
ar
X

iv
:0

71
1.

41
84

v2
  [

he
p-

th
] 

 1
8 

D
ec

 2
00

7

KEK-Cosmo-1

Superradiance and Instability of Black Holes

Hideo Kodama
∗)

Cosmophysics Group, IPNS, KEK and the Graduate University of Advanced

Studies, 1-1 Oho, Tsukuba 305-0801, Japan

Abstract

We discuss the relation between the superradiance phenomenon and the insta-

bility of rotating black holes in higher dimensions. In particular, we point out that

the superradiant instability of a massless scalar field around a simply rotating Kerr-

adS black hole implies the gravitational instability of that black hole for tensor-type

perturbations.
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§1. Introduction

The stability of black holes has a crucial importance when we study their formation and

fate in Nature. It also has an intimate relation with the cosmic censorship hypothesis. For

these reasons, this problem has been studied for a long time, and uniqueness and perturbative

stability were established for most asymptotically flat black holes in the four-dimensional

Einstein-Maxwell system except for the Kerr-Newman black hole.1), 2)

When we go beyond this classical system, we encounter various new situations. One such

extension is to consider systems containing other types of matter. Very interesting examples

are the Einstein-Skyrme system and the Einstein-Yang-Mills system. These systems have

three families of static asymptotically flat spherically symmetric solutions; a soliton family,

a hairy black hole family and the vacuum one. These all families of solutions ware shown to

be stable numerically for the Einstein-Skyrme system while for the EYM system, the colored

black holes and the soliton solutions were shown to be unstable (see Ref. 3) for review).

Hence, in the latter case, the uniqueness theorem holds practically.

Another extension motivated by recent progresses in unified theories is to consider higher-

dimensional black holes. In the static AF Einstein-Maxwell system, the uniqueness theorem

still holds in higher dimensions. Further, in the vacuum case, the Schwarzschild-Tangherlini

solution was shown to be stable4) by using the extension of the Regge-Wheeler and Zerilli

equations to higher dimensions,5) although the stability of the charged static black hole was

proved only for D = 5 analytically6) and for 6 ≤ D ≤ 11 numerically.7)

If we consider non-asymptotically flat systems, however, the situation changes. The most

notorious is the Gregory-Laflamme instability of black string and branes.8)–10) A Gregory-

Laflamme type instability is also predicted to occur around the rotation axis of rapidly

rotating Myers-Perry black holes11)(cf. Ref.12))

Non-vanishing cosmological constant also introduces subtleties. In four dimensions (D =

4), static adS/dS black holes and their charged extensions can be shown to be perturbatively

stable.4), 6) The perturbative stability can be also proved for static dS black holes in D = 5

and 6 analytically4) and 7 ≤ D ≤ 11 numerically7) for the neutral case and in D = 5

analytically6) and 6 ≤ D ≤ 11 numerically7) for the charged case. This suggests that the

introduction of a positive cosmological constant does not affect the stability property of a

black hole. In contrast, the stability property of adS black holes is not certain in D ≥ 5,

except for topological black holes with zero or negative mass13)

Finally, we encounter surprising new and rich phenomena when we study rotating black

holes in higher dimensions. In particular, the discoveries of various black ring solutions14) has

revealed the fact that rotating black holes are far from unique in five dimensions and possibly
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in other higher dimensions. This fact should, however, be taken with care because only stable

solutions will be realised in Nature, at least as final states. In fact, many people seem to

suspect that black ring solutions would suffer from a Gregory-Laflamme type instability.

