
ar
X

iv
:0

71
1.

41
79

v2
  [

m
at

h.
O

C
] 

 1
4 

Ja
n 

20
09

1

On Distributed Averaging Algorithms and

Quantization Effects∗

Angelia Nedić†, Alex Olshevsky, Asuman Ozdaglar, and John N. Tsitsiklis‡

October 24, 2018

Abstract

We consider distributed iterative algorithms for the averaging problem over time-
varying topologies. Our focus is on the convergence time of such algorithms when
complete (unquantized) information is available, and on the degradation of perfor-
mance when only quantized information is available. We study a large and natural
class of averaging algorithms, which includes the vast majority of algorithms pro-
posed to date, and provide tight polynomial bounds on their convergence time.
We also describe an algorithm within this class whose convergence time is the best
among currently available averaging algorithms for time-varying topologies. We
then propose and analyze distributed averaging algorithms under the additional
constraint that agents can only store and communicate quantized information, so
that they can only converge to the average of the initial values of the agents within
some error. We establish bounds on the error and tight bounds on the convergence
time, as a function of the number of quantization levels.

∗This research was partially supported by the National Science Foundation under grants ECCS-
0701623, CMMI 07-42538, and DMI-0545910, and by DARPA ITMANET program

†A. Nedić is with the Industrial and Enterprise Systems Engineering Department, University of
Illinois at Urbana-Champaign, Urbana IL 61801 (e-mail:angelia@illinois.edu)

‡A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis are with the Laboratory for Information and De-
cision Systems, Electrical Engineering and Computer Science Department, Massachusetts Institute of
Technology, Cambridge MA, 02139 (e-mails: alex o@mit.edu, asuman@mit.edu, jnt@mit.edu)

http://arxiv.org/abs/0711.4179v2


1 Introduction

There has been much recent interest in distributed control and coordination of networks
consisting of multiple, potentially mobile, agents. This is motivated mainly by the
emergence of large scale networks, characterized by the lack of centralized access to in-
formation and time-varying connectivity. Control and optimization algorithms deployed
in such networks should be completely distributed, relying only on local observations
and information, and robust against unexpected changes in topology such as link or
node failures.

A canonical problem in distributed control is the consensus problem. The objective in
the consensus problem is to develop distributed algorithms that can be used by a group
of agents in order to reach agreement (consensus) on a common decision (represented
by a scalar or a vector value). The agents start with some different initial decisions
and communicate them locally under some constraints on connectivity and inter-agent
information exchange. The consensus problem arises in a number of applications includ-
ing coordination of UAVs (e.g., aligning the agents’ directions of motion), information
processing in sensor networks, and distributed optimization (e.g., agreeing on the esti-
mates of some unknown parameters). The averaging problem is a special case in which
the goal is to compute the exact average of the initial values of the agents. A natural
and widely studied consensus algorithm, proposed and analyzed by Tsitsiklis [18] and
Tsitsiklis et al. [19], involves, at each time step, every agent taking a weighted average
of its own value with values received from some of the other agents. Similar algorithms
have been studied in the load-balancing literature (see for example [8]). Motivated by
observed group behavior in biological and dynamical systems, the recent literature in
cooperative control has studied similar algorithms and proved convergence results under
various assumptions on agent connectivity and information exchange (see [20], [15], [17],
[14], [13]).

In this paper, our goal is to provide tight bounds on the convergence time (defined as
the number of iterations required to reduce a suitable Lyapunov function by a constant
factor) of a general class of consensus algorithms, as a function of the number n of
agents. We focus on algorithms that are designed to solve the averaging problem. We
consider both problems where agents have access to exact values and problems where
agents only have access to quantized values of the other agents. Our contributions can
be summarized as follows.

In the first part of the paper, we consider the case where agents can exchange and
store continuous values, which is a widely adopted assumption in the previous literature.
We consider a large class of averaging algorithms defined by the condition that the
weight matrix is a possibly nonsymmetric, doubly stochastic matrix. For this class of
algorithms, we prove that the convergence time is O(n2/η), where n is the number of
agents and η is a lower bound on the nonzero weights used in the algorithm. To the
best of our knowledge, this is the best polynomial-time bound on the convergence time
of such algorithms. We also show that this bound is tight. Since all previously studied
linear schemes force η to be of the order of 1/n, this result implies an O(n3) bound
on convergence time. In Section 4, we present a distributed algorithm that selects the
weights dynamically, using three-hop neighborhood information. Under the assumption

2



that the underlying connectivity graph at each iteration is undirected, we establish an
improved O(n2) upper bound on convergence time. This matches the best currently
available convergence time guarantee for the much simpler case of static connectivity
graphs [16].

In the second part of the paper, we impose the additional constraint that agents can
only store and transmit quantized values. This model provides a good approximation
for communication networks that are subject to communication bandwidth or storage
constraints. We focus on a particular quantization rule, which rounds down the values to
the nearest quantization level. We propose a distributed algorithm that uses quantized
values and, using a slightly different Lyapunov function, we show that the algorithm
guarantees the convergence of the values of the agents to a common value. In particular,
we prove that all agents have the same value after O((n2/η) log(nQ)) time steps, where
Q is the number of quantization levels per unit value. Due to the rounding-down feature
of the quantizer, this algorithm does not preserve the average of the values at each
iteration. However, we provide bounds on the error between the final consensus value
and the initial average, as a function of the number Q of available quantization levels.
In particular, we show that the error goes to 0 at a rate of (logQ)/Q, as the number Q
of quantization levels increases to infinity.

Other than the papers cited above, our work is also related to [11] and [6, 5], which
studied the effects of quantization on the performance of averaging algorithms. In [11],
Kashyap et al. proposed randomized gossip-type quantized averaging algorithms under
the assumption that each agent value is an integer. They showed that these algorithms
preserve the average of the values at each iteration and converge to approximate consen-
sus. They also provided bounds on the convergence time of these algorithms for specific
static topologies (fully connected and linear networks). In the recent work [5], Carli et al.
proposed a distributed algorithm that uses quantized values and preserves the average at
each iteration. They showed favorable convergence properties using simulations on some
static topologies, and provided performance bounds for the limit points of the generated
iterates. Our results on quantized averaging algorithms differ from these works in that
we study a more general case of time-varying topologies, and provide tight polynomial
bounds on both the convergence time and the discrepancy from the initial average, in
terms of the number of quantization levels.

The paper is organized as follows. In Section 2, we introduce a general class of
averaging algorithms, and present our assumptions on the algorithm parameters and on
the information exchange among the agents. In Section 3, we present our main result
on the convergence time of the averaging algorithms under consideration. In Section 4,
we present a distributed averaging algorithm for the case of undirected graphs, which
picks the weights dynamically, resulting in an improved bound on the convergence time.
In Section 5, we propose and analyze a quantized version of the averaging algorithm. In
particular, we establish bounds on the convergence time of the iterates, and on the error
between the final value and the average of the initial values of the agents. Finally, we
give our concluding remarks in Section 6.

