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Abstract

It is known that the space of momenta of DSR can be identified with de Sitter space. In
this paper, we discuss the relation of the noncanonical phase space of the Magueijo-Smolin
model of DSR with the canonical 5-dimensional phase space in which the de Sitter space of
momenta is embedded. We suggest that in analogy with the momentum variables, also the
position variables should be constrained to lie on a null hypersurface of the five-dimensional
space.
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The purpose of doubly special relativity (DSR) theories is to give an effective descrip-
tion of quantum gravity effects on particle dynamics at energies near the Planck scale, by
postulating a nonlinear (deformed) action of the Lorentz group on momentum space, such
that the Planck energy κ is left invariant [1-4].

Since the deformation is not uniquely defined, one can obtain many different realiza-
tions of the theory. An advance in the understanding of this problem was given by the
observation that the momentum space of DSR models can be thought as a four-dimensional
hyperboloid embedded in a five dimensional target space [5]. The choice of coordinates on
the hyperboloid corresponds to different DSR models.

Although this picture is very suggestive, no convincing interpretation has been ad-
vanced for the dual five-dimensional position space. It must be noticed however that
already in a four-dimensional setting the realization of position space in DSR theories is
ambiguous, since it is not determined in a natural way by the DSR postulates (see e.g. [6]
and references therein). For example, although a realization in terms of noncommutative
coordinates appears more natural, it is also possible to adopt standard noncommuting
coordinates [10].

Moreover, the physical meaning of a fifth position coordinate is unclear. In [7] a
proposal was advanced based on the existence of a linear realization of the deformed
Lorentz group in five dimensional momentum space. The fifth position coordinate was
identified with the evolution parameter of the field equations in a commutative spacetime.
A different interpretation based on the hamiltonian formalism was put forward in [8]. In
that case the fifth coordinate is related to an arbitrary choice of gauge, but its relation
with the physical observables is unclear.

In this paper we use some recent results [9] to identify the correspondence between
the physical coordinates of the MS model [4], which is probably the simplest realization
of DSR from an algebraic point of view, and the 5-dimensional target space variables of
[5]. Following [7], we also identify a formal fifth spacetime coordinate with the invariant
evolution parameter which appears in the field equations. In this way we constrain the
5-dimensional position coordinates to form a null vector, so that only four coordinates are
independent, as required by physics.

We use the following conventions: A = 0, . . . , 4 are target space indices, µ = 0, . . . , 3
are spacetime indices, i = 1, . . . , 3 are spatial indices. We always use lower indices, which
are summed by means of the flat metric ηµν = diag (1,−1,−1,−1). The modulus of a
4-vector Aµ is denoted by A ≡

√

AµAµ.
The MS model is defined by nontrivial transformation laws of the physical momenta

pµ under boosts [4]. For infinitesimal boosts in the i-th direction, the momenta transform
as

δip0 = (1− p0/κ)pi, δipj = δijp0 − pipj/κ, (1)

while they transform in the standard way under rotations. The quantity

p2

(1− p0/κ)2
(2)

is invariant under the deformed transformations (1).
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The MS model does not specify the transformation law under boosts for the position
coordinates xµ. The most natural choice is based on the requirement that they transform
covariantly with respect to the momenta [10]:

δix0 = xi + pix0/κ, δixj = δijx0 + pixj/κ. (3)

This can be achieved if the phase space coordinates satisfy the Poisson brackets [10,11]

{x0, xi} = xi/κ, {p0, pi} = 0, {x0, p0} = 1− p0/κ,

{xi, pj} = −δij , {x0, pi} = −pi/κ, {xi, p0} = 0, (4)

which are typical of DSR models. Notice that one is forced to use noncommutative co-
ordinates. This definition also yields the classical transformation law for the velocity and
fixes the speed of light as the limit velocity [10,11]. The main peculiarity of (3) is the
momentum dependence of the transformations of the spacetime coordinates under boosts.

In a recent paper [9], it was shown that one can define auxiliary variables *

Pµ =
pµ

1− p0/κ
, Xµ = (1− p0/κ) xµ, (5)

that satisfy canonical Poisson brackets

{Xµ, Pν} = ηµν , {Xµ, Xν} = {Pµ, Pν} = 0. (6)

These coordinates are unphysical, but are helpful in order to convert the results of special
relativity to those of the MS model. In particular, the physical quantities have the standard
expression in terms of the auxiliary coordinates Xµ, Pµ. To derive their expression in the
MS model it is then sufficient to write them in terms of the physical coordinates xµ, pµ.

For example, the generators Jµν of the Lorentz transformations take the form Jµν =
XµPν−XνPµ. Using (5), one easily deduces that the Lorentz generators have the standard
form Jµν = xµpν−xνpµ also in terms of the MS coordinates [9]. From the Poisson brackets
(4) one can then recover the deformed Lorentz transformations for xµ and pµ.

The purpose of this letter is to relate the results of [9] to the five-dimensional formalism
of [5] and to give an interpretation of the fifth coordinate as attempted in [7,8].

In [5] it was shown that one can identify the space of momenta with an hyperboloid of
equation π2−π2

4
= −κ2 in a 5-dimensional momentum space of coordinates πA and metric

ηAB = (1,−1,−1,−1,−1). The choice of different coordinates P̃µ on the hyperboloid gives
rise to different realizations of DSR. For the Snyder basis, for example,

P̃µ =
κ

π4

πµ. (7)

* This result had been independently anticipated in [11].

