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Phase transition in the fine structure constant
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Within the context of mass-varying neutrinos, we construct a cosmological model that has a
phase transition in the electromagnetic fine structure constant α at a redshift of 0.5. The model
accommodates hints of a time variable α in quasar spectra and the nonobservance of such an effect at
very low redshifts. It is consistent with limits from the recombination and primordial nucleosynthesis
eras and is free of instabilities.

I. INTRODUCTION

Measurements of the cosmic microwave background,
large scale structure, the evolution of the Hubble param-
eter from luminosity-redshift relation of type Ia super-
novae along with the abundances of light elements in
the universe strongly indicate the existence of a dark
energy of unknown origin that acts against the pull of
gravity [1]. The combined data favor an effective de-
Sitter constant that nearly saturates the upper bound
given by the present-day value (which we denote by a
subscript 0 to indicate redshift z = 0) of the Hubble
parameter H0 ≈ 10−33 eV. This yields a dark energy
density: ρDE ∼ 3M2

Pl
H2

0 ∼ (2.4 × 10−3 eV)4, where
MPl ≃ 2.4× 1018 GeV is the Planck mass.
The coincidence of the neutrino mass scale with the

dark energy mass scale is suggestive that there may be
a link between these quantities. Measurements of atmo-
spheric neutrinos have provided evidence (at > 15σ) for
νµ disappearing (likely converting to ντ ) when propagat-
ing over distances of order hundreds (or more) kilometers.
The corresponding oscillation phase is consistent with
being maximal and the oscillations require a neutrino
mass-squared difference of δm2

atm ∼ 2.5 × 10−3 eV2 [2].
The νµ disappearance oscillations have been confirmed
by the KEK-to-Kamioka (K2K) and MINOS experiments
over baselines of 250 km and 730 km, respectively. To
implement a connection of dark energy and neutrino
mass [3] in a concrete manner, Fardon, Nelson, and
Weiner (FNW) [4] introduced a Yukawa coupling be-
tween a sterile neutrino and a cosmic scalar field (dubbed
the acceleron), such that the neutrino masses mνi are
generated by the vacuum expectation value A of this
field, i.e., mνi(A). For simplicity hereafter we only con-
sider a single nonvanishing neutrino mass, mν . The ac-
tive neutrino mass is determined through a seesaw mech-
anism by integrating out the heavy sterile neutrino with
mass M(A), now correlated with the acceleron. This
gives an effective potential

V NR

eff = mν(A) nν + V [M(A)]

=
m2

D

M(A)
nν + V [M(A)] (1)

for regions in which nonrelativistic neutrinos dominate [4]

and

V REL

eff = mν(A)2
nν

〈Eν〉
+ V [M(A)]

=
m4

D

〈Eν〉M(A)2
nν + V [M(A)] (2)

for regions where relativistic neutrinos dominate. Here
V is the fundamental acceleron potential, mD is a Dirac
neutrino mass and 〈Eν〉 is the average (relativistic) neu-
trino energy. At the minimum of the potential, the neu-
trino mass is determined in terms of its density nν . This
creates neutrino mass dependence on the environment
with possible relevance to solar [5] and short-baseline
neutrino oscillations [6], as well as the cosmic neutrino
background [7]. Interestingly, since the “constants” of
the Standard Model depend nontrivially on the scalar
neutrino density, mν(A) could induce variations in the
fine structure constant of quantum electrodynamics, α,
which is the focus of this Letter.
The fine structure constant has been measured in the

spectra of distant quasars (QSO) for a number of ab-
sorption systems. Early high redshift measurements of
α with the Keck telescope found no discrepancy in com-
parison with laboratory measurements of α to an accu-
racy of a few parts in 10−4 [8] and other observers also
subsequently put upper limits on any discrepancy be-
low the 10−5 level. However, a discrepancy of ∆α/α =
−0.57 ± 0.10 × 10−5 was reported in Ref. [9]. Further
observations with the Very Large Telescope found no dis-
crepancy at this level [10], but the parameter estimation
methods are currently under debate [11]. Even if a dis-
crepancy exists, it is not excluded that an effect may be
imitated by a large change of isotope abundances over
the last 10 billion years [12]. Thus further observations
are mandated to definitively decide whether or not α is
truly constant.
It has been proposed that a variation of α could result

from the temporal evolution of a quintessence field [13].
However, the model predicts a rather small variation of α
from high redshifts to the present unless the quintessence
field has unexpectedly undergone a rapid slowing in the
recent past.
Here we pursue the implications of mass-varying neu-

trinos (MaVaNs) on the variation of α over cosmic time
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scales. For a class of dependences of M(A) and V a tran-
sition in the neutrino phase may occur as the neutrino
density varies [14]. We show that this phase transition
allows the existence of two distinct stable phases for α.1

Our paper is organized as follows. In Sec. II we an-
alyze the requirements that a MaVaN phase transition
occurs and discuss the conditions under which the model
can circumvent hydrodynamic instabilities that may be
manifest in the nonrelativistic regime [14, 16]. Then, in
Sec. III, we study the corresponding implications for the
time variation of the fine structure constant. We sum-
marize in Sec. IV.