3



2 A Class of Averaging Algorithms

We consider a set N = {1, 2, . . . , n} of agents, which will henceforth be referred to as
“nodes.” Each node i starts with a scalar value xi(0). At each nonnegative integer time
k, node i receives from some of the other nodes j a message with the value of xj(k), and
updates its value according to:

xi(k + 1) =
n

∑

j=1

aij(k)xj(k), (1)

where the aij(k) are nonnegative weights with the property that aij(k) > 0 only if node
i receives information from node j at time k. We use the notation A(k) to denote the
weight matrix [aij(k)]i,j=1,...,n, so that our update equation is

x(k + 1) = A(k)x(k).

Given a matrix A, we use E(A) to denote the set of directed edges (j, i), including self-
edges (i, i), such that aij > 0. At each time k, the nodes’ connectivity can be represented
by the directed graph G(k) = (N, E(A(k))).

Our goal is to study the convergence of the iterates xi(k) to the average of the initial
values, (1/n)

∑n
i=1 xi(0), as k approaches infinity. In order to establish such convergence,

we impose some assumptions on the weights aij(k) and the graph sequence G(k).

Assumption 1 For each k, the weight matrix A(k) is a doubly stochastic matrix1 with
positive diagonal entries. Additionally, there exists a constant η > 0 such that if aij(k) >
0, then aij(k) ≥ η.

The double stochasticity assumption on the weight matrix guarantees that the av-
erage of the node values remains the same at each iteration (cf. the proof of Lemma
1 below). The second part of this assumption states that each node gives significant
weight to its values and to the values of its neighbors at each time k.

Our next assumption ensures that the graph sequence G(k) is sufficiently connected
for the nodes to repeatedly influence each other’s values.

Assumption 2 There exists an integer B ≥ 1 such that the directed graph

(

N, E(A(kB))
⋃

E(A(kB + 1))
⋃

· · ·
⋃

E(A((k + 1)B − 1))
)

is strongly connected for all nonnegative integers k.

Any algorithm of the form given in Eq. (1) with the sequence of weights aij(k)
satisfying Assumptions 1 and 2 solves the averaging problem. This is formalized in the
following proposition.

1A matrix is called doubly stochastic if it is nonnegative and all of its rows and columns sum to 1.

4



Proposition 1 Let Assumptions 1 and 2 hold. Let {x(k)} be generated by the algorithm
(1). Then, for all i, we have

lim
k→∞

xi(k) =
1

n

n
∑

j=1

xj(0).

This fact is a minor modification of known results in [18, 19, 10, 3], where the
convergence of each xi(k) to the same value is established under weaker versions of
Assumptions 1 and 2. The fact that the limit is the average of the entries of the vector
x(0) follows from the fact that multiplication of a vector by a doubly stochastic matrix
preserves the average of the vector’s components.

Recent research has focused on methods of choosing weights aij(k) that satisfy As-
sumptions 1 and 2, and minimize the convergence time of the resulting averaging algo-
rithm (see [21] for the case of static graphs, see [15] and [2] for the case of symmetric
weights, i.e., weights satisfying aij(k) = aji(k), and also see [7, 4]). For static graphs,
some recent results on optimal time-invariant algorithms may be found in [16].

3 Convergence time

In this section, we give an analysis of the convergence time of averaging algorithms
of the form (1). Our goal is to obtain tight estimates of the convergence time, under
Assumptions 1 and 2.

As a convergence measure, we use the “sample variance” of a vector x ∈ R
n, defined

as

V (x) =
n

∑

i=1

(xi − x̄)2,

where x̄ is the average of the entries of x:

x̄ =
1

n

n
∑

i=1

xi.

Let x(k) denote the vector of node values at time k [i.e., the vector of iterates
generated by algorithm (1) at time k]. We are interested in providing an upper bound
on the number of iterations it takes for the “sample variance” V (x(k)) to decrease to a
small fraction of its initial value V (x(0)). We first establish some technical preliminaries
that will be key in the subsequent analysis. In particular, in the next subsection, we
explore several implications of the double stochasticity assumption on the weight matrix
A(k).

3.1 Preliminaries on Doubly Stochastic Matrices

We begin by analyzing how the sample variance V (x) changes when the vector x is
multiplied by a doubly stochastic matrix A. The next lemma shows that V (Ax) ≤ V (x).
Thus, under Assumption 1, the sample variance V (x(k)) is nonincreasing in k, and
V (x(k)) can be used as a Lyapunov function.

5



Lemma 1 Let A be a doubly stochastic matrix. Then,2 for all x ∈ R
n,

V (Ax) = V (x)−
∑

i<j

wij(xi − xj)
2,

where wij is the (i, j)-th entry of the matrix ATA.

Proof. Let 1 denote the vector in R
n with all entries equal to 1. The double stochasticity

of A implies
A1 = 1, 1TA = 1T .

Note that multiplication by a doubly stochastic matrix A preserves the average of the
entries of a vector, i.e., for any x ∈ R

n, there holds

Ax =
1

n
1TAx =

1

n
1Tx = x̄.

We now write the quadratic form V (x)− V (Ax) explicitly, as follows:

V (x)− V (Ax) = (x− x̄1)T (x− x̄1)− (Ax−Ax1)T (Ax− Ax1)

= (x− x̄1)T (x− x̄1)− (Ax− x̄A1)T (Ax− x̄A1)

= (x− x̄1)T (I −ATA)(x− x̄1). (2)

Let wij be the (i, j)-th entry of ATA. Note that ATA is symmetric and stochastic,
so that wij = wji and wii = 1−∑

j 6=iwij. Then, it can be verified that

ATA = I −
∑

i<j

wij(ei − ej)(ei − ej)
T , (3)

where ei is a unit vector with the i-th entry equal to 1, and all other entries equal to 0
(see also [22] where a similar decomposition was used).

By combining Eqs. (2) and (3), we obtain

V (x)− V (Ax) = (x− x̄1)T
(

∑

i<j

wij(ei − ej)(ei − ej)
T
)

(x− x̄1)

=
∑

i<j

wij(xi − xj)
2.

Note that the entries wij(k) of A(k)
TA(k) are nonnegative, because the weight matrix

A(k) has nonnegative entries. In view of this, Lemma 1 implies that

V (x(k + 1)) ≤ V (x(k)) for all k.

Moreover, the amount of variance decrease is given by

V (x(k))− V (x(k + 1)) =
∑

i<j

wij(k)(xi(k)− xj(k))
2.

2In the sequel, the notation
∑

i<j will be used to denote the double sum
∑n

j=1

∑j−1

i=1
.

6



We will use this result to provide a lower bound on the amount of decrease of the sample
variance V (x(k)) in between iterations.

Since every positive entry of A(k) is at least η, it follows that every positive entry of
A(k)TA(k) is at least η2. Therefore, it is immediate that

if wij(k) > 0, then wij(k) ≥ η2.

In our next lemma, we establish a stronger lower bound. In particular, we find it useful
to focus not on an individual wij, but rather on all wij associated with edges (i, j) that
cross a particular cut in the graph (N, E(ATA)). For such groups of wij , we prove a
lower bound which is linear in η, as seen in the following.

Lemma 2 Let A be a row-stochastic matrix with positive diagonal entries, and assume
that the smallest positive entry in A is at least η. Also, let (S−, S+) be a partition of the
set N = {1, . . . , n} into two disjoint sets. If

∑

i∈S−, j∈S+

wij > 0,

then
∑

i∈S−, j∈S+

wij ≥
η

2
.

