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An Evidence Based Time-Frequency Search Method

for Gravitational Waves from Pulsar Glitches
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Abstract. We review and expand on a Bayesian model selection technique for

the detection of gravitational waves from neutron star ring-downs associated with

pulsar glitches. The algorithm works with power spectral densities constructed from

overlapping time segments of gravitational wave data. Consequently, the original

approach was at risk of falsely identifying multiple signals where only one signal was

present in the data. We introduce an extension to the algorithm which uses posterior

information on the frequency content of detected signals to cluster events together. The

requirement that we have just one detection per signal is now met with the additional

bonus that the belief in the presence of a signal is boosted by incorporating information

from adjacent time segments.
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1. Introduction

Pulsar glitches are characterised by a step increase in the pulsar’s rotation frequency.

The mechanisms responsible for pulsar glitches are unclear but there are two main

candidates to explain the underlying process. For older pulsars it seems glitches are

likely caused by a dramatic decoupling between the star’s solid crust and superfluid

interior [1] while glitches in younger pulsars may be associated with reconfigurations

of the crust as spin-down reduces the centrifugal force and the crust reaches breaking

strain [2]. In either case, the disruption should excite oscillatory modes throughout the

neutron star.

The excitation of quadrupolar quasinormal modes in a neutron star leads to the

emission of a short, distinctive burst of gravitational radiation in the form of a decaying

sinusoid, or ‘ring-down’ [3], with typical frequencies and decay times in the range of

1− 3 kHz and 50− 500 ms, respectively.

In [4] we present a search method based on Bayesian model selection where the

evidence for a ring-down signal is compared with the evidence for a noise model, taken

to be Gaussian white noise for simplicity. In this work we review this approach and

demonstrate how it may be modified to cluster odds ratios computed from power spectral

densities in the time-signal frequency plane. In essence, we use the frequency posterior

from the most probable event in a cluster to set a prior to compute the odds ratios in

adjacent time-frequency pixels.

2. Bayesian Model Selection

Given some data D, a model M and some background information I, representing some

prior knowledge of the system, we can write down the posterior probability for the model

using Bayes’ theorem,

p(M |D, I) =
p(M |I)p(D|M, I)

p(D|I)
, (1)

where p(M |I) is the prior probability of the model, p(D|M, I) is the likelihood or

evidence of the model M and p(D|I) is the probability of the data. We are free to assign

any suitable prior for the model and the model likelihood or evidence is computed by

marginalising the likelihood of the data over all of the model parameters, θ,

p(D|M, I) =

∫
θ

p(θ|M, I)p(D|θ,M, I) dθ. (2)

We wish to address the question, ‘does the dataD contain a ring-down gravitational

wave or is the data simply Gaussian white noise?’. Let Ms denote the model that the

data contains a ring-down signal S and Mn denote the model that the data contains

only noise. We then write down the ‘odds ratio’ Ωs,n which is the ratio of the posterior

probabilities for each model,

Ωs,n =
p(Ms|D, I)

p(Mn|D, I)
. (3)
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Substituting Bayes’ theorem (equation 1) for the posteriors, we see that the odds

ratio may be divided into a term independent of the data, (the prior odds) and a term

dependent on the data (the Bayes factor):

Ωs,n =
p(Ms|I)

p(Mn|I)
×

p(D|Ms, I)

p(D|Mn, I)
. (4)

In practice, the prior odds can be assigned by computing the Bayes factor (i.e.,

evidence ratio) in some sample of data away from the pulsar glitch trigger. If the prior

odds are then set equal to the reciprocal of this off-source Bayes factor, the odds ratio in

the on-source data will rise above unity when there is greater evidence for a ring-down

than there was in the off-source data. However, it is necessary to set a higher threshold

than unity to claim a detection since Ωs,n = 1 simply indicates no preference for either

model. The threshold required for a given level of confidence is determined empirically

through simulated signal injections. This is demonstrated and explored in more detail

in [4] and we do not consider the issue here.

To demonstrate the detection process we inject 10 ring-down waveforms with

randomly chosen frequencies in the range 1950 Hz to 2050 Hz, decay time τ = 0.2 s

and initial amplitude h0 = 5 × 10−21 into 100 s of synthetic Gaussian white noise with

amplitude spectral density ∼ 10−22 Hz. The spectrogram in the left panel of figure 1

shows the injected signals in the time-frequency plane. The odds ratio Ωs,n in each time

bin of the spectrogram is shown in the right panel of figure 1. The prior odds in this

example are computed from sythetic Gaussian white noise with no injections.

As expected, the injected signals cause excesses in the odds ratio, indicating a

preference for the signal model over the noise model. Due to the overlap (75%) between

the time segments used to construct the spectrogram, each signal actually appears in

multiple time bins, causing multiple excesses in the odds ratio. In the following section

we describe a basic algorithm to handle these multiple excesses.