Unfortunately, however, no exact analysis of perturbative stability has been done for

most rotating black objects in higher dimensions so far. One exception is the Kerr-adS black

hole. In four and five dimensions, this black hole were conjectured to be stable for slow

rotation |a|ℓ < r2h and unstable for rapid rotation violating this condition,15) where a is the

angular momentum parameter, rh is the horizon radius and ℓ is the curvature radius of the

asymptotic adS spacetime. In four dimensions, this conjecture was proved to hold numerical

in some limiting cases by Cardoso, Dias and Yoshida.16), 17)

This instability is understood to be caused by superradiance. As is well-known, the

superradiance is the phenomenon that the amplitude of a bosonic field wave incidental to

a Kerr black hole is amplified after reflection for some range of frequencies.18) Press and

Teukolsky19) pointed out that this superradiance provokes an instability if a Kerr black

hole is surrounded by a reflective mirror wall.20), 21) Later on, it was suggested that this

superradiance instability would occur even without such a wall if we consider a massive

scalar field, because the barrier of its effective potential plays the role of the mirror,22)

although the growth rate of this instability is too small to be effective in the real world

except for the black hole of the Planck mass scale.23)–26) This mechanics was used to explain

the instability of a five-dimensional spinning black string solution27), 28) and to predict the

instability of large doubly rotating black rings.29)

The most peculiar feature of asymptotically adS spacetimes is its global non-hyperbolicity.

This is caused by the fact that the spatial infinity is causally at a finite distance and forms

a time-like boundary. Due to this feature, a scalar field around a rotating black hole in an

adS spacetime may suffer from a superradiance instability even the field is massless. This is

the instability pointed as by Hawking and Reall.

In this paper, we show that we can utilise this argument on the superradiance instability

of a massless scalar field to study the gravitational stability of Kerr-adS black holes.

§2. Superradiance of Asymptotically Flat Black Holes

We first outline the derivation of the superradiance condition for asymptotically flat

rotating black holes in a form that does not depend on spacetime dimension or horizon

topology.
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Fig. 1. Global structure of DOC of an asymptotically flat black hole

2.1. Symmetry and Asymptotic Structure of Spacetime

For an asymptotically flat black hole spacetime, the DOC M is simply connected and

globally hyperbolic, and its boundary consists of four components corresponding to the future

and past infinities and the future and past horizons:30)–32) ∂M = H + ∪ H − ∪ I + ∪ I −

(see Fig.1).

In the present paper, we only consider a stationary rotating black hole with analytic

metric. Then, from the rigidity theorem,33) there exist commuting rotational Killing vectors

ηi (i = 1, · · · , N) with N ≥ 1 in addition to the time translation Killing vector ξ. Let

(yp) = (t, ϕi) be coordinates in orbits of (ξp) = (ξ, ηi) such that ξpy
q = δqp, and xa be

coordinates labeling orbits such that ξpx
a = 0. Then, the spacetime metric can be written

ds2 = gpq(x)χ
pχq + qab(x)dx

adxb, (2.1)

where χp is a 1-form written as χp = dyp + Ap
a(x)dx

a.

At infinity, this metric approaches the Minkowski spacetime and has the asymptotic form

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

D−2 +O

(

1

rD−2

)

, (2.2)

where D is the spacetime dimension, dΩ2
n is the metric of unit Euclidean n-sphere Sn, and

f(r) is f(r) = 1− 2M/rD−3.

In contrast, the spacetime is largely deformed due to rotation near the horizon. In higher

dimensions, the rotation is characterised by the (multi-component) angular velocity Ωi
h of

the horizon, which is defined through the expression k = ξ + Ωi
hηi for each null geodesic

generator k of the horizon H + ∪H − in terms of the Killing vectors. This angular velocity

can be determined from the metric in the following way. First, because k is a null vector, the

angular velocity of the horizon Ωi
h satisfies gtt + 2gtiΩ

i
h + gijΩ

i
hΩ

j
h = 0. Since k is the unique

null direction in the (N + 1)-plane spanned by ξ and ηi, this equation must have a single
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solution for (Ωi
h) as a vector. Hence, Ωi

h can be expressed as Ωi
h = Ω|ihorizon (Ωi := −gijgtj),

and the horizon location is determined by ∆̄ := −gtt + gijgtigtj = 0.