Proof. Let
∑

i∈S−, j∈S+ wij > 0. From the definition of the weights wij, we have
wij =

∑

k akiakj, which shows that there exist i ∈ S−, j ∈ S+, and some k such that
aki > 0 and akj > 0. For either case where k belongs to S− or S+, we see that there
exists an edge in the set E(A) that crosses the cut (S−, S+). Let (i∗, j∗) be such an edge.
Without loss of generality, we assume that i∗ ∈ S− and j∗ ∈ S+.

We define

C+
j∗ =

∑

i∈S+

aj∗i,

C−
j∗ =

∑

i∈S−

aj∗i.

See Figure 1(a) for an illustration. Since A is a row-stochastic matrix, we have

C−
j∗ + C+

j∗ = 1,

implying that at least one of the following is true:

Case (a): C−
j∗ ≥

1

2
,

Case (b): C+
j∗ ≥

1

2
.

We consider these two cases separately. In both cases, we focus on a subset of the edges
and we use the fact that the elements wij correspond to paths of length 2, with one step
in E(A) and another in E(AT ).

7



i

j

Cj

C+j
S+

S

i

j

S+

S

j

S+

i

S

Figure 1: (a) Intuitively, C+
j∗ measures how much weight j∗ assigns to nodes in S+ (including

itself), and C−
j∗ measures how much weight j∗ assigns to nodes in S−. Note that the edge

(j∗, j∗) is also present, but not shown. (b) For the case where C−
j∗ ≥ 1/2, we only focus on

two-hop paths between j∗ and elements i ∈ S− obtained by taking (i, j∗) as the first step and
the self-edge (j∗, j∗) as the second step. (c) For the case where C+

j∗ ≥ 1/2, we only focus on

two-hop paths between i∗ and elements j ∈ S+ obtained by taking (i∗, j∗) as the first step in
E(A) and (j∗, j) as the second step in E(AT ).

Case (a): C−
j∗ ≥ 1/2.

We focus on those wij with i ∈ S− and j = j∗. Indeed, since all wij are nonnegative, we
have

∑

i∈S−, j∈S+

wij ≥
∑

i∈S−

wij∗. (4)

For each element in the sum on the right-hand side, we have

wij∗ =
n

∑

k=1

aki akj∗ ≥ aj∗i aj∗j∗ ≥ aj∗i η,

where the inequalities follow from the facts that A has nonnegative entries, its diagonal
entries are positive, and its positive entries are at least η. Consequently,

∑

i∈S−

wij∗ ≥ η
∑

i∈S−

aj∗i = η C−
j∗. (5)

Combining Eqs. (4) and (5), and recalling the assumption C−
j∗ ≥ 1/2, the result follows.

An illustration of this argument can be found in Figure 1(b).
Case (b): C+

j∗ ≥ 1/2.
We focus on those wij with i = i∗ and j ∈ S+. We have

∑

i∈S−, j∈S+

wij ≥
∑

j∈S+

wi∗j , (6)

since all wij are nonnegative. For each element in the sum on the right-hand side, we
have

wi∗j =

n
∑

k=1

aki∗ akj ≥ aj∗i∗ aj∗j ≥ η aj∗j ,

8



where the inequalities follow because all entries of A are nonnegative, and because the
choice (i∗, j∗) ∈ E(A) implies that aj∗i∗ ≥ η. Consequently,

∑

j∈S+

wi∗j ≥ η
∑

j∈S+

aj∗j = η C+
j∗ . (7)

Combining Eqs. (6) and (7), and recalling the assumption C+
j∗ ≥ 1/2, the result follows.

An illustration of this argument can be found in Figure 1(c).

3.2 A Bound on Convergence Time

With the preliminaries on doubly stochastic matrices in place, we can now proceed to
derive bounds on the decrease of V (x(k)) in between iterations. We will first somewhat
relax our connectivity assumptions. In particular, we consider the following relaxation
of Assumption 2.

Assumption 3 Given an integer k ≥ 0, suppose that the components of x(kB) have
been reordered so that they are in nonincreasing order. We assume that for every
d ∈ {1, . . . , n − 1}, we either have xd(kB) = xd+1(kB), or there exist some time
t ∈ {kB, . . . , (k + 1)B − 1} and some i ∈ {1, . . . , d}, j ∈ {d + 1, . . . , n} such that
(i, j) or (j, i) belongs to E(A(t)).

Lemma 3 Assumption 2 implies Assumption 3, with the same value of B.

Proof. If Assumption 3 does not hold, then there must exist an index d [for which
xd(kB) 6= xd+1(kB) holds] such that there are no edges between nodes 1, 2, . . . , d and
nodes d + 1, . . . , n during times t = kB, . . . , (k + 1)B − 1. But this implies that the
graph

(

N, E(A(kB))
⋃

E(A(kB + 1))
⋃

· · ·
⋃

E(A((k + 1)B − 1))
)

is disconnected, which violates Assumption 2.
For our convergence time results, we will use the weaker Assumption 3, rather than

the stronger Assumption 2. Later on, in Section 4, we will exploit the sufficiency of
Assumption 3 to design a decentralized algorithm for selecting the weights aij(k), which
satisfies Assumption 3, but not Assumption 2.

We now proceed to bound the decrease of our Lyapunov function V (x(k)) during
the interval [kB, (k+1)B− 1]. In what follows, we denote by V (k) the sample variance
V (x(k)) at time k.

Lemma 4 Let Assumptions 1 and 3 hold. Let {x(k)} be generated by the update rule
(1). Suppose that the components xi(kB) of the vector x(kB) have been ordered from
largest to smallest, with ties broken arbitrarily. Then, we have

V (kB)− V ((k + 1)B) ≥ η

2

n−1
∑

i=1

(xi(kB)− xi+1(kB))2.

9



Proof. By Lemma 1, we have for all t,

V (t)− V (t+ 1) =
∑

i<j

wij(t)(xi(t)− xj(t))
2, (8)

where wij(t) is the (i, j)-th entry of A(t)TA(t). Summing up the variance differences
V (t)− V (t+ 1) over different values of t, we obtain

V (kB)− V ((k + 1)B) =

(k+1)B−1
∑

t=kB

∑

i<j

wij(t)(xi(t)− xj(t))
2. (9)

We next introduce some notation.

(a) For all d ∈ {1, . . . , n − 1}, let td be the first time larger than or equal to kB (if
it exists) at which there is a communication between two nodes belonging to the
two sets {1, . . . , d} and {d+1, . . . , n}, to be referred to as a communication across
the cut d.

(b) For all t ∈ {kB, . . . , (k + 1)B − 1}, let D(t) = {d | td = t}, i.e., D(t) consists
of “cuts” d ∈ {1, . . . , n − 1} such that time t is the first communication time
larger than or equal to kB between nodes in the sets {1, . . . , d} and {d+1, . . . , n}.
Because of Assumption 3, the union of the sets D(t) includes all indices 1, . . . , n−1,
except possibly for indices for which xd(kB) = xd+1(kB).