II. PHASE TRANSITION IN THE MASS

VARIATION OF NEUTRINOS

The stationary points for the potentials in Eqs. (1) and
(2) are given by

dV NR

eff

dA
=

(
−
m2

D nν

M2
+ V ′(M)

)
dM

dA
= 0 (3)

and

dV REL

eff

dA
=

(
−

2m2

D nν

〈Eν〉 M3
+ V ′(M)

)
dM

dA
= 0 , (4)

where V ′(M) ≡ ∂V (M)/∂M in the two cases. We choose
the phase of the singlet neutrino field so that M is real
and nonnegative.
To examine the possibilities for a multiphase structure,

we note that in string-based discussions masses and cou-
plings are determined by the minima of stabilized mod-
uli [17]. For our purposes, we take this to mean that
M(A) ≃ Mo[1 + (A − Ao)

2/f2] in the vicinity of the
stabilization point Ao, where f is a positive constant.
Without loss of generality, we set Ao = 0. With Mo 6= 0,
we make the assumption: (I) M(A) has a unique sta-
tionary point at its absolute minimum Mo. (Although
not essential for the discussion, we adopt the simplifying
assumption that M is an even function of A.) As a con-
sequence, both V NR

eff
and V REL

eff
have stationary points at

A = 0 where dM/dA = 0. From Eqs. (3) and (4) addi-
tional stationary points will exist if the following permits
solutions:

(
M

Mo

)j
V ′(M)

V ′(Mo)
=

nν

ni
ν,c

, (5)

where j = 2, 3 if i = NR,REL for the nonrelativistic and
relativistic cases, respectively. Here

nNR

ν,c ≡
M2

o

m2

D

V ′(Mo) , nREL

ν,c ≡
〈Eν〉 M

3
o

2m4

D

V ′(Mo) . (6)

1 For a completely different mechanism that leads to an abrupt
change in α, see Ref. [15].

FIG. 1: Qualitative behavior of the effective potential.
The dot-dashed line indicates the supercritical regime where
nν > nνc

, whereas the solid line indicates the subcritical
regime where nν < nνc

.

To proceed, rather than examining the system in full gen-
erality, we prefer to illustrate the possibilities by impos-
ing a further condition, namely (II) M2V ′(M) is an in-
creasing function of M . With the help of conditions I
and II, Eq. (5) will have solutions in their separate do-
mains if and only if nν > nν,c. If this condition is ful-
filled, the additional stationary points are the two mirror
values ±Amin corresponding to the value M (assuming
there is only one) for which there is a solution. These ar-
guments then imply that the effective potential has the
form in Fig. 1, where the lower (upper) curve is valid for
nν < nνc (nν > nνc).

To illustrate these considerations, and to show how to
circumvent the instability issues raised in Ref. [14] in the
nonrelativistic regime, we choose a slight variant of the
original FNW form [4] for the acceleron potential,

V [M(A)] = Λ4 ln(|M(A)/Mo|) , (7)

normalized so that V = 0 at A = 0. Equation (5) be-
comes

(
M

Mo

)k

=
nν

ni
ν,c

, (8)

where k = 1, 2 for i = NR,REL, respectively. The critical
neutrino densities may be calculated using Eq. (6). In
terms of the mass of the heaviest neutrino in a dilute
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environment (mν,0 ≡ m2

D/Mo &
√
δm2

atm), we find

nNR

ν,c =
Λ4

mν,0
, nREL

ν,c =
〈Eν〉 Λ

4

2m2
ν,0

≃
Tν Λ4

m2
ν,0

. (9)

Now suppose that for nonrelativistic ν + ν, the neutrino
density is subcritical. Then the only stationary point is
at M = Mo (A = 0) yielding a neutrino mass mν = mν,0,
which is independent of the neutrino density, so that
there are no stability problems. Instability due to increas-
ing densities can occur at a redshift at which both (a)
nν > nν,c and (b) the neutrinos are nonrelativistic, with
temperature Tν <∼ 1.2Λ [14]. However, recent work [18]
has shown that the instability can be avoided for suffi-
ciently weak coupling of the neutrinos to the acceleron
during the relevant cosmological era. We explicitly show
below that there is indeed a window of late-time insta-
bility for the FNW model [4], but that it can be avoided
if the acceleron couplings are gravitational or stringy in
origin.
In the nonrelativistic regime, and for nν > nNR

