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The semi-classical approximation to black hole partition functions is not well-
defined, because the classical action is unbounded and the first variation of the
uncorrected action does not vanish for all variations preserving the boundary
conditions. Both problems can be solved by adding a Hamilton-Jacobi counter-
term. I show that the same problem and solution arises in quantum mechanics
for half-binding potentials.
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1. Introduction and statement of the problem

Path integrals have illuminated many aspects of quantum mechanics and

quantum field theory [1], but there remain some challenges to path in-

tegral formulations of quantum theories [2]. In this proceedings contribu-

tion I describe a problem arising for quantum mechanical potentials that

are ‘half-binding’ (the definition of this term will be given below). I shall

demonstrate that the naive semi-classical approximation to the path inte-

gral breaks down for two reasons: the leading contribution to the partition

function is singular and the first variation of the action does not vanish for

all variations preserving the boundary conditions. I discuss how both issues

can be resolved by adding an appropriate (Hamilton-Jacobi) counterterm

as boundary term to the action. Moreover, I shall point out formal similar-

ities to black hole (BH) partition functions, so in that sense these quantum

mechanical systems may serve as toy models to elucidate certain aspects of

BH physics. For sake of clarity I focus on a specific Hamiltonian [3],

H(q, p) =
p2

2
+ V (q) , V (q) =

1

q2
, (1)
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where q is restricted to positive values. If q is small the Hamiltonian rises

without bound, like for a binding potential. If q is large the potential is

negligible, and the asymptotic dynamics is dominated by free propagation.

I refer to a potential with these properties as ‘half-binding’. [The conformal

properties [3] of (1) will not play any role in this discussion.]

Consistency of the variational principle based on the Lagrangian action,

I[q] =

tf∫

ti

dt
( q̇2

2
− 1

q2

)

, (2)

requires to fix the initial and final value of q at ti and tf , respectively. I am

interested here mostly in the limit tf → ∞, which implies that q|tf = ∞ is

the appropriate asymptotic boundary condition. The initial time is set to

zero, ti = 0, without loss of generality. The Lagrangian path integral,

Z =

∫

Dq exp
(

− 1

~
I[q]

)

, (3)

consists of a coherent sum over all field configurations consistent with the

boundary data. Even though (2) is exactly soluble, it is illustrative to con-

sider the semi-classical expansion of the action,

I[qcl + δq] = I[qcl] + δI
∣
∣
EOM

+O(δq2) , (4)

and of the partition function

Z = exp
(

− 1

~
I[qcl]

) ∫

Dδq exp
(

− 1

~
O(δq2)

)

. (5)

The semi-classical approximation (5) is well-defined only if the on-shell

action is bounded, |I[qcl]| < ∞, and only if the first variation of the action

vanishes on-shell, δI|EOM = 0, for all field configurations preserving the

boundary conditions. I demonstrate now that neither is the case for the

example (2).

The on-shell action diverges because asymptotically the propagation

is essentially free, and because of the assumption tf → ∞. This is an

idealization of situations where boundary conditions are imposed at late

times, tf ∼ 1/ǫ, with ǫ ≪ 1. In that case also qf ∼ 1/ǫ classically. However,

the path integral does not only take into account classical contributions,

but also samples nearby field configurations whose asymptotic behavior is

q ∼ qf [1 + ǫ∆q + O(ǫ2)], where ∆q is finite. Therefore, the first variation

of the action, evaluated on-shell, is given by the boundary term

q̇ δq|tf − q̇ δq|ti=0 = q̇ δq|tf ∼ lim
ǫ→0

[q̇∆q +O(ǫ)]
∣
∣
tf 6= 0 . (6)
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The inequality emerges, because arbitrary finite variations δq|tf certainly

preserve the boundary condition q|tf = ∞.a The two problems described

here spoil the semi-classical approximation (5) to the partition function.

2. Hamilton-Jacobi counterterm for half-binding potentials

Both problems can be solved by considering an improved actionb

Γ[q] =

tf∫

0

dt
( q̇2

2
− 1

q2

)

− S(q, t)
∣
∣
∣

tf

0
, (7)

which differs from (2) by a boundary counterterm depending solely on quan-

tities that are kept fixed at the boundary. The variation of (7),

δΓ|EOM =
(

q̇ − ∂S

∂q

)

δq
∣
∣
∣

tf

0
=

(

q̇ − ∂S

∂q

)

δq
∣
∣
∣

tf
, (8)

does not necessarily suffer from the second problem if ∂S/∂q asymptotically

behaves like q̇, i.e., like the momentum p.

The method [8,9] that I am going to review does not involve the subtrac-

tion of the action evaluated on a specific field configuration, but rather is

intrinsic. Moreover, the amount of guesswork is minimal: Hamilton’s prin-

cipal function is a well-known function of the boundary data with the prop-

erty ∂S/∂q = p. Therefore it is natural to postulate that S in (7) solves the

Hamilton-Jacobi equation,

H
(

q,
∂S

∂q

)

+
∂S

∂t
= 0 . (9)

The complete integral [10]