(c) For all d ∈ {1, . . . , n− 1}, let Cd = {(i, j), (j, i) | i ≤ d, d+ 1 ≤ j}.

(d) For all t ∈ {kB, . . . , (k + 1)B − 1}, let Fij(t) = {d ∈ D(t) | (i, j) or (j, i) ∈ Cd},
i.e., Fij(t) consists of all cuts d such that the edge (i, j) or (j, i) at time t is the
first communication across the cut at a time larger than or equal to kB.

(e) To simplify notation, let yi = xi(kB). By assumption, we have y1 ≥ · · · ≥ yn.

We make two observations, as follows:

(1) Suppose that d ∈ D(t). Then, for some (i, j) ∈ Cd, we have either aij(t) > 0 or
aji(t) > 0. Because A(t) is nonnegative with positive diagonal entries, we have

wij(t) =
n

∑

k=1

akiakj ≥ aii(t)aij(t) + aji(t)ajj(t) > 0,

and by Lemma 2, we obtain

∑

(i,j)∈Cd

wij(t) ≥
η

2
. (10)

10



(2) Fix some (i, j), with i < j, and time t ∈ {kB, . . . , (k + 1)B − 1}, and suppose
that Fij(t) is nonempty. Let Fij(t) = {d1, . . . , dk}, where the dj are arranged in
increasing order. Since d1 ∈ Fij(t), we have d1 ∈ D(t) and therefore td1 = t. By
the definition of td1 , this implies that there has been no communication between a
node in {1, . . . , d1} and a node in {d1+1, . . . , n} during the time interval [kB, t−1].
It follows that xi(t) ≥ yd1. By a symmetrical argument, we also have

xj(t) ≤ ydk+1. (11)

These relations imply that

xi(t)− xj(t) ≥ yd1 − ydk+1≥
∑

d∈Fij(t)

(yd − yd+1),

Since the components of y are sorted in nonincreasing order, we have yd−yd+1 ≥ 0,
for every d ∈ Fij(t). For any nonnegative numbers zi, we have

(z1 + · · ·+ zk)
2 ≥ z21 + · · ·+ z2k ,

which implies that

(xi(t)− xj(t))
2 ≥

∑

d∈Fij(t)

(yd − yd+1)
2. (12)

We now use these two observations to provide a lower bound on the expression on the
right-hand side of Eq. (8) at time t. We use Eq. (12) and then Eq. (10), to obtain

∑

i<j

wij(t)(xi(t)− xj(t))
2 ≥

∑

i<j

wij(t)
∑

d∈Fij(t)

(yd − yd+1)
2

=
∑

d∈D(t)

∑

(i,j)∈Cd

wij(t)(yd − yd+1)
2

≥ η

2

∑

d∈D(t)

(yd − yd+1)
2.

We now sum both sides of the above inequality for different values of t, and use Eq. (9),
to obtain

V (kB)− V ((k + 1)B) =

(k+1)B−1
∑

t=kB

∑

i<j

wij(t)(xi(t)− xj(t))
2

≥ η

2

(k+1)B−1
∑

t=kB

∑

d∈D(t)

(yd − yd+1)
2

=
η

2

n−1
∑

d=1

(yd − yd+1)
2,

11



where the last inequality follows from the fact that the union of the sets D(t) is only
missing those d for which yd = yd+1.

We next establish a bound on the variance decrease that plays a key role in our
convergence analysis.

Lemma 5 Let Assumptions 1 and 3 hold, and suppose that V (kB) > 0. Then,

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2n2
for all k.

Proof. Without loss of generality, we assume that the components of x(kB) have been
sorted in nonincreasing order. By Lemma 4, we have

V (kB)− V ((k + 1)B) ≥ η

2

n−1
∑

i=1

(xi(kB)− xi+1(kB))2.

This implies that

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2

∑n−1
i=1 (xi(kB)− xi+1(kB))2
∑n

i=1(xi(kB)− x̄(kB))2
.

Observe that the right-hand side does not change when we add a constant to every
xi(kB). We can therefore assume, without loss of generality, that x̄(kB) = 0, so that

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2
min

x1≥x2≥···≥xn
P

i xi=0

∑n−1
i=1 (xi − xi+1)

2

∑n
i=1 x

2
i

.

Note that the right-hand side is unchanged if we multiply each xi by the same constant.
Therefore, we can assume, without loss of generality, that

∑n
i=1 x

2
i = 1, so that

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2
min

x1≥x2≥···≥xn
P

i xi=0,
P

i x
2
i
=1

n−1
∑

i=1

(xi − xi+1)
2. (13)

The requirement
∑

i x
2
i = 1 implies that the average value of x2

i is 1/n, which implies
that there exists some j such that |xj | ≥ 1/

√
n. Without loss of generality, let us suppose

that this xj is positive.
3

The rest of the proof relies on a technique from [12] to provide a lower bound on the
right-hand side of Eq. (13). Let

zi = xi − xi+1 for i < n, and zn = 0.

3Otherwise, we can replace x with −x and subsequently reorder to maintain the property that the
components of x are in descending order. It can be seen that these operations do not affect the objective
value.

12



Note that zi ≥ 0 for all i and
n

∑

i=1

zi = x1 − xn.

Since xj ≥ 1/
√
n for some j, we have that x1 ≥ 1/

√
n; since

∑n
i=1 xi = 0, it follows that

at least one xi is negative, and therefore xn < 0. This gives us

n
∑

i=1

zi ≥
1√
n
.

Combining with Eq. (13), we obtain

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2
min

zi≥0,
P

i zi≥1/
√
n

n
∑

i=1

z2i .

The minimization problem on the right-hand side is a symmetric convex optimization
problem, and therefore has a symmetric optimal solution, namely zi = 1/n1.5 for all i.
This results in an optimal value of 1/n2. Therefore,

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2n2
,

which is the desired result.

We are now ready for our main result, which establishes that the convergence time
of the sequence of vectors x(k) generated by Eq. (1) is of order O(n2B/η).

Theorem 1 Let Assumptions 1 and 3 hold. Then, there exists an absolute constant4 c
such that we have

V (k) ≤ ǫV (0) for all k ≥ c(n2/η)B log(1/ǫ).

Proof. The result follows immediately from Lemma 5.

Recall that, according to Lemma 3, Assumption 2 implies Assumption 3. In view
of this, the convergence time bound of Theorem 1 holds for any n and any sequence
of weights satisfying Assumptions 1 and 2. In the next subsection, we show that this
bound is tight when the stronger Assumption 2 holds.

3.3 Tightness

The next proposition shows that the convergence time bound of Theorem 1 is tight
under Assumption 2.

4We say c is an absolute constant when it does not depend on any of the parameters in the problem,
in this case n,B, η, ǫ.

13



Proposition 2 There exist constants c and n0 with the following property. For any
n ≥ n0, nonnegative integer B, η < 1/2, and ǫ < 1, there exist a sequence of weight
matrices A(k) satisfying Assumptions 1 and 2, and an initial value x(0) such that if
V (k)/V (0) ≤ ǫ, then

k ≥ c
n2

η
B log

1

ǫ
.