ν,c ,

from Eqs. (8)-(9) we have mν = Λ4/nν with nν =
3ζ(3)/(2π2)T 3

ν . The neutrinos will be nonrelativistic if

√
〈p2ν〉

mν
=

√
15ζ(5)

ζ(3)

Tνnν

Λ4
< 1 , (10)

where 〈p2ν〉 is the mean square neutrino momentum in the
Fermi-Dirac distribution. This yields Tν <∼ 1.1Λ, which
effectively coincides with the criterion for instabilities in
Ref. [14]. With the condition nν > nNR

ν,c , the window of
instability is

1.8

(
Λ

mν,0

)1/3

<∼
Tν

Λ
<∼ 1.1 . (11)

Thus, instabilities may appear if Λ/mν,0 <∼ 0.23.
Since Tν = Tν,0(1 + z) (with Tν,0 ≃ 1.7 × 10−4 eV),

Eq. (11) can be expressed in terms of redshift as

2.9

(
Λ4
−3

mν,0/0.05 eV

)1/3

<∼ 1 + z <∼ 6.5 Λ−3 , (12)

where Λ−3 ≡ Λ/(10−3 eV).
Instabilities may be avoided if the coupling between

the acceleron and neutrinos β satisfies the inequality [18]

β ≡

∣∣∣∣
d lnmν

dA

∣∣∣∣ =
∣∣∣∣
d lnM

dA

∣∣∣∣ <
√

ΩCDM − Ων

2Ων

1

MPl

, (13)

where ΩCDM (Ων) is the cold dark matter (neutrino)
dimensionless density. For values of interest, β <
10/MPl [18]. So far our analysis has been independent
of a particular choice of M(A); however, a test of this
criterion, and in what follows, the results are somewhat
dependent on this choice. We consider two simple forms
(which also satisfy assumptions I and II above):

M = Mo e
A

2/f2

(14)

and

M = Mo coshA/f , (15)

reminiscent of M-theory potentials for moduli [19]. We
analyze the first case in detail, and only provide results
for the second. From Eq. (13),

β =
2|A|

f2
<

10

MPl

. (16)

A bound on |A|/f may be obtained by imposing the
nonrelativistic criterion Tν/Λ < 1.1. From Eqs. (8) and
(9),

eA
2/f2

=
3ζ(3)

2π2

mν,0

Λ

(
Tν

Λ

)3

, (17)

which gives

|A|

f
<

√

ln
12 (mν,0/0.05 eV)

Λ−3

. (18)

In our discussion of the α variation we will find that
Λ−3 ≃ 0.6(mν,0/0.05 eV)1/4, so that for mν,0 not much
in excess of 0.05 eV, |A|/f < 1.7. From Eq. (16) we
see that f/MPl > 0.34 serves as a sufficient condition to
avoid instabilities.
For the alternate M(A) of Eq. (15), we find β =

| tanh(A/f)|/f ≤ 1/f for all A, so that f/MPl > 0.1
provides a sufficient condition for weak coupling and sta-
bility.

III. DISCONTINUITY IN THE FINE

STRUCTURE CONSTANT

Allowing for couplings between the acceleron and stan-
dard model fields,2 the free Lagrangian for the electro-
magnetic field tensor Fµν can be written as

L̃em = −
1

4
ZF (A/MPl) FµνF

µν , (19)

which on expansion about the present value A0 of A,
becomes

L̃em = −
1

4
(1 + κ ∆A/MPl + . . .)FµνF

µν , (20)

with ∆A = A −Ao and κ ≡ ∂AZF |Ao
. The field renor-

malization Aµ → Aµ/Z
1/2
F to obtain a canonical kinetic

energy, generates an effective charge e/Z
1/2
F . Following

2 We do not prescribe a mechanism (which may be desirable for
technical naturalness) via which loop corrections to the acceleron
potential are suppressed.
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Ref. [13], we expand to linear order about the present
value e0, to obtain

∣∣∣∣
∆α

α

∣∣∣∣ = κ
∆A

MPl

= κ
A

f
·

f

MPl

, (21)

where α ≡ e2/(4π). Equation (21) reflects our assump-
tion that the variation in α is uniquely derived from the
evolution of the acceleron.
In order to accommodate the meteorite data [20],

which do not show evidence for a time-dependent α, we
require that A not vary from ground state equilibrium
(Ao = 0) for z <∼ 0.5. Consequently, the model predicts
no variation of α during this era, in agreement with ex-
isting limits [21].
From Eq. (12), for a transition at z = 0.5,