3



Introducing the 5-dimensional position variables ξA canonically conjugate to πA, one can
write down the variables X̃µ canonically conjugated to P̃µ as

X̃µ =
π4

κ
ξµ. (8)

We identify the variables P̃µ and X̃µ with Pµ and Xµ defined above. From (5) and
(7)-(8) then follows

pµ =
κ

π0 + π4

πµ, xµ =
π0 + π4

κ
ξµ. (9)

At this point one might apply the hamiltonian formalism introduced in [8] for the
Snyder model. Denoting with a bar the variables of [8], they can be written in terms of
XA and PA as p̄µ = Pµ, x̄

′
µ = Xµ −XAPA Pµ/κ

2, T̄ = XAPA. Then our variables Xµ and
Pµ are analogous to yµ and qµ in eq. (30) of ref. [8].

Instead, we prefer to introduce a different interpretation of 5-dimensional spacetime,
closer to that proposed in [7]. In particular, we wish to constrain the 5-dimensional coordi-
nates so that the fifth coordinate coincides with the evolution time τ that parametrizes the
trajectories of the particles. The relation of τ with the spacetime coordinates, first derived
in [11], has often been overlooked, but is important, at least in a lagrangian formalism.
Since it is by definition invariant under the deformed Lorentz transformations, dτ2 can
be identified with the line element of the 4-dimensional spacetime [10,11]. Although in
this context the introduction of the coordinate τ is purely formal, it gives a more elegant
formulation of the action principle.

From (7) we may define the fifth component of Pµ as P4 = κ. We also define the fifth
component of Xµ by imposing that XA be a null vector, i.e. X2

4 = X2. Then,

X4 = X =
π4

κ
ξ. (10)

It is easy to check that X4 is left invariant by the deformed Lorentz transformations gener-
ated by Jµν . By the previous definition, X4 coincides with the invariant affine parameter
τ which parametrizes the trajectories of point particles [10,11]. In analogy with [7], we
consider therefore a 5-dimensional spacetime with coordinates (xµ, τ). One may interpret
this choice as constraining the motion to the hypersurface ξ2A = 0, in analogy with the
constraint π2

A = −κ2 on momentum space. This appears to be the most natural condition
to be imposed in order to reduce to four the number of independent position coordinates.

From

{Xµ, X4} = 0, {Pµ, X4} =
Xµ

X4

, (11)

follows

{xµ, τ} = (1− p0/κ)
2
x0xµ/κ

τ
, {pµ, τ} = (1− p0/κ)

2
xµ − x0pµ/κ

τ
.

The dynamics of a free particle of mass m can be obtained by varying the action

I =

∫

dτ

[

ẊµPµ −
λ

2
(P 2 −m2)

]

=

∫

dτ

[

pµ
1− p0/κ

d

dτ

[

(1− p0/κ)xµ

]

−
λ

2

(

p2

(1− p0/κ)2
−m2

)]

, (12)
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with τ defined above. This is in contrast with other formulations where τ is an external pa-
rameter whose properties are not specified. The action is equivalent up to total derivatives
to those given in refs. [9,10], where the field equations following from (12) are discussed.

To conclude, we consider the extension from the Lorentz to the Poincaré algebra. This
is achieved by adding the translations generators Tµ to the Lorentz algebra. It must be
noticed, however, that the generators Tµ are not determined uniquely. Usually they are
identified (at least implicitly) with the momentum coordinates pµ. With this definition,
they act linearly on the space of momenta, but the Poincaré algebra is deformed. In
particular, the boost generators Ni have nonlinear Poisson brackets with the translation
generators,

{Ni, T0} = Ti − T0Ti/κ, {Ni, Tj} = δijT0 − TiTj/κ. (13)

The action of the translations on the coordinates following from this definition is

{T0, x0} = −(1− p0/κ) {T0, xi} = 0,

{Ti, x0} = pi/κ, {Ti, xj} = δij . (14)

An alternative possibility [9] is to define Tµ = Pµ. In this case the standard form
of the Poincaré algebra is preserved, but the translation operator acts nontrivially on the
momenta. The action of the translations on the coordinates takes a neater form,

{T0, x0} =
−1

1− p0/κ
{T0, xi} = 0,

{Ti, x0} = 0, {Ti, xj} =
δij

1− p0/κ
. (15)

Its effect is a sort of momentum-dependent dilation of time and lengths under translations.
At the classical level, the difference between the two representations of translations is

not great, since in both cases {Tµ, pν} = 0, but at the quantum level is more evident. In
particular, the natural law of addition of momenta, arising from translation invariance, is
linear in the first case, while in the second case coincides with that proposed in [12], which
implies the existence of a maximum energy κ. The most natural choice in the context of
DSR for both the addition law of momenta and the transformation of coordinates seems
to be that determined by Tµ = Pµ. However, since the one-particle action (12) is invariant
under the action of any generator Tµ which is function only of pµ, at this stage one could
choose Tµ arbitrarily. This posibility may be of help in the solution of the so-called soccer
ball problem. In any case, the correct addition law can be derived only after the general
form of the interaction between particles has been established.
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