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A SIMPLIFIED CALCULATION FOR THE FUNDAMENTAL SOLUTION

TO THE HEAT EQUATION ON THE HEISENBERG GROUP

ALBERT BOGGESS AND ANDREW RAICH

Abstract. Let Lγ = −1/4
(∑n

j=1
(X2

j + Y 2

j ) + iγT
)
where γ ∈ C, and Xj , Yj and T are

the left invariant vector fields of the Heisenberg group structure for Rn×Rn×R. We explicitly
compute the Fourier transform (in the spatial variables) of the fundamental solution of the
Heat Equation ∂sρ = −Lγρ. As a consequence, we have a simplified computation of the
Fourier transform of the fundamental solution of the �b-heat equation on the Heisenberg
group and an explicit kernel of the heat equation associated to the weighted ∂-operator in
Cn with weight exp(−τP (z1, . . . , zn)) where P (z1, . . . , zn) =

1

2
(| Im z1|2 + · · · | Im zn|2) and

τ ∈ R.

0. Introduction

The purpose of this note is to present a simplified calculation of the Fourier transform of
fundmental solution of the �b-heat equation on the Heisenberg group. The Fourier transform
of the fundamental solution has been computed by a number of authors [Gav77, Hul76,
CT00, Tie06]. We use the approach of [CT00, Tie06] and compute the heat kernel using
Hermite functions but differ from the earlier approaches by working on a different, though
biholomorphically equivalent, version of the Heisenberg group. The simplification in the
computation occurs because the differential operators on this equivalent Heisenberg group
take on a simpler form. Moreover, in the proof of Theorem 1.2, we reduce the n-dimensional
heat equation to a 1-dimensional heat equation, and this technique would also be useful when
analyzing the heat equation on the nonisotropic Heisenberg group (e.g., see [CT00]). We
actually use the same version of the Heisenberg group as Hulanicki [Hul76], but he computes
the fundamental solution of the heat equation associated to the sub-Laplacian and not the
Kohn Laplacian acting on (0, q)-forms.

A consequence of our fundamental solution computation is that we can explicitly compute
the heat kernel associated to the weighted ∂-problem in Cn when the weight is given by
exp(−τP (z1, . . . , zn)) where τ ∈ R and P (z1, . . . , zn) = 1

2
(| Im z1|2 + · · · | Im zn|2). When

n = 1 and p(z1) is subharmonic, nonharmonic polynomial, the weighted ∂-problem (with
weight exp(−p(z1))) and explicit construction of Bergman and Szegö kernels and has been
studied by a number of authors in different contexts (for example, see [Chr91, Has94, Has95,
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Has98, FS91, Ber92]). In addition, Raich has estimated the heat kernel and its derivatives
[Rai06b, Rai06a, Rai07, Rai].

1. The Heisenberg Group and the �b-heat equation

Definition 1.1. The Heisenberg group is the set Hn = Rn×Rn×R with the following group
structure:

g ∗ g′ = (x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + x · y′)
where (x, y, t), (x′, y′, t′) ∈ Rn × Rn × R and · denotes the standard dot product in Rn.

The left-invariant vector fields for this group structure are:

Xg
j =

∂

∂xj
+ yj

∂

∂t
and Y g

j =
∂

∂yj
, 1 ≤ j ≤ n, and T g =

∂

∂t
.

The Heisenberg group also can be identified with the following hypersurface in Cn+1: Hn =
{(z1, . . . , zn+1) ∈ C

n+1 : Im zn+1 = (1/2)
∑n

j=1(Im zj)
2} where we identify (z1, . . . , zn, t +

i(1/2)
∑n

j=1(Im zj)
2) ∈ Hn with (z1, . . . , zn, t) = (x1, . . . , xn, y1, . . . , yn, t) where zj = xj +

iyj ∈ C. With this identification, the left-invariant vector fields of type (0,1) and (1,0),
respectively are:

Z
g

j = (1/2)(Xj + iYj) =
∂

∂zj
+
yj
2

∂

∂t
, Zg

j = (1/2)(Xj − iYj) =
∂

∂zj
+
yj
2

∂

∂t

for g = (x, y, t) ∈ Hn and 1 ≤ j ≤ n.

The Heat Equation. The Kohn Laplacian �b acting on (0, q)-forms on Hn ≈ Hn can be
easily described in terms of these left-invariant vector fields. Suppose f =

∑
J∈Iq fJdzJ is a

(0, q)-form where Iq is the set of all increasing q-tuples J = (j1, . . . , jq), 1 ≤ jk ≤ n. Then

�bf =
∑

J∈Iq

Ln−2qfJ dzJ

where

(1) Lγ = −1

4

(
n∑

j=1

(X2
j + Y 2

j ) + iγT

)
.

