has become part of the mainstream after the

Malcadena’s discovery of AdS/CFT duality [3]. In attempt to reconcile it with the success

of effective-quantum-field-theory description of elementary-particle phenomena, the holo-

graphic principle becomes a quantitative measure of the overabundance of degrees of free-

dom in ordinary quantum field theory (QFT). Since black holes appear to involve a vast

number of states that are not describable within ordinary QFT, the entropy for an effective

QFT ∼ L3Λ3, where L is the size of the region (providing an IR cutoff) and Λ is the UV

cutoff, should obey the upper bound [4]

L3Λ3 ≤ L3/2M
3/2
P l ∼ (SBH)

3/4 ≪ SBH , (1)

where SBH is the entropy of a black hole of the size L. Since the entropy in QFT scales

extensively, it is clear that in an expanding universe Λ should be promoted to a varying

quantity (some function of L to manifest the UV/IR connection), in order (1) not to be

violated during the course of the expansion. This gives a constraint on the maximum energy

density in the effective theory, ρΛ ∼ Λ4, to be ρΛ ≤ L−2M2
P l. Obviously, ρΛ is the energy

density corresponding to a zero-point energy and the cutoff Λ. Such a framework gave rise

to a variable cosmological-constant (CC) approach generically dubbed ‘holographic dark

energy’ (HDE) [5, 6], which has proved since to have a potential to shed light both on the

‘old’ CC problem [7] and the ‘cosmic coincidence problem’ (CCP) [8].

The main reason of why the above HDE model is so appealing in possible description of

dark energy is when the bound (1) is saturated ρΛ gives the right amount of dark energy in

the universe at present, provided L ≃ H−1, where H is the Hubble parameter. Moreover,

since ρΛ is a running quantity, it also has a potential to substantially alleviate the CCP. On

the other hand, the most problematic aspect of the saturated HDE model is its compatibility

with a transition from decelerated to accelerated expansion. Indeed, as it is well known,

the identification of the IR cutoff with the Hubble parameter for spatially flat universes

(as suggested by observations) leads to unsatisfactory cosmologies. In this case one is not

able to explain either the accelerating expansion of the present universe for non-interacting

fluids [5] or a fact that the acceleration era has set in just recently, for interacting fluids. A

more realistic class of models, which do allow transitions between the cosmological eras, is

provided by the non-saturated HDE scenario [9, 10]. As a way out of the above problems, a
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suggestion of setting L at the future event horizon has been widely accepted [11], although

inconsistency with matter dominance irrespective of the choice for L was claimed in [10] for

any saturated model.

In the present paper, we consider a question of smallness of the upper bound (1) (with re-

spect to SBH) from the aspect of information theory [12]. Using the formalism and language

of the physics of information we define fine/coarse grained entropies as well as the entropy

of entanglement for HDE. Finally, we switch to classical (thermodynamical) description of

the system to test the generalized second law (GSL) of gravitation and irreversibility for the

HDE scenario.

The central question we would like to address here is why the entropy (1) is so much

smaller than the entropy calculated using the first law of thermodynamics with the temper-

ature of the horizon (the only temperature we have at our disposal). The latter turns out

to be of the order of SBH as well (see below). Note that the original model [4] leading to

(1), aiming to explain the present acceleration of the universe (to become HDE), leads to

cosmological models which do have finite event horizons. Therefore in cosmological settings,

in which the system described by (1) becomes HDE, we actually deal with two subsystems:

the horizon and the stuff inside the horizon 1. We will argue that quantum mechanical

entanglement between the two subsystems can explain the small value in (1).

Let us now analyze the situation from the aspect of information theory. The small entropy

in (1) is usually referred as a fine grained entropy of the composite system, and since it is

≪ SBH (as well as≪ than other entropies to be defined below), we will assume, for simplicity,

that the composite system is in a pure state. The results from information theory [12] then

easily apply to our case. The subsystems (the interior and the horizon), are not generally

described by pure states but by mixed density matrices, resulting in an entanglement entropy

(or fine grained entropy) for the subsystems, -TrρΛlogρΛ and -Trρhorlogρhor. It measures

both the degree of entanglement between the subsystems and the departure from a pure

state for a particular subsystem. Furthermore, if the initial state of the combined system is

pure, the equality of the entanglement entropies results, −TrρΛlogρΛ = −Trρhorlogρhor ≡

Sent [12]. In addition, Sent can be also thought of as a lack of information I, defined as

1 We shall deal here only with the CC stuff inside the horizon since during dark-energy domination its

contribution grossly overwhelms that of ordinary matter.
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I = Sther − Sent, where Sther is the thermal (or coarse grained) entropy, representing a

distribution which maximizes the entropy for a given system at a given average energy.