Proof. Let P be the circulant shift operator defined by Pei = ei+1, Pen = e1, where ei
is a unit vector with the i-th entry equal to 1, and all other entries equal to 0. Consider
the symmetric circulant matrix defined by

A = (1− 2η)I + ηP + ηP−1.

Let A(k) = A, when k is a multiple of B, and A(k) = I otherwise. Note that this
sequence satisfies Assumptions 1 and 2.

The second largest eigenvalue of A is

λ2(A) = 1− 2η + 2η cos
2π

n
,

(see Eq. (3.7) of [9]). Therefore, using the inequality cosx ≥ 1− x2/2,

λ2(A) ≥ 1− 4ηπ2

n2
.

For n large enough, the quantity on the right-hand side is nonnegative. Let the initial
vector x(0) be the eigenvector corresponding to λ2(A). Then,

V (kB)

V (0)
= λ2(A)

2k ≥
(

1− 8ηπ2

n2

)k

.

For the right-hand side to become less than ǫ, we need k = Ω((n2/η) log(1/ǫ)). This
implies that for V (k)/V (0) to become less than ǫ, we need k = Ω((n2/η)B log(1/ǫ)).

4 Saving a factor of n: faster averaging on undi-

rected graphs

In the previous section, we have shown that a large class of averaging algorithms have
O(B(n2/η) log 1/ǫ) convergence time. Moreover, we have shown that this bound is tight,
in the sense that there exist matrices satisfying Assumptions 1 and 3 which converge in
Ω(B(n2/η) log 1/ǫ).

In this section, we consider decentralized ways of synthesizing the weights aij(k) while
satisfying Assumptions 1 and 3. Our focus is on improving convergence time bounds by
constructing “good” schemes.

We assume that the communications of the nodes are governed by an exogenous
sequence of graphs G(k) = (N, E(k)) that provides strong connectivity over time periods
of length B. This sequence of graphs constrains the matrices A(k) that we can use;

14



in particular, we require that aij(k) = 0 if (j, i) /∈ E(k). Naturally, we assume that
(i, i) ∈ E(k) for every i.

Several such decentralized protocols exist. For example, each node may assign

aij(k) = ǫ, if (j, i) ∈ E(k) and i 6= j,

aii(k) = 1− ǫ · deg(i),
where deg(i) is the degree of i in G(k). If ǫ is small enough and the graph G(k) is
undirected [i.e., (i, j) ∈ E(k) if and only if (j, i) ∈ E(k)], this results in a nonnegative,
doubly stochastic matrix (see [15]). However, if a node has Θ(n) neighbors, η will be of
order Θ(1/n), resulting in Θ(n3) convergence time. Moreover, this argument applies to
all protocols in which nodes assign equal weights to all their neighbors; see [21] and [2]
for more examples.

In this section, we examine whether it is possible to synthesize the weights aij(k) in
a decentralized manner, so that aij(k) ≥ η whenever aij(k) 6= 0, where η is a positive
constant independent of n and B. We show that this is indeed possible, under the
additional assumption that the graphs G(k) are undirected. Our algorithm is data-
dependent, in that aij(k) depends not only on the graph G(k), but also on the data
vector x(k). Furthermore, it is a decentralized 3-hop algorithm, in that aij(k) depends
only on the data at nodes within a distance of at most 3 from i. Our algorithm is
such that the resulting sequences of vectors x(k) and graphs G(k) = (N, E(k)), with
E(k) = {(j, i) | aij(k) > 0}, satisfy Assumptions 1 and 3. Thus, a convergence time
result can be obtained from Theorem 1.

4.1 The algorithm

The algorithm we present here is a variation of an old load balancing algorithm (see [8]
and Chapter 7.3 of [1]).5

At each step of the algorithm, each node offers some of its value to its neighbors,
and accepts or rejects such offers from its neighbors. Once an offer from i to j, of size
δ > 0, has been accepted, the updates xi ← xi − δ and xj ← xj + δ are executed.

We next describe the formal steps the nodes execute at each time k. For clarity,
we refer to the node executing the steps below as node C. Moreover, the instructions
below sometimes refer to the neighbors of node C; this always means current neighbors
at time k, when the step is being executed, as determined by the current graph G(k).
We assume that at each time k, all nodes execute these steps in the order described
below, while the graph remains unchanged.

Balancing Algorithm:

1. Node C broadcasts its current value xC to all its neighbors.

2. Going through the values it just received from its neighbors, Node C finds the
smallest value that is less than its own. Let D be a neighbor with this value. Node
C makes an offer of (xC − xD)/3 to node D.

5This algorithm was also considered in [16], but in the absence of a result such as Theorem 1, a
weaker convergence time bound was derived.

15



If no neighbor of C has a value smaller than xC , node C does nothing at this stage.

3. Node C goes through the incoming offers. It sends an acceptance to the sender of
a largest offer, and a rejection to all the other senders. It updates the value of xC

by adding the value of the accepted offer.

If node C did not receive any offers, it does nothing at this stage.

4. If an acceptance arrives for the offer made by node C, node C updates xC by
subtracting the value of the offer.

Note that the new value of each node is a linear combination of the values of its
neighbors. Furthermore, the weights aij(k) are completely determined by the data and
the graph at most 3 hops from node i in G(k). This is true because in the course
of execution of the above steps, each node makes at most three transmission to its
neighbors, so the new value of node C cannot depend on information more than 3 hops
away from C.

4.2 Performance analysis

In the following theorem, we are able to remove a factor of n from the worst-case con-
vergence time bounds of Theorem 1.

Theorem 2 Consider the balancing algorithm, and suppose that G(k) = (N, E(k)) is a
sequence of undirected graphs such that (N, E(kB) ∪ E(kB + 1) ∪ · · · ∪ E((k + 1)B − 1))
is connected, for all integers k. There exists an absolute constant c such that we have

V (k) ≤ ǫV (0) for all k ≥ cn2B log(1/ǫ).

Proof. Note that with this algorithm, the new value at some node i is a convex com-
bination of the previous values of itself and its neighbors. Furthermore, the algorithm
keeps the sum of the nodes’ values constant, because every accepted offer involves an
increase at the receiving node equal to the decrease at the offering node. These two
properties imply that the algorithm can be written in the form

x(k + 1) = A(k)x(k),

where A(k) is a doubly stochastic matrix, determined by G(k) and x(k). It can be seen
that the diagonal entries of A(k) are positive and, furthermore, all nonzero entries of
A(k) are larger than or equal to 1/3; thus, η = 1/3.

We claim that the algorithm [in particular, the sequence E(A(k))] satisfies Assump-
tion 3. Indeed, suppose that at time kB, the nodes are reordered so that the val-
ues xi(kB) are nonincreasing in i. Fix some d ∈ {1, . . . , n − 1}, and suppose that
xd(kB) 6= xd+1(kB). Let S+ = {1, . . . , d} and S− = {d+ 1, . . . , n}.

Because of our assumptions on the graphs G(k), there will be a first time t in the
interval {kB, . . . , (k+1)B− 1}, at which there is an edge in E(t) between some i∗ ∈ S+

and j∗ ∈ S−. Note that between times kB and t, the two sets of nodes, S+ and S−,

16



do not interact, which implies that xi(t) ≥ xd(kB), for i ∈ S+, and xj(t) < xd(kB), for
j ∈ S−.