See Stein ([Ste93], XIII §2), for details on computing �b. For comparison, the box operator
((or Laplacian) in Hulanicki ([Hul76]) is −1

2

∑n
j=1(X

2
j + Y 2

j ).

The Heat Equation is defined on (0, q)-forms ρ onHn with coefficient functions that depend
on s ∈ (0,∞) and (x, y, t) ∈ Hn. It is

∂ρ

∂s
= −�bρ
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(note that here, s is the “time” variable and t is a spatial variable). Since �b acts diagonally,
we can restrict ourselves to a fixed component and look for a fundamental solution ρ that
satisfies

(2)





∂ρ

∂s
= −Lγρ for s > 0, (x, y, t) ∈ H

n

ρ(s = 0, x, y, t) = δ0(x, y, t)

(i.e., the delta function at the origin in the spatial variables).

Fourier Transformed Variables. We will use a Fourier transform in the spatial (x, y, t)
variables (i.e. not the s-variable): let (α, β, τ) be the transform variables corresponding to
(x, y, t), and define:

f̂(α, β, τ) =

∫

Hn

f(x, y, t) e−i(α·x+β·y+τt) dx dy dt.

Our main result is the following:

Theorem 1.2. For any γ ∈ C, the spatial Fourier transform of the fundamental solution to
the heat equation (2) is given by

(3) ρ̂γ(s, α, β, τ) =
e−γsτ/4

(cosh(sτ/2))n/2
e−A(|α|2+|β|2)/2+iBα·β .

where

A =
sinh(sτ/2)

τ cosh(sτ/2)
, B =

2 sinh2(sτ/4)

τ cosh(sτ/2)
.

Note that γ may be any complex number, but γ = n−2q is the value where Lγ corresponds
to �b on (0, q)-forms.

We also seek the fundamental solution to the heat equation associated to the weighted ∂
operator in (s, x, y)-space. Given a function f on Rn × Rn × R, let

f̃τ (x, y) =

∫

R

e−iτtf(x, y, t) dt

be the partial Fourier transform in t. Define

Lj =
∂

∂zj
+
i

2
yjτ =

1

2
(
∂

∂xj
+ i

∂

∂yj
+ iyτ), Lj =

∂

∂zj
+
i

2
yjτ =

1

2
(
∂

∂xj
− i

∂

∂yj
+ iyτ).

Note that these operators are just the Fourier transform of Zj and Zj in the t-direction. If
△x,y is the Laplacian in both the x and y variables, the partial t-Fourier transform of Lγ is

L̃γ = −1

4

(
△x,y + 2iτ y · ∇x − (τ 2y · y + γτ)

)
.

The operator L̃γ acts on functions, but it can be extended to (0, q)-forms by acting on each

component function of the form. If γ = n− 2q, then L̃γ is the higher dimensional analog of

the �τp-operator from [Rai06a, Rai07, Rai] associated to the weighted ∂ operator in Cn with
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weight exp(−τP (z1, . . . , zn)) where P (z1, . . . , zn) = 1
2
(| Im z1|2 + · · · | Im zn|2) and τ ∈ R. As

a corollary to our main theorem, we compute the fundamental solution to the heat operator
associated to this weighted ∂.

Corollary 1.3. For any γ ∈ C, τ ∈ R, the function

ρ̃γτ (s, x, y) =
e−γsτ/4

(2π)n(cosh(sτ/2))n/2(A2 +B2)n/2
e
− A

2(A2+B2)
(|x|2+|y|2)−i B

A2+B2 x·y.

is the fundamental solution to the weighted ∂ heat equation: ( ∂
∂s

+ L̃γ)ρ̃
γ
τ (s, x, y) = 0 with

ρ̃γτ (s = 0, x, y) = δ(0,0)(x, y).

Finally, we use ρ̃γτ to derive the heat kernel, as studied in [Rai06a, Rai07, Rai, NS01].

Corollary 1.4. For any γ ∈ C, τ ∈ R, let

Hγ
τ (s, x

′, y′, x, y) =
τne−γsτ/4

(4π)n sinhn(sτ/4)
e−

τ
4
coth(sτ/4)(|x−x′|2+|y−y′|2)−i τ

2
(x−x′)·(y+y′).

Then Hγ
τ is the heat kernel which satisfies the following property: if f ∈ L2(C), then

Hγ
τ [f ](s, x, y) =

∫

Rn×Rn

Hγ
τ (s, x, y, x

′, y′)f(x′, y′) dx′dy′

is a solution to the following initial value problem for the heat equation:

(4)





( ∂
∂s

+ L̃γ

)
Hγ

τ [f ] = 0

Hγ
τ [f ](s = 0, x, y) = f(x, y).