In order to define a regular coordinate system around the horizon, we introduce a new

variable ϕ̃i that is constant along the null geodesic generators: kϕ̃i = 0, ηjϕ̃
i = δij . These

conditions determine ϕ̃i as ϕ̃i = ϕi −Ωi
ht, upto a constant independent of t and ϕi. By

introducing an appropriate function r which is equal to rh on the horizon, we can rewrite

the metric near the horizon as

ds2 = −Σ2∆

Γ
(χt)2 + gij

[

χ̃i − (Ωi −Ωi
h)χ

t
] [

χ̃j − (Ωj −Ωj
h)χ

t
]

+
Σ2

∆
dr2 + qAB(r, z)dz

AdzB, (2.3)

where χ̃i = dϕ̃i + Ai −Ωi
hA

t, ∆ is a function only of r, and Σ2 and Γ are regular functions

around the horizon such that ∆̄ = Σ2∆/Γ and grr = Σ2/∆. We can show that Γ is equal to

a constant Γ0 on the horizon from the zeroth-law of black holes because it is related to the

surface gravity κ of the black hole by 2κ = Γ
−1/2
0 ∆′(rh). Then, in terms of the coordinates

(u+, ϕ̃, r, z
i) where u+ = t + r∗ with r∗ :=

∫ r
Γ

1/2
0 dr/∆, we can put the metric in a form that

is regular around the future horizon. Similarly, if we use u− = t − r∗ in place of u+, we

obtain a regular coordinate system around the past horizon.

2.2. Scalar fields

Let us consider a massless free scalar field with charge q that satisfies the Klein-Gordon

equation DµDµφ = 0 with Dµ = ∂µ − iqAµ. For any complex solutions φ1 and φ2, the Klein-

Gordon product defined by

I(φ1, φ2) := −i

∫

Σ

[

φ̄1D
µφ2 − (D̄µφ̄1)φ2

]

dΣµ (2.4)

is independent of the Cauchy surface Σ in a global hyperbolic domain of the spacetime.

2.2.1. Asymptotic behavior at infinity

From the isometry, we can expand the massless scalar field φ into eigenmodes with respect

to ξ and η as φ = φ̂(r, z)e−iωt+im·ϕ, where m ·ϕ = miϕ
i with mi being a set of integers. The

amplitude of each eigenmode φ̂ behaves at infinity as

φ̂ ≈ 1

rD/2−1

(

Ae−iωr∗ +Be+iωr∗
)

, (2.5)

where A and B are bounded functions of zi, and r∗ is defined by dr∗ = dr/f(r). For non-

rotating spherical black holes, this function is identical to r∗ introduced above near the

horizon, but they have no direct relation in general.
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2.2.2. Boundary condition at the horizon

Near the future (or past) horizon, the coordinates (u+, ϕ̃
i, r, zA) are regular. In terms of

these coordinates, the eigenmode is written

φ = φ̂(r, z)eiω∗r∗e−iω∗u++im·ϕ̃, (2.6)

where ω∗ = ω −miΩ
i
h. Here, from the asymptotic behavior of the equation for φ̂ near the

horizon, φ̂ behaves as φ̂(r, z) ≈ C(z)e−iω∗r∗ +D(z)e+iω∗r∗ near the horizon. This becomes

purely ingoing at horizon if D = 0 and

φ̂(r, z) ≈ C(z)e−iω∗r∗ . (2.7)

2.2.3. Superradiance

Let us consider Cauchy surfaces Σ that extend to spatial infinity and have the common

inner boundary at the bifurcating n-manifold H + ∩ H −. If we take the past limit of

such surfaces, they approaches Σ− = H − ∪ I −. Hence, assuming that there exists no

bounded state around the black hole, the KG product in this limit can be simply given by

the contribution from I −,

II − = i

∫

dv

∫

Sn

dΩn lim
r→∞

rn(φ̄
↔

∂ vφ) =
∑

m

∫

dω 4πω〈|Aω,m|2〉, (2.8)

where v = t+ r∗ and 〈|A|2〉 := 2π
∫

Sn/S1 d
n−1z

√
ρq |A|2.