S(q, t) = c0 − Et+
√

2(Eq2 − 1) +
√
2 arctan

1
√

Eq2 − 1
(10)

aCanonical transformations can shift the problem, but of course they cannot solve it.
For instance, with Q = 1/q and P = −pq2 the correct asymptotic boundary condition
is Q|tf = 0 and therefore also δQ|tf = 0. But now the momentum P (and thus Q̇)
diverges at the boundary, so that the expression Q̇ δQ|tf becomes undefined and does
not necessarily vanish for all variations preserving the boundary conditions.
bThere exists a variety of subtraction methods in quantum mechanics [4], in General
Relativity (and generalizations thereof) [5] and in holographic renormalization within the
context of AdS/CFT [6]. Many of them have ad-hoc elements and require the subtraction

of the action evaluated on a specific field configuration (like the ground state solution);
in some cases there are several “natural” candidates, in others there is none, and in at
least one example the “natural” guess even turned out to be wrong [7].
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allows to construct the enveloping solutionc

S(q, t) =
q2

2t

(√

4∆+ − 8t2/q4 −∆+

)

+
√
2 arctan

1
√

q4∆+/(2t2)− 1
,

(11)

where ∆+ := 1
2 (1+

√

1− 8t2/q4). The asymptotic expansion S = q2/(2t)+

O(t/q2) is consistent with the intuitive idea that the asymptotically free

propagation is the source of all subtleties. But the expression (11) con-

tains a great deal of additional (non-asymptotic) information, which can

be physically relevant, as mentioned in the next Section.

Let me now come back to the two problems. Since asymptotically

q̇|EOM = v = const., the on-shell action

Γ
∣
∣
EOM

=
v2

2

tf∫

0

dt− v2

2
tf +O(1) = O(1) (12)

evidently is finite. The terms of order of unity entail the information about

the potential V (q). The first variation

δΓ
∣
∣
EOM

=
(

q̇ − q

t
︸ ︷︷ ︸

O(1/t)

+O(1/t2)
)

δq
∣
∣
∣

tf
= O(1/t) δq

︸︷︷︸

finite

∣
∣
∣

tf
= 0 (13)

vanishes for all variations preserving the boundary conditions. The two

problems mentioned in the previous Section indeed are resolved by the

improved action (7) with (11).

The considerations above apply in the same way to the Hamiltonian

(1) with a more general class of half-binding potentials V (q). In particular,

the (manifestly positive) potential V (q) is required to be monotonically

decreasing, and to vanish faster than 1/q for large q. Going through the

same steps as above is straightforward. Other generalizations, e.g. to non-

monotonic potentials or potentials with Coulomb-like behavior, may involve

technical refinements, but the general procedure is always the same: one has

to solve the Hamilton-Jacobi equation (9) to obtain the correct counterterm

S in (7).

c One is forced to take the enveloping solution, since S is part of the definition of the
improved action and therefore cannot depend on constants of motion. The energy E is

eliminated from (10) by solving ∂S/∂E = 0 for E. The other constant, c0, is set to zero
by hand, but other choices are possible. Such an ambiguity always remains in this (and
any other) approach. It reflects the freedom to shift the free energy of the ground state.



October 29, 2018 9:1 WSPC - Proceedings Trim Size: 9in x 6in grumiller

5

3. Comparison with black hole partition functions

The same issues as in the previous Section arise when evaluating BH par-

tition functions. Probably the simplest non-trivial model is 2-dimensional

dilaton gravity (cf. e.g. [11] for recent reviews),

I[g,X ] = − 1

16πG2

∫

M

d 2x
√
g
(

X R− U(X) (∇X)
2 − 2V (X)

)

− 1

8πG2

∫

∂M

dx
√
γ X K . (14)

An explanation of the notation can be found in [9]. The boundary term in

(14) is the dilaton gravity analog of the Gibbons-Hawking-York boundary

term. The latter arises in quantum mechanics if one converts the action

I =
∫
dt[−qṗ − H(q, p)] into standard form, but it is not related to the

Hamilton-Jacobi counterterm. It was shown first (second) in the second

(first) order formulation [9] ([12]) that the improved action is given by

Γ[g,X ] = I[g,X ] +
1

8πG2

∫

∂M

dx
√
γ S(X) , (15)

with the solution of the Hamilton-Jacobi equation (V (X) ≤ 0)

S(X) =
(

− 2e−
R

Xdy U(y)

∫ X

dy V (y) e
R

ydz U(z)
)1/2

. (16)

The lower integration constant in the integrals over the function U is al-

ways the same and therefore cancels; the lower integration constant in the

remaining integral represents the ambiguity mentioned in footnote c. d

The BH partition function based upon the improved action (15),

Z =

∫

DgDX exp
(

− 1

~
Γ[ g,X ]

)

≈ exp
(

− 1

~
Γ[ gcl, Xcl]

)

, (17)

by standard methods establishes the BH free energy. The asymptotic part of

the counterterm (16) leads to the correct asymptotic charges for BHs with

(essentially) arbitrary asymptotic behavior, and to consistency with the

first law of thermodynamics (which is non-trivial [7]). The finite part of the

counterterm (16) allows a quasi-local description of BH thermodynamics [9].

Perhaps one might exploit the formal analogy between BH partition

functions and quantum mechanical partition functions described in this

work to construct interesting condensed matter analogs [14] mimicking ther-

modynamical aspects of BHs.

dSolving (16) for V yields V = −1/2 [(S2)′ + S2U ], which reveals that the Hamilton-
Jacobi counterterm S(X) is the supergravity pre-potential (up to a numerical factor) [11].
A similar (pseudo-)supersymmetric story exists in quantum mechanics [13]. Cf. also [8].
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