Note that Hγ
τ is conjugate symmetric in z = x+ iy and z′ = x′ + iy′ (i.e. switching z with

z′ results in a conjugate).

2. Proof of Theorem 1.2

It is easy to verify the following calculations. Recall that ̂ refers to spatial Fourier
transform.

X̂2
j f(α, β, τ) = (−α2

j − 2iαjτ
∂

∂βj
+ τ 2

∂2

∂β2
j

)f̂

Ŷ 2
j f(α, β, τ) = −β2

j f̂

T̂ f(α, β, τ) = iτ f̂ .

We first reduce the problem down to dimension one. Define ρ̂γ,1 by the same formula as
given in (3), but for dimension one (i.e. n = 1 and α, β ∈ R). From (3), note that

(5) ρ̂γ(s, α, β, τ) =
n∏

j=1

ρ̂γ/n,1(s, αj, βj , τ), α = (α1, . . . , αn), β = (β1, . . . , βn) ∈ R
n
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(note the γ on the left and the γ/n on the right). Once we show that ργ,1 satisfies the
transformed heat-equation in dimension one, i.e.,

(6)

(
∂

∂s
− (1/4)(X̂2 + Ŷ 2 + iγT̂ )

)
{ρ̂γ,1(s, ·, ·)} = 0

with initial condition ρ̂γ,1 = 1 (the Fourier transform of the delta function), then by using
(5), it is an easy exercise to show that ρ̂γ in dimension n satisfies Theorem 1.2.

From now on, we assume the dimension n is one and so x, y, α and β are all real variables.
Also, γ will be suppressed as a superscript. Define

(7) u(s, α, β, τ) = ρ̂(s, α, β, τ)e−iαβ

τ .

Then, the following equations are easily verified

u(s = 0, α, β, τ) = e−iαβ

τ(8)

∂u

∂s
= (1/4)(τ 2

∂2

∂β2
− β2 − γτ)u.(9)

The first equation follows from the fact that the Fourier transform of the delta function is
the constant one. The second equation follows from the heat equation for ρ̂ (from (6)) and

the above formulas for the transformed differential operators X̂, Ŷ and T̂ . We will refer to
the above differential equation as the transformed Heat equation.

Solution of Heat Equation Using Hermite Special Functions. For m = 0, 1, 2 . . .
and x ∈ R, let

ψm(x) =
(−1)m√
2mm!

√
π
ex

2/2 d
m

dxm
{e−x2}.

For τ ∈ R, let

Ψτ
m(x) = |τ |−1/4ψm(x/

√
|τ |).

It is a fact that ψm and hence Ψτ
m form an orthonormal system for L2(R) (see [Tha93],

pg.1-7). It is also a fact (again see [Tha93], (1.1.28)) that

ψ′′
m(x) = x2ψm(x)− (2m+ 1)ψm(x).

We first assume that τ > 0 and later indicate the minor changes needed in the case that
τ ≤ 0. Replacing x by β/

√
τ in the previous equation yields:

(10) (τ 2
∂2

∂β2
− β2 − γτ){Ψτ

m} = −(2m+ 1 + γ)τΨτ
m(β).

In other words, Ψτ
m is an eigenfunction of the differential operator on the right side of (9)

with eigenvalue −(2m+ 1 + γ)τ .
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Since {Ψτ
m} are an orthonormal basis for L2(R), u can be expressed as

u(s, α, β, τ) =
∞∑

m=0

am(α, τ)e
− 1

4
(2m+1+γ)sτΨτ

m(β)

where am(α, τ) will be determined later. Differentiating this with respect to s and using (10)
gives

∂

∂s
u(s, α, β, τ) =

∞∑

m=0

am(α, τ)e
− 1

4
(2m+1+γ)sτ (−1

4
(2m+ 1 + γ))τΨτ

m(β)

=
1

4

(
τ 2

∂2

∂β2
− β2 − γτ

)
{u(t, α, β, τ)}.

So, u satisfies the transformed Heat equation (9). To satisfy the initial condition (8), we
must have

e−iαβ/τ = u(s = 0, α, β, τ) =

∞∑

m=0

am(α, τ)Ψ
τ
m(β).

Using the fact that the Ψτ
m(β) is an orthonormal system, we have

am(α, τ) =

∫

R

e−iαβ/τΨτ
m(β) dβ = τ 1/4

∫

R

e
−i α√

τ
β
ψm(β) dβ.