Next, let us consider the future limit of the Cauchy surfaces. In this limit, by a similar

argument, we can assume that the field has support on Σ+ = H + ∪I + and its asymptotic

behaviour is

φ ≈
{

B
rn/2 e

−iω(t−r∗) at I +,

Ce−iω∗u++im·ϕ̃ at H +.
(2.9)

The contribution from I + to the KG product, II + , is given by replacing A by B in the

above expression for Σ−. To obtain IΣ+
, we have to add to this the contribution from H +

given by

IH + = i

∫

du+

∫

B

dϕ̃dn−1z
√
ρq

[

φ̄D+φ− (D̄+φ̄)φ
]

r=rh

=
∑

m

∫

dω 4π(ω∗ − qΦh)
〈

|Cω,m|2
〉

B
, (2.10)

where B = H + ∩ H −, 〈|C|2〉
B
:= 2π

∫

B/S1 d
n−1z

√
ρq |C|2, and Φh is the electric potential

of the horizon with respect to infinity.
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Since the KG product is independent of the choice of a Cauchy surface with the fixed

boundary, we obtain II − = II + + IH +, which generally implies

ω〈|Aω,m|2〉 = ω〈|Bω,m|2〉+ (ω∗ − qΦh)〈|Cω,m|2〉B (2.11)

Hence, the transmission and reflection coefficients for the free massless scalar field are given

by

1 = Tω,m +Rω,m; Tω,m =
ω∗ − qΦh

ω

〈|Cω,m|2〉B
〈|Aω,m|2〉

, Rω,m =
〈|Bω,m|2〉
〈|Aω,m|2〉

. (2.12)

From this, it follows that the reflection coefficient exceeds unity for modes satisfying the

condition

ω −m ·Ωh − qΦh < 0. (2.13)

Here, note that in the WKB approximation, the field equation for φ = AeiS yields

pµp
µ = 0, where pµ is the kinetic momentum define by pµ = ∂µS − qAµ. In terms of this

kinetic momentum, the above superradiance condition can be written kµpµ > 0, where kµ

is the null generator of the horizon. This implies that pµ is null, but is not future-directed.

Hence, the superradiance occurs if there exists a particle state that is physically allowed

at infinity but not at horizon. This is intuitively natural because under this condition, the

particle with the negative energy −pµ becomes physical at horizon and can be absorbed by

the black hole. In particular, the superradiance by a black hole occurs for massless scalar

fields if the black hole is rotating, irrespective of the spacetime dimensions or the horizon

topology.

I 

H  +

H  −
Σ

Fig. 2. Global structure of DOC of an adS black hole

§3. AdS-Kerr Black Holes

3.1. General Features

AdS-Kerr black hole spacetimes have a couple of features that are quite different from

those of asymptotically flat black hole spacetimes. Firstly, the DOC is not globally hy-
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perbolic and its boundary consist of the past and future horizons and the spatial infinity:

∂M = H + ∪ H − ∪ I . Second, although the spacetime can have the same symmetry struc-

ture as the asymptotically flat black holes, the time translation Killing vector ξ is not unique

in the asymptotically adS case, in contrast to the AF case. This is because the norm of the

static time-like Killing ∂t of the exact adS spacetime diverges in proportion to r2 at infinity,

while the norm of ηi behaves in the same way. Hence, in a rotational spacetime, any linear

combination ξ + ciηi has the equal right as the Killing vector to define the time translation.

This freedom introduces an ambiguity in the definition of the angular velocity of a black

hole given above. Apart from this point, the structure around horizon for an adS black hole

is the same as that for an AF black hole.

3.2. Superradiance?

The features of an asymptotically adS black hole spacetime pointed out above make the

argument of superradiance quite delicate. First, if we consider a hypersurface Σ shown by

the dashed line in Fig.2 and take the limit such that Σ approach the boundary of the DOC,

the flux conservation law for a scalar field can be written

IH + + II = IH − = 0. (3.1)

In order to estimate II , we need to know the asymptotic behaviour of the field. For a

massless scalar field satisfying the KG equation, the leading part of the asymptotic behaviour

does not depend on the properties of a black hole at the center and is the same as that in the

exact adS spacetime. For φ ∝ e−iωt, it is given by φ ≈ E0 + E1/r
D−1. Hence, if we require

that the field configuration has a finite energy, we have to select the boundary condition