Λ−3 ≃ 0.61(mν,0/0.05 eV)1/4 , (22)

or equivalently

ρA
ρDE

∼ 4× 10−3
mν,0

0.05 eV
. (23)

This precludes Λ saturating the present dark energy.
This ratio is roughly similar to the neutrino contribu-
tion to the dark matter density. Large scale surveys and
WMAP together constrain the neutrino energy density
to be Ων . 0.02, whereas terrestrial measurements of the
neutrino mass indicate Ων > 7× 10−4.
From Eqs. (12) and (22), the density is supercritical

and the neutrinos are nonrelativistic for 0.5 < z <∼ 4.
So there will be a tiny variation of α, in agreement with
observations of absorption lines in the spectra of distant
QSO [9]. The z-dependence of this variation may be
obtained in a straightforward manner. From Eq. (8), at
the minimum,

M(A)

Mo
=

(
1 + z

1 + zc

)3

, (24)

where zc (≃ 0.5 in our case) is the redshift for which
nν = nNR

ν,c . For the gaussian potential, we have

|A|

f
=

√

3 ln

(
1 + z

1 + zc

)
, (25)

and for the cosh potential,

|A|

f
= cosh−1

[(
1 + z

1 + zc

)3
]

. (26)

At z = 2 (the intermediate point of the data), |A|/f ≃
1.4 (2.8) for the gaussian and cosh cases, respectively.
Taking f/MPl ≥ 0.34 (0.1) for the two cases from the
previous section, we find from Eq. (21),

∣∣∣∣
∆α

α

∣∣∣∣ >∼ 0.5 κ gaussian (27)

∣∣∣∣
∆α

α

∣∣∣∣ >∼ 0.3 κ cosh (28)

Thus, accommodating the possible variation of α at a
level of 5 parts per million requires κ ∼ 10−5.
The quantity κ may be bounded by available limits

on ∆α/α during the eras of recombination (z ≃ 1100)
and big bang nucleosynthesis (BBN) (z ∼ 1010). Since
neutrinos are relativistic at these redshifts, there are no
stability problems. It is straightforward to show that
nν > nREL

ν,c as soon as the neutrinos become relativistic.
Then, the system is in the dot-dashed phase of Fig. 1, and
at the (mirror) minima the field A is given by relativistic
case of Eq. (8),

M

Mo
=

√
3ζ(3)

2π2

T 2
ν m2

ν,0

Λ4
, (29)

which with Eq. (22) yields

|A|/f ≃
√
ln (10 z) gaussian (30)

|A|/f ≃ cosh−1 (10 z) cosh (31)

Inserting these in Eq. (21), we find for the recombination
and BBN eras,

∣∣∣∣
∆α

α

∣∣∣∣ ≃
brec κ f

MPl

,

∣∣∣∣
∆α

α

∣∣∣∣ ≃
bBBN κ f

MPl

, (32)

where brec = 3, 10 and bBBN = 5, 26 for the gaussian
and cosh potentials, respectively. (The slow variation
with mν,0 has been ignored in both cases.) Existing
limits on the variation of the fine structure constant,
|∆α/α| <∼ 0.02 (at the 95% C. L.) for both recombi-
nation [22] and BBN [23], in conjunction with the lower
bounds on f/MPl can now be translated into bounds on
the coupling constant:

κ < 0.02 recombination (33)

κ < 0.01 BBN , (34)

for the gaussian potential and

κ < 0.02 recombination (35)

κ < 0.008 BBN , (36)

for the cosh potential. The bounds on κ are a few orders
of magnitude larger than the required value to accomo-
date existing data in the subrelativistic regime.

IV. SUMMARY

In the MaVaN framework, we have constructed a cos-
mological model that can accommodate limits on the
variation of the fine structure constant on short time
scales, as well as the potential observation of a varia-
tion in α from distant QSOs. The model has a phase
transition in the neutrino mass at a redshift z = 0.5 that
gives a phase transition in α. The existence of this phase
transition precludes that the vacuum energy associated
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with the acceleron field saturates the present dark energy.
To circumvent hydrodynamic instabilities we assumed a
sufficiently weak coupling (perhaps stringy in origin) of
the neutrinos to the acceleron during the cosmological
evolution. The model is consistent with limits on ∆α/α
from recombination and primordial nucleosynthesis.
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