At time t, node i∗ sends an offer to a neighbor with the smallest value; let us denote
that neighbor by k∗. Since (i∗, j∗) ∈ E(t), we have xk∗(t) ≤ xj∗(t) < xd(kB), which
implies that k∗ ∈ S−. Node k∗ will accept the largest offer it receives, which must come
from a node with a value no smaller than xi∗(t), and therefore no smaller than xd(kB);
hence the latter node belongs to S+. It follows that E(A(t)) contains an edge between
k∗ and some node in S+, showing that Assumption 3 is satisfied.

The claimed result follows from Theorem 1, because we have shown that all of the
assumptions in that theorem are satisfied with η = 1/3.

5 Quantization Effects

In this section, we consider a quantized version of the update rule (1). This model is
a good approximation for a network of nodes communicating through finite bandwidth
channels, so that at each time instant, only a finite number of bits can be transmitted.
We incorporate this constraint in our algorithm by assuming that each node, upon
receiving the values of its neighbors, computes the convex combination

∑n
j=1 aij(k)xj(k)

and quantizes it. This update rule also captures a constraint that each node can only
store quantized values.

Unfortunately, under Assumptions 1 and 2, if the output of Eq. (1) is rounded to the
nearest integer, the sequence x(k) is not guaranteed to converge to consensus; see [11].
We therefore choose a quantization rule that rounds the values down, according to

xi(k + 1) =

⌊

n
∑

j=1

aij(k)xj(k)

⌋

, (14)

where ⌊·⌋ represents rounding down to the nearest multiple of 1/Q, and where Q is some
positive integer.

We adopt the natural assumption that the initial values are already quantized.

Assumption 4 For all i, xi(0) is a multiple of 1/Q.

For convenience we define

U = max
i

xi(0), L = min
i

xi(0).

We use K to denote the total number of relevant quantization levels, i.e.,

K = (U − L)Q,

which is an integer by Assumption 4.

17



5.1 A quantization level dependent bound

We first present a convergence time bound that depends on the quantization level Q.

Proposition 3 Let Assumptions 1, 2, and 4 hold. Let {x(k)} be generated by the update
rule (14). If k ≥ nBK, then all components of x(k) are equal.

Proof. Consider the nodes whose initial value is U . There are at most n of them. As
long as not all entries of x(k) are equal, then every B iterations, at least one node must
use a value strictly less than U in an update; such a node will have its value decreased
to U − 1/Q or less. It follows that after nB iterations, the largest node value will be
at most U − 1/Q. Repeating this argument, we see that at most nBK iterations are
possible before all the nodes have the same value.

Although the above bound gives informative results for small K, it becomes weaker
as Q (and, therefore, K) increases. On the other hand, as Q approaches infinity, the
quantized system approaches the unquantized system; the availability of convergence
time bounds for the unquantized system suggests that similar bounds should be possible
for the quantized one. Indeed, in the next subsection, we adopt a notion of convergence
time parallel to our notion of convergence time for the unquantized algorithm; as a
result, we obtain a bound on the convergence time which is independent of the total
number of quantization levels.

5.2 A quantization level independent bound

We adopt a slightly different measure of convergence for the analysis of the quantized
consensus algorithm. For any x ∈ R

n, we define m(x) = mini xi and

V (x) =
n

∑

i=1

(xi −m(x))2.

We will also use the simpler notation m(k) and V (k) to denote m(x(k)) and V (x(k)),
respectively, where it is more convenient to do so. The function V will be our Lyapunov
function for the analysis of the quantized consensus algorithm. The reason for not
using our earlier Lyapunov function, V , is that for the quantized algorithm, V is not
guaranteed to be monotonically nonincreasing in time. On the other hand, we have that
V (x) ≤ V (x) ≤ 4nV (x) for any6 x ∈ R

n. As a consequence, any convergence time
bounds expressed in terms of V translate to essentially the same bounds expressed in
terms of V , up to a logarithmic factor.

Before proceeding, we record an elementary fact which will allow us to relate the
variance decrease V (x) − V (y) to the decrease, V (x) − V (y), of our new Lyapunov
function. The proof involves simple algebra, and is therefore omitted.

6The first inequality follows because
∑

i(xi − z)2 is minimized when z is the mean of the vector x;
to establish the second inequality, observe that it suffices to consider the case when the mean of x is 0
and V (x) = 1. In that case, the largest distance between m and any xi is 2 by the triangle inequality,
so V (x) ≤ 4n.

18



Lemma 6 Let u1, . . . , un and w1, . . . , wn be real numbers satisfying

n
∑

i=1

ui =

n
∑

i=1

wi.

Then, the expression

f(z) =

n
∑

i=1

(ui − z)2 −
n

∑

i=1

(wi − z)2

is a constant, independent of the scalar z.

Our next lemma places a bound on the decrease of the Lyapunov function V (t)
between times kB and (k + 1)B − 1.

Lemma 7 Let Assumptions 1, 3, and 4 hold. Let {x(k)} be generated by the update
rule (14). Suppose that the components xi(kB) of the vector x(kB) have been ordered
from largest to smallest, with ties broken arbitrarily. Then, we have

V (kB)− V ((k + 1)B) ≥ η

2

n−1
∑

i=1

(xi(kB)− xi+1(kB))2.

Proof. For all k, we view Eq. (14) as the composition of two operators:

y(k) = A(k)x(k),

where A(k) is a doubly stochastic matrix, and

x(k + 1) = ⌊y(k)⌋,

where the quantization ⌊·⌋ is carried out componentwise.
We apply Lemma 6 with the identification ui = xi(k), wi = yi(k). Since multiplica-

tion by a doubly stochastic matrix preserves the mean, the condition
∑

i ui =
∑

i wi is
satisfied. By considering two different choices for the scalar z, namely, z1 = x̄(k) = ȳ(k)
and z2 = m(k), we obtain

V (x(k))− V (y(k)) = V (x(k))−
n

∑

i=1

(yi(k)−m(k))2. (15)

Note that xi(k + 1)−m(k) ≤ yi(k)−m(k). Therefore,

V (x(k))−
n

∑

i=1

(yi(k)−m(k))2 ≤ V (x(k))−
n

∑

i=1

(xi(k + 1)−m(k))2. (16)

Furthermore, note that since xi(k + 1) ≥ m(k + 1) ≥ m(k) for all i, we have that
xi(k + 1)−m(k + 1) ≤ xi(k + 1)−m(k). Therefore,

V (x(k))−
n

∑

i=1

(xi(k + 1)−m(k))2 ≤ V (x(k))− V (x(k + 1)). (17)

19



By combining Eqs. (15), (16), and (17), we obtain

V (x(t))− V (y(t)) ≤ V (x(t))− V (x(t + 1)) for all t.

Summing the preceding relations over t = kB, . . . , (k + 1)B − 1, we further obtain

(k+1)B−1
∑

t=kB

(

V (x(t))− V (y(t))
)

≤ V (x(kB))− V (x((k + 1)B)).

To complete the proof, we provide a lower bound on the expression

(k+1)B−1
∑

t=kB

(

V (x(t))− V (y(t))
)

.