φ ∼ 1/rD−1 at r ∼ ∞. For this boundary condition, we have

II = −i

∫

dt

∫

dD−2Ω lim
r→∞

rD−2(1 + r2/ℓ2)φ̄
↔

∂ rφ = 0. (3.2)

Hence, we are left with the funny condition

(ω −mΩh − qΦ)
〈

|C2
ω,m|

〉

B/TN = 0. (3.3)

Clearly, the condition obtained above does not seem to be giving any information on

superradiance. In fact, if we repeat the same argument for a rotating black hole inside a

mirror box, we would obtain the same result. In this black hole bomb case, however, we

know that instability occurs for modes with frequencies satisfying the standard superradiance

condition (2.13).21) Since the flux conservation law also holds in this case with instability,

what is wrong with the above argument is the neglect of the contribution from the volume
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integral at finite distances. In the black hole bomb case, the energy extracted from the black

hole is deposited in a region between the black hole and the mirror, and the contribution

to the KG product from that region grows with instability. In the adS black hole case, a

similar phenomenon may happen.

3.3. Globally Timelike Killing Vector

Hawking and Reall pointed out that the freedom in the choice of a timelike Killing vector

has a very significant implication to the stability problem of an adS-Kerr black hole and the

relevance of superradiance to it. Their argument goes as follows. First, if there is a Killing

vector ξ that is timelike everywhere outside the horizon, one can construct the conserved

energy integral

∂t

∫

Σ(t)

dΣnµξνTµν = 0, (3.4)

where nµ is the normal vector to the Cauchy surface Σ(t). Here, if the matter satisfies

the dominant energy condition, and ξ is timelike everywhere, the integrant nµξνTµν is non-

negative everywhere. Hence, any instability of the exponential growth type cannot occur.

In a stationary black hole spacetime, any Killing vector is spacelike or null on horizon

because all Killing vectors are tangential to the horizon. Hence, a Killing vector that is

timelike outside the horizon, if it exists, should be identical to the Killing vector k that is

parallel to the null geodesic generator of the horizon. Therefore, the problem is when k is

timelike everywhere outside the horizon.

For example, the Kerr-adS solution in arbitrary dimensions was recently found by Gib-

bons, Lü, Page and Pope.34) This solution is parametrised by the mass M , the multi-

component angular momentum a1, · · · , aN ′ and the cosmological constant parameter λ =

−1/ℓ2, where N ′ = [(D + 1)/2] − 1. It is easy to show that k is timelike at infinity if and

only if

ℓ2Ωi
h
2 ≤ 1 ⇔ ℓ2a2i ≤ r4h (i = 1, · · · , N ′). (3.5)

However, it is in general difficult to see whether k · k < 0 everywhere outside the horizon

under this condition,

Some exceptions are the case of the five-dimensional Kerr-adS solution discussed by

Hawking and Reall15) and the case in which the angular momentum components vanishes

except for one component, say a1 = a, a2 = · · · = aN ′ = 0. At least in these special cases,

matter fields satisfying the dominant energy condition are stable if the condition (3.5) holds,

from the above argument by Hawking and Reall. Of course, this does not immediately

implies that the black hole is gravitationally stable as well.
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§4. Instability of AdS-Kerr Black Holes

A reduction of the Einstein equations for gravitational perturbations to a Teukolsky type

equation is possible for an adS-Kerr black hole in four dimensions.35) With the help of

this formulation, it was shown that the four-dimensional adS-Kerr black holes are really

unstable at least in the limit rh/ℓ ≪ 1 for modes satisfying the superradiance condition

ω−mΩh < 0.17) Although it is not imposed explicitly , the condition ℓΩh > 1 is practically

satisfied under the superradiance condition because the real part of the eigen frequency ω for

unstable modes are discrete and its minimum value is approximately (m+ 2)/ℓ for m > 0.