3. Odds Clustering Algorithm

The multiple integral for the evidence computation (equation 2) is computationally

expensive to evaluate. In practice, it quickly becomes necessary to divide the parameter

space into manageable segments which can be distributed out as individual tasks on

large scale computing clusters. The results can then simply be summed together to

reconstruct the evidence computed over the entire prior range. Equation 5 describes the

division of the parameter space,

p(D|Ms) =

∫
h0

∫
τ

∫
ω0

p(h0, τ, ω0|Ms)p(D|h0, τ, ω0,Ms) dh0dτdω0

=

∫
h0

∫
τ

∫ ω0(b)

ω0(a)

p(h0, τ, ω0|Ms)p(D|h0, τ, ω0,Ms) dh0dτdω0
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Figure 1. Left panel : Spectrogram with 10 randomly placed ring-down signals in

synthetic Gaussian white noise of amplitude spectral density 10−1/2 Hz. The signals

all share an initial amplitude h0 = 5 × 10−21 and decay time τ = 0.2 s. Right panel :

The base ten logarithm of the odds in favour of a ring-down signal versus Gaussian

white noise in each time bin of the spectrogram in the left panel. Notice that each

signal spills into neighbouring time bins, generating multiple excess odds.

+

∫
h0

∫
τ

∫ ω0(c)

ω0(b)

p(h0, τ, ω0|Ms)p(D|h0, τ, ω0,Ms) dh0dτdω0

+ ... (5)

where p(h0, τ, ω0|Ms) is the prior on the ring-down parameters and p(D|h0, τ, ω0,Ms)

is the likelihood of the data given the parameters. The integral limits [ω0(a), ω0(b)] and

[ω0(b), ω0(c)] correspond the the distribution of the parameter space over a computing

cluster.

The first line in the equation above shows the evidence integral from equation

2 with the frequency space divided into seperate segments on the lines which follow.

Each of the integrals for the divided parameter space then represents the individual

computational tasks, or ‘jobs’. More interestingly, this division allows us to construct a

time-frequency map of odds ratios. Since we typically deal with the base 10 logarithm

of the odds ratio, we adopt the term loddogram to describe the time-frequency odds

map. The frequency resolution here is given by the width of the frequency prior for

each job (e.g., ω0(b)−ω0(a)) . The left panel of figure 2 shows the loddogram produced

by the synthetic data. The frequency resolution for each job in this example is 5 Hz.

Unsurprisingly, the loddogram closely resembles the spectrogram from figure 1 and all

ten injections are clearly visible.

To cluster events together and maximise the information available, we begin by

identifying odds values above a threshold Ωthresh. This picks out time bins where the

bulk of the signal power lies and yields the time stamp assigned to the event. The
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algorithm then goes through each threshold crossing and locates the loddogram pixels

with the highest odds values. These are used to construct new (flat) priors for the

frequency of the signal which caused each threshold crossing. The new priors are then

used to compute the odds os,n in favour of a ring-down signal in the time bins adjacent to

the initial threshold crossings. A second threshold othresh is then applied. If os,n > othresh

then we add the logarithm of the odds calculated from the narrow prior (i.e, log10 os,n)

to the logarithm of the odds value which triggered the cluster formation in the first

place (log10Ωs,n). This way, we are effectively taking the joint probability of multiple

hypotheses in adjacent time bins. One outstanding issue here is, of course, the fact that

these probabilities are strongly correlated due to the overlap between time bins. For

now, we will neglect this correlation in favour of demonstrating the general approach.

More succintly, the final value of the odds ratio for each odds cluster at time T is,

log10 Ωcluster(T ) = log10 Ωs,n(T ) +

n∑
i

log10 oi

⇔ Ωs,n > Ωthresh & oi > othresh, (6)

where Ωs,n is the odds ratio constructed from the full prior range, oi is the odds

ratio constructed from the prior given by the strongest loddogram pixel in Ωs,n(T ) and

n is the number of consecutive time bins in which oi > othresh.

The right panel of figure 2 shows the results of applying this clustering algorithm.

The solid line shows the original time series of odds ratios, squares show odds

ratios above the initial detection threshold Ωthresh and, finally, the odds ratio in each

cluster Ωcluster is indicated by a cross. We see that the clustering algorithm correctly

distinguishes between the injections and, for those signals which satisfy the condition

oi > othresh, the clustered odds value is significantly higher than the initial threshold

crossing (the square symbols).

4. Conclusion

In these proceedings we have given a brief overview of the model selection technique

for gravitational wave detection introduced in [4]. We have expanded on the original

work and introduced a simple clustering algorithm which only associates a single odds

value with a single signal. This is an improvement over the original work where overlap

between Fourier transform time segments could potentially result in multiple ‘detections’

for a single signal. Further, the posterior frequency information from time bins where

the odds ratio crosses some detection threshold is used to construct a new prior for

computing the odds ratio in adjacent time bins. If this secondary odds ratio crosses

its respective threshold, we compute the joint probability in favour of a signal across

several time bins.

It should be noted that we do not consider any kind of sensitivity or performance

estimate in this work as we wish only to highlight a potential approach. Furthermore,
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Figure 2. Left panel : The log odds (‘lodds’) in the time-signal frequency plane We

term this representation a ‘loddogram’. Right panel : The log odds in each spectrogram

time bin. Time bins in which the odds are greater than the detection threshold Ωthresh

are marked with a square. The output of the clustering algorithm is marked by crosses.

We see that without the clustering algorithm, there would be more signal ‘detections’

than there are signals.

the computation of a joint probability between overlapping time bins should formally

account for correlations. We will consider these factors in future work and in the

application to real gravitational wave data.
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