The integral on the right is just the Fourier transform of ψm at the point α/
√
τ . From

Thangavelu ([Tha93], Lemma 1.1.3), the Fourier transform of ψm equals ψm up to a constant
factor of (−i)m

√
2π. Therefore,

am(α, τ) = (−i)m(2π)1/2τ 1/4ψm(α/
√
τ).

Substituting this value of am into the expression for u and rearranging gives:

u(s, α, β, τ) = (2π)1/2e−
1
4
(1+γ)sτ

∞∑

m=0

(−i)mψm(
α√
τ
)ψm(

β√
τ
)e−

1
2
msτ .

Now solving for ρ̂ (see equation (7)) yields

ρ̂(s, α, β, τ) = eiαβ/τu(s, α, β, τ) = (2π)1/2e−
1
4
(1+γ)sτ

∞∑

m=0

(−i)mψm(
α√
τ
)ψm(

β√
τ
)e−

1
2
msτeiαβ/τ .

Now let S = e−sτ/2, x = α/
√
τ , y = β/

√
τ . Since |iS| < 1, we obtain (see [Tha93], (1.1.36))

ρ̂(s, α, β, τ) = (2π)1/2S
1
2
(1+γ)

( ∞∑

m=0

(−iS)mψm(x)ψm(y)

)
eixy

=

√
2S

1
2
(1+γ)

(1 + S2)1/2
e
− 1

2
1−S2

1+S2 (x
2+y2)

e
ixy( −2S

1+S2+1)
.

Now substituting in for S, x and y, a short calculation finishes the proof for τ > 0. Note
that ρ̂(s = 0, α, β, τ) = 1 (the Fourier transform of the delta function at the origin).

When τ = 0, the solution in (3) becomes ρ̂(s, α, β) = e−s(α2+β2)/4 which is easily shown to
satisfy (6).
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If τ < 0, then τ is replaced by |τ | on the right side of (10), which slightly changes the
subsequent calculations. However the formula for the solution given Theorem 1.2 remains
valid for τ < 0.

3. Proof of the Corollaries

Proof. (Corollary 1.3). Again, we assume the dimension is n = 1. The fundamental solution
to this heat operator must satisfy

∂

∂s
ρ̃τ (s, x, y) + L̃γ ρ̃τ = 0

with the initial condition ρ̃τ (s = 0, x, y) = δ0(x, y). Now since ρ̂ is the Fourier transform
of the fundamental solution to the original Heat operator, clearly ρ̃τ can be obtained by
taking the inverse Fourier transform of ρ̂ in the α, β variables. This is a standard calculation
involving Gaussian integrals and will be left to the reader. �

Proof. (Corollary 1.4). If Lj and Lj , 1 ≤ j ≤ n, had constant coefficients then the heat
kernel would just be ρ̃τ (s, x − x′, y − y′) – an ordinary convolution. However, we must
multiply by a “twist” factor e−iτ(x−x′)·y′ to account for the fact that Lj and Lj have variable
coefficients. Let

(11) Hτ (s, x, y, x
′, y′, τ) = ρ̃τ (s, x− x′, y − y′)e−iτ(x−x′)·y′ .

Note that Hτ (f) satisfies the initial condition given in (4) in view of the initial condition
satisfied by ρ̃τ and noting that the twist term is 1 at x′ = x. Showing that Hτ satisfies the
heat equation in the s, x, y variables is a short calculation that uses the equation
(
∂

∂s
− 1

4

(
△x,y + 2iτ(y − y′) · ∇x − (τ 2(y − y′) · (y − y′) + γτ)

))
{ρ̃τ (s, x− x′, y− y′)} = 0.

which is just the equation ( ∂
∂s

+ L̃γ)ρ̃τ = 0 at the point (s, x− x′, y − y′).

Simplification of the Formula for Hτ . Note that the coefficient of the imaginary part of
the exponent of ρ̃τ is

−B
A2 +B2

where A =
sinh(sτ/2)

τ cosh(sτ/2)
, B =

2 sinh2(sτ/4)

τ cosh(sτ/2)
.

An easy calculation with cosh and sinh identities shows that

B

A2 +B2
=
τ

2
and

A

B
=

cosh(sτ/4)

sinh(sτ/4)
.

Consequently, the fundamental solution Hτ , from (11) and Corollary 1.3, can be rewritten

Hτ (s, x
′, y′, x, y) =

τne−γsτ/4

(4π)n sinhn(sτ/4)
e−

τ
4
coth(sτ/4)(|x−x′|2+|y−y′|2)−i τ

2
(x−x′)·(y+y′).

�
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