Since y(t) = A(t)x(t) for all t, it follows from Lemma 1 that for any t,

V (x(t))− V (y(t)) =
∑

i<j

wij(t)(xi(t)− xj(t))
2,

where wij(t) is the (i, j)-th entry of A(t)TA(t). Using this relation and following the
same line of analysis used in the proof of Lemma 4 [where the relation xi(t) ≥ yd1 holds
in view of the assumption that xi(kB) is a multiple of 1/Q for all k ≥ 0, cf. Assumption
4] , we obtain the desired result.

The next theorem contains our main result on the convergence time of the quantized
algorithm.

Theorem 3 Let Assumptions 1, 3, and 4 hold. Let {x(k)} be generated by the update
rule (14). Then, there exists an absolute constant c such that we have

V (k) ≤ ǫV (0) for all k ≥ c (n2/η)B log(1/ǫ).

Proof. Let us assume that V (kB) > 0. From Lemma 7, we have

V (kB)− V ((k + 1)B) ≥ η

2

n−1
∑

i=1

(xi(kB)− xi+1(kB))2,

where the components xi(kB) are ordered from largest to smallest. Since V (kB) =
∑n

i=1(xi(kB)− xn(kB))2, we have

V (kB)− V ((k + 1)B)

V (kB)
≥ η

2

∑n−1
i=1 (xi(kB)− xi+1(kB))2

∑n
i=1(xi(kB)− xn(kB))2

.

Let yi = xi(kB) − xn(kB). Clearly, yi ≥ 0 for all i, and yn = 0. Moreover, the
monotonicity of xi(kB) implies the monotonicity of yi:

y1 ≥ y2 ≥ · · · ≥ yn = 0.

20



Thus,
V (kB)− V ((k + 1)B)

V (kB)
≥ η

2
min

y1≥y2≥···≥yn
yn=0

∑n−1
i=1 (yi − yi+1)

2

∑n
i=1 y

2
i

.

Next, we simply repeat the steps of Lemma 5. We can assume without loss of generality
that

∑n
i=1 y

2
i = 1. Define zi = yi− yi+1 for i = 1, . . . , n− 1 and zn = 0. We have that zi

are all nonnegative and
∑

i zi = y1 − yn ≥ 1/
√
n. Therefore,

η

2
min

y1≥y2≥···≥yn
P

i y
2
i
=1

n−1
∑

i=1

(yi − yi+1)
2 ≥ η

2
min

zi≥0,
P

i zi≥1/
√
n

n
∑

i=1

z2i .

The minimization problem on the right-hand side has an optimal value of at least 1/n2,
and the desired result follows.

5.3 Extensions and modifications

In this subsection, we comment briefly on some corollaries of Theorem 3.
First, we note that the results of Section 4 immediately carry over to the quantized

case. Indeed, in Section 4, we showed how to pick the weights aij(k) in a decentralized
manner, based only on local information, so that Assumptions 1 and 3 are satisfied, with
η ≥ 1/3. When using a quantized version of the balancing algorithm, we once again
manage to remove the factor of 1/η from our upper bound.

Proposition 4 For the quantized version of the balancing algorithm, and under the
same assumptions as in Theorem 2, if k ≥ c n2B log(1/ǫ)), then V (k) ≤ ǫV (0), where c
is an absolute constant.

Second, we note that Theorem 3 can be used to obtain a bound on the time until the
values of all nodes are equal. Indeed, we observe that in the presence of quantization,
once the condition V (k) < 1/Q2 is satisfied, all components of x(k) must be equal.

Proposition 5 Consider the quantized algorithm (14), and assume that Assumptions
1, 3, and 4 hold. If k ≥ c(n2/η)B[ logQ + log V (0)], then all components of x(k) are
equal, where c is an absolute constant.

5.4 Tightness

We now show that the quantization-level independent bound in Theorem 3 is tight, even
when the weaker Assumption 3 is replaced with the stronger Assumption 2.

Proposition 6 There exist absolute constants c and n0 with the following property. For
any nonnegative integer B, η < 1/2, ǫ < 1, and and n ≥ n0 , there exist a sequence of
weight matrices A(k) satisfying Assumptions 1 and 2, and an initial value x(0) satisfying
Assumption 4, and a number quantization levels Q(n) (depending on n) such that under
the dynamics of Eq. (14), if V (k)/V (0) ≤ ǫ, then

k ≥ c
n2

η
B log

1

ǫ
.

21



Proof. We have demonstrated in Proposition 2 a similar result for the unquantized
algorithm. Namely, we have shown that for n large enough and for any B, η < 1/2, and
ǫ < 1, there exists a weight sequence aij(k) and an initial vector x(0) such that the first
time when V (t) ≤ ǫV (0) occurs after Ω((n2/η)B log(1/ǫ)) steps. Let T ∗ be this first
time.

Consider the quantized algorithm under the exact same sequence aij(k), initialized at
⌊x(0)⌋. Let x̂i(t) refer to the value of node i at time t in the quantized algorithm under
this scenario, as opposed to xi(t) which denotes the value in the unquantized algorithm.
Since quantization can only decrease a nodes value by at most 1/Q at each iteration, it
is easy to show, by induction, that

xi(t) ≥ x̂i(t) ≥ xi(t)− t/Q

We can pick Q large enough so that, for t < T ∗, the vector x̂(t) is as close as desired to
x(t).

Therefore, for t < T ∗ and for large enough Q, V (x̂(t))/V (x̂(0)) will be arbitrarily
close to V (x(t))/V (x(0)). From the proof of Proposition 2, we see that x(t) is always a
scalar multiple of x(0). Since V (x)/V (x) is invariant under multiplication by a constant,
it follows that V (x(t))/V (x(0)) = V (x(t))/V (x(0)). Since this last quantity is above ǫ
for t < T ∗, it follows that provided Q is large enough, V (x̂(t))/V (x̂(0)) is also above ǫ
for t < T ∗. This proves the proposition.

5.5 Quantization error

Despite favorable convergence properties of our quantized averaging algorithm (14), the
update rule does not preserve the average of the values at each iteration. Therefore,
the common limit of the sequences xi(k), denoted by xf , need not be equal to the exact
average of the initial values. We next provide an upper bound on the error between xf

and the initial average, as a function of the number of quantization levels.

Proposition 7 There is an absolute constant c such that for the common limit xf of
the values xi(k) generated by the quantized algorithm (14), we have

∣

∣

∣

∣

∣

xf −
1

n

n
∑

i=1

xi(0)

∣

∣

∣

∣

∣

≤ c

Q

n2

η
B log(Qn(U − L)).

Proof. By Proposition 5, after O
(

(n2/η)B log(QV (x(0)))
)

iterations, all nodes will

have the same value. Since V (x(0))) ≤ n(U −L)2 and the average decreases by at most
1/Q at each iteration, the result follows.

Let us assume that the parameters B, η, and U −L are fixed. Proposition 7 implies
that as n increases, the number of bits used for each communication, which is propor-
tional to logQ, needs to grow only as O(logn) to make the error negligible. Furthermore,
this is true even if the parameters B, 1/η, and U − L grow polynomially in n.