Thus, Sther > Sent. Note that any thermodynamic considerations involve only Sther’s. The

purity of the combined state and the presence of entanglement may result that a great deal

of information, 2Sent, to be stored in the correlations between the subsystems rather than in

the subsystems themselves. Therefore if the information content of the correlations equals

2Sent, the correlations between subsystems would make the whole system pure.

Next, let us estimate Sent for the case under consideration. Although it is not unambigu-

ously defined because of a lack of knowledge of the system, the information theory says [12]

that Sent ≃ SBH or Sther
Λ

, depending on the share the subsystems have in the whole system

(see also [13, 14]). Sther
Λ

can be obtained using the first law of thermodynamics with the

temperature of the horizon, giving a contribution of the order of SBH (see below) 2. Thus,

Sent is typically of the same order as the horizon entropy.

After having shown qualitatively that quantum correlations between the event horizon

and the interior dark energy given by a HDE variable Λ term, may be responsible for a

small value (1), we turn to a quantitative analysis involving classical (thermodynamical)

properties of HDE. Namely, we put the HDE model under the scrutiny of another profound

physical principle, the GSL of gravitational thermodynamics. In the context of modern

cosmology, the Second Law of thermodynamics is manifest there since the initial conditions

for cosmology have low entropy, so we can see the Second Law in operation [15]. In the

problem under consideration it is adequate to invoke the GSL because we are dealing with

cosmologies in which ever accelerating universes always possess future event horizons. The

GSL states that the entropy of the event horizon plus the entropy of all the stuff in the

volume inside the horizon cannot decrease in time. The idea of associating entropy with the

horizon area surrounding black holes is now extended to include all event horizons [16].

We aim to restrict the parameter c2, which helps to parametrize the saturated HDE

energy density ρΛ = (3/8π)c2L−2M2
P l [6], by assuming the validity of the GSL. A restriction

on c2 under the combined phenomenological constraints has been recently obtained [17] for

certain HDE models. For another studies searching for the conditions required for validity

of the GSL in cosmological models involving dark energy, see [18].

2 For possible ambiguities see the footnote on p.5. Thus, either Sther

Λ
or |Sther

Λ
| is of the order of SBH .
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As mentioned earlier, the GSL involves only thermal entropies which are additive by

definition, and with a macroscopic scale of resolution due to coarse graining, the arrow of

increasing time and irreversibility naturally emerge. The GSL thus states that (omitting

‘ther’ from Sther
Λ

hereafter)

Ṡhor + ṠΛ ≥ 0 . (2)

Here overdots represent time derivatives, Shor = πM2
P ld

2
E and the future event horizon is

given by

dE = a
∫

∞

a

da

a2H
, (3)

with a being a scale factor.

The entropy inside the horizon can be determined using the first law of thermodynamics

TΛdSΛ = d(ρΛV ) + pΛdV , (4)

where TΛ is the horizon temperature, V = (4π/3)d3E and pΛ = wΛρΛ. We shall examine

(4) using both the event and the apparent horizon in the definition of the temperature

TΛ ≡ 1/(2πdE,A), where dA = H−1 for flat space. Putting all together, the constraint (2)

can be written as 3

dE,A

(

−d2EL
−3L̇+

3

2
(1 + wΛ)L

−2dEḋE

)

+
1

c2
ḋE ≥ 0 . (5)

For the choice L = dE and using dE = c(1 + r)1/2dA, obtained from the Friedmann

equation (for flat space) with the dominant matter component ρm and r = ρm/ρΛ, the

constraint (5) is reduced further to

(dA,E/dE)(1 + 3wΛ) + 2/c2 ≥ 0 ; ḋE > 0 , (6)

(dA,E/dE)(1 + 3wΛ) + 2/c2 ≤ 0 ; ḋE < 0 . (7)