In dimensions greater than 4, however, no such reduction is available for gravitational

perturbations of adS-Kerr black holes. One exception is the simply rotating black hole with

a1 = a, a2 = · · · = aN ′ = 0. The metric for such a black hole has U(1)×SO(n+1) symmetry

with n = D − 4 in addition to the time translation invariance and can be written as

ds2 = gab(x)dx
adxb + S(x)2dΩ2

n, (4.1)

where dΩ2
n is the metric of the Euclidean sphere Sn. Hence, we can classify perturbations

into scalar, vector and tensor types according to their transformation properties as tensors

on Sn.36) In particular, for n ≥ 3, i.e., for D ≥ 7, non-trivial tensor perturbations can exist,

and the expansion coefficient HT of their amplitudes with respect to the tensor harmonics

satisfies the hyperbolic equation on the four-dimensional spacetime with the metric ds24 =

gab(x)dx
adxb,

✷HT − n

S
DS ·DHT +

l(l + n− 1)

S2
HT = 0, (4.2)

where Da is the covariant derivative with respect to the metric ds24, ✷ = DaDa and l is an

integer greater than 1 labeling the tensor harmonics.

A very interesting feature of this equation is that it is identical to the equation for

spherical harmonic expansion coefficients of a massless scalar field in the same spacetime.

Thus, the stability issue of the black hole for tensor perturbations can be reduced to the same

issue for a free massless scalar field. In particular, from Hawking and Reall’s argument, we

can immediately conclude that the black hole is stable for tensor perturbations if ℓ2a2 ≤ r4h.

We can directly check this by writing the energy integral explicitly. In the coordinates

in which the metric can be written

ds2 = −∆r

ρ2

(

dt− a

C
sin2 θdφ

)2

+
∆θ sin

2 θ

ρ2

(

adt− r2 + a2

C
dφ

)2

+
ρ2

∆r
dr2 +

ρ2

∆θ
dθ2 + r2 cos2 θdΩ2

n, (4.3)
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Fig. 3. Plots of the effective potential U for D = 7, ℓ2a2/r4h = 0.9 ∼ 26, a2/ℓ2 = 0.99,m =

2× 104, x = −0.99.

the following energy integral is conserved:

H (HT ) :=

∫

∞

rh

dr

∫ 1

−1

dx

[

∆r

r2 + a2
|∂rΦ|2 + 2

(1− x2)(2 + λa2 + λa2x)

r2 + a2
|∂xΦ|2

+
F

(r2 + a2)∆r
|∂tΦ|2 +

m2U1 + U0

r2 + a2
|Φ|2

]

,

where x = cos(2θ), HT = r−n/2(r2 + a2)−1/2(1 + x)−(n−1)/4Φ(t, r, x)eimϕ̃, and F > 0.

We can show that both U0 and U1 are positive definite outside the horizon if ℓ2a2 < r4h.

In this case, then, all terms in the energy integral is positive definite, and no exponential

growth of Φ is possible. In contrast, for ℓ2a2 > r4h, U1 becomes negative in some region.

Hence, the effective potential U = ∆(U0 +m2U1)/F becomes negative in the same region

for a sufficiently large value of m, as is illustrated in Fig.3. Since m does not appear inside

U0 or U1 or in other places in the energy integral, this negative dip of the potential becomes

deeper and deeper without bound as m increases. Hence, it is quite likely that this type of

black hole is unstable for ℓ2a2 > r4h as in the four-dimensional case.

A similar result was obtained for the special Kerr-adS black hole with a1 = · · · = aN = a

in 2N + 1 dimensional spacetime by Kunduri, Lucietti and Reall.12)

§5. Discussion

In this paper, we have pointed out that for simply rotating Kerr-adS black holes, its

stability for tensor-type perturbations is equivalent to that of a massless scalar field around

these black holes. From this it follows that those black holes are stable for tensor perturba-

tions for slow rotation ℓ2a2 ≤ r4h. Further, it also strongly suggests that they are unstable due

to superradiance for rapidly rotating case. It will be interesting to check this by numerical
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calculations utilising the fact that the scalar field equation is separable in these background.

It will be also interesting to calculate the instability growth time and see whether it blows

up in the vanishing cosmological constant limit.
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