For a converse, it can be seen that Ω(log n) bits are needed. Indeed, consider n nodes,
with n/2 nodes initialized at 0, and n/2 nodes initialized at 1. Suppose that Q < n/2;

22



1

0

Figure 2: Initial configuration. Each node takes the average value of its neighbors.

we connect the nodes by forming a complete subgraph over all the nodes with value 0
and exactly one node with value 1; see Figure 2 for an example with n = 6. Then, each
node forms the average of its neighbors. This brings one of the nodes with an initial
value of 1 down to 0, without raising the value of any other nodes. We can repeat this
process, to bring all of the nodes with an initial value of 1 down to 0. Since the true
average is 1/2, the final result is 1/2 away from the true average. Note now that Q can
grow linearly with n, and still satisfy the inequality Q < n/2. Thus, the number of bits
can grow as Ω(log n), and yet, independent of n, the error remains 1/2.

6 Conclusions

We studied distributed algorithms for the averaging problem over networks with time-
varying topology, with a focus on tight bounds on the convergence time of a general class
of averaging algorithms. We first considered algorithms for the case where agents can
exchange and store continuous values, and established tight convergence time bounds.
We next studied averaging algorithms under the additional constraint that agents can
only store and send quantized values. We showed that these algorithms guarantee con-
vergence of the agents values to consensus within some error from the average of the
initial values. We provided a bound on the error that highlights the dependence on the
number of quantization levels.

Our paper is a contribution to the growing literature on distributed control of multi-
agent systems. Quantization effects are an integral part of such systems but, with the
exception of a few recent studies, have not attracted much attention in the vast litera-
ture on this subject. In this paper, we studied a quantization scheme that guarantees
consensus at the expense of some error from the initial average value. We used this
scheme to study the effects of the number of quantization levels on the convergence time
of the algorithm and the distance from the true average.

The framework provided in this paper motivates a number of further research direc-
tions:

(a) The algorithms studied in this paper assume that there is no delay in receiving
the values of the other agents, which is a restrictive assumption in network set-

23



tings. Understanding the convergence of averaging algorithms and implications of
quantization in the presence of delays is an important topic for future research.

(b) We studied a quantization scheme with favorable convergence properties, that is,
rounding down to the nearest quantization level. Investigation of other quanti-
zation schemes and their impact on convergence time and error is left for future
work.

(c) The quantization algorithm we adopted implicitly assumes that the agents can
carry out computations with continuous values, but can store and transmit only
quantized values. Another interesting area for future work is to incorporate the
additional constraint of finite precision computations into the quantization scheme.

(d) Although our bounds are tight in the worst case over all graphs, they are not
guaranteed to perform better on well-connected graphs as compared to sparse
graphs with many potential bottlenecks. An interesting question is whether it is
be possible to pick averaging algorithms that learn the graph and make optimal
use of its information diffusion properties.

24



References

[1] D.P. Bertsekas and J.N. Tsitsiklis, Parallel and distributed computation: Numerical meth-

ods, Prentice Hall, 1989.

[2] P.A. Bliman and G. Ferrari-Trecate, Average consensus problems in networks of agents

with delayed communications, Proceedings of the Joint 44th IEEE Conference on Decision
and Control and European Control Conference, 2005.

[3] V.D. Blondel, J.M. Hendrickx, A. Olshevsky, and J.N. Tsitsiklis, Convergence in multia-

gent coordination, consensus, and flocking, Proceedings of the Joint 44th IEEE Conference
on Decision and Control and European Control Conference, 2005.

[4] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Gossip algorithms: Design, analysis and

applications, Proceedings of IEEE INFOCOM, 2005.

[5] R. Carli, F. Fagnani, P. Frasca, T. Taylor, and S. Zampieri, Average consensus on networks

with transmission noise or quantization, Proceedings of European Control Conference,
2007.

[6] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri, Communication constraints in the

state agreement problem, Preprint, 2005.

[7] J. Cortes, Analysis and design of distributed algorithms for chi-consensus, Proceedings of
the 45th IEEE Conference on Decision and Control, 2006.

[8] G. Cybenko, Dynamic load balancing for distributed memory multiprocessors, Journal of
Parallel and Distributed Computing 7 (1989), no. 2, 279–301.

[9] R.M. Gray, Toeplitz and circulant matrices: A review, Foundations and Trends in Com-
munications and Information Theory 2 (2006), no. 3, 155–239.

[10] A. Jadbabaie, J. Lin, and A.S. Morse, Coordination of groups of mobile autonomous agents

using nearest neighbor rules, IEEE Transactions on Automatic Control 48 (2003), no. 3,
988–1001.

[11] A. Kashyap, T. Basar, and R. Srikant, Quantized consensus, Proceedings of the 45th IEEE
Conference on Decision and Control, 2006.

[12] H.J. Landau and A.M. Odlyzko, Bounds for the eigenvalues of certain stochastic matrices,
Linear Algebra and its Applications 38 (1981), 5–15.

[13] Q. Li and D. Rus, Global clock synchronization in sensor networks, IEEE Transactions on
Computers 55 (2006), no. 2, 214–224.

[14] L. Moreau, Stability of multiagent systems with time-dependent communication links,
IEEE Transactions on Automatic Control 50 (2005), no. 2, 169–182.

[15] R. Olfati-Saber and R.M. Murray, Consensus problems in networks of agents with switch-

ing topology and time-delays, IEEE Transactions on Automatic Control 49 (2004), no. 9,
1520–1533.

[16] A. Olshevsky and J.N. Tsitsiklis, Convergence rates in distributed consensus averaging,
Proceedings of the 45th IEEE Conference on Decision and Control, 2006.

25



[17] W. Ren and R.W. Beard, Consensus seeking in multi-agent systems under dynamically

changing interaction topologies, IEEE Transactions on Automatic Control 50 (2005), no. 5,
655–661.

[18] J.N. Tsitsiklis, Problems in decentralized decision making and computation, Ph.D. thesis,
Dept. of Electrical Engineering and Computer Science, MIT, 1984.

[19] J.N. Tsitsiklis, D.P. Bertsekas, and M. Athans, Distributed asynchronous deterministic

and stochastic gradient optimization algorithms, IEEE Transactions on Automatic Control
31 (1986), no. 9, 803–812.

[20] T. Vicsek, A. Czirok, E. Ben-Jacob, I. Cohen, and O. Schochet, Novel type of phase

transitions in a system of self-driven particles, Physical Review Letters 75 (1995), no. 6,
1226–1229.

[21] L. Xiao and S. Boyd, Fast linear iterations for distributed averaging, Systems and Control
Letters 53 (2004), 65–78.

[22] L. Xiao, S. Boyd, and S.-J. Kim, Distributed average consensus with least-mean-square

deviation, Journal of Parallel and Distributed Computing 67 (2007), 33–46.

26


	Introduction
	A Class of Averaging Algorithms
	Convergence time 
	Preliminaries on Doubly Stochastic Matrices
	A Bound on Convergence Time
	Tightness

	Saving a factor of n: faster averaging on undirected graphs
	The algorithm
	Performance analysis

	Quantization Effects 
	A quantization level dependent bound
	A quantization level independent bound
	Extensions and modifications
	Tightness
	Quantization error

	Conclusions