3 Actually for the time derivative of SΛ, we obtain from (4) that ṠΛ = (1/2TΛ)c
2L̇(1 + 3wΛ)M

2
Pl
, showing

that for L̇ > 0 SΛ starts decreasing at the onset of the accelerated phase (wΛ ≤ −1/3). Taking TΛ ∼ L−1

as usual, we find upon integration (neglecting an integration constant) that SΛ ∼ c2L2(1 + 3wΛ)M
2
Pl
,

which is obviously negative. To our knowledge, a situation where SΛ is negative even in non-phantom

cosmologies was indicated for the first time in [19]. In this case, the thermal entropy, which should

obviously reflect the number of microscopically distinct quantum states, becomes hard to interpret. This

also has implications for information theory introduced above.
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Let us now test the popular Li’s model [6], with r = 0, wΛ = −1/3 − 2/3c, dE ∼ a1−1/c,

against the GSL. One obtains,

− c(dA,E/dE) + 1 ≥ 0 ; c > 1 , (8)

−c(dA,E/dE) + 1 ≤ 0 ; c < 1 . (9)

Taking first TΛ = 1/(2πdE), we do obtain a contradiction for both constraints (8) and

(9) unless c = 1; the model therefore passes the GSL test only for c2 = 1. With TΛ =

1/(2πdA) one obtains zero on the LHS of either constraint (8-9). This means that total

thermodynamical entropy of the system stays constant during cosmological evolution in the

Λ-dominated phase. The GSL is therefore respected for any c2.

Another plausible choice, L = H−1, makes sense only in the presence of interaction

between (near) pressureless dark matter with HDE [9, 20]. Otherwise HDE is not able to

bring about an accelerated phase of the present universe [5]. To obtain a realistic cosmology,

a certain degree of non-saturation in the HDE energy density is also needed, to result in a

matter-dominated epoch in the past [9, 10]. Since we are going to test the model under GSL

only during accelerated expansion, we shall use the saturated version of HDE. In this case,

the constraint (2) reduces to

dE,A

(

d2EHḢ +
3

2
(1 + wΛ)H

2dEḋE

)

+
1

c2
ḋE ≥ 0 . (10)

For a constant interaction parameter, it follows that ρm, ρΛ ∝ a−3m with m = 1 + c2wΛ [9].

Also m < 2/3, to obtain an accelerated universe. Using this, all the relevant entries in (10)

can easily be obtained. Taking TΛ = 1/(2πdA), (10) is reduced further to

3c2 − 1 ≥ 2c2 , (11)

leading to a final constraint c2 ≥ 1. However, with the aid of the Friedmann equation for

flat space, one can express c2 for such a choice for L as

c2 =
1

1 + r0
≃ 0.7 . (12)

Hence, the GSL is not respected here.

Another choice in (10), TΛ = 1/(2πdE), leads to a bound

9w2

Λ
c4 + (2 + 12wΛ)c

2 + 1 ≥ 0 , (13)
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which now depends on wΛ. Observationally, wΛ is very close to −1, and wΛ = −1 is also

the most natural value for HDE (since in the original derivation it represents zero-point

energies). This means that c2 should reside in the allowable range, 1 < c2 < 1/9. Since the

value (12) obtained from the Friedmann equation does not fit the above range, we see again

that the GSL is not respected. So, the saturated HDE model with the choice for the IR

cutoff, L = H−1, does not respect the GSL of gravitational thermodynamics.

Let us conclude by laying stress once again on some basic points on which this paper

resides. We have shown that the entropy for the HDE model as given by (1) should not

be used in thermodynamical considerations. Instead, it should be interpreted as the fine

grained entropy of the system composed of the horizon and the interior dominated by a

variable CC term. Stated differently, even if we assume thermal equilibrium between weakly

interacting subsystems, the whole system will not be thermal. We have also introduced

the entanglement entropy for the subsystems (their fine grained entropy) to show that, via

quantum correlations, this entropy may be responsible for the (almost) purity of the entire

system. The fine grained entropies for the subsystems are neither additive nor conserved.

On the other hand, any thermodynamical consideration does involve only thermal (or coarse

grained ) entropies, which are additive but, of course, not conserved. Using these properties

we have tested the model against the GSL, which requires that the thermal entropy of the

whole system (the sum of thermal entropies of the subsystems in thermal equilibrium) never

decreases in the course of cosmic expansion. We have tested two simplest although distinct

models (non-interacting versus interacting), to obtain that the model in which the IR cutoff

is set by the future event horizon, always has a capacity to pass the GSL test.
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