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ABSTRACT

We estimate the solar system motion relative to the cosmic microwave background
using type Ia supernovae (SNe) measurements. We take into account the correlations
in the error bars of the SNe measurements arising from correlated peculiar velocities.
Without accounting for correlations in the peculiar velocities, the SNe data we use
appear to detect the peculiar velocity of the solar system at about the 3.5 σ level.
However, when the correlations are correctly accounted for, the SNe data only detects
the solar system peculiar velocity at about the 2.5 σ level. We forecast that the solar
system peculiar velocity will be detected at the 9 σ level by GAIA and the 11 σ level
by the LSST. For these surveys we find the correlations are much less important as
most of the signal comes from higher redshifts where the number density of SNe is
insufficient for the correlations to be important.

1 INTRODUCTION

The cosmic microwave background (CMB) has a 3.4
mK dipole anisotropy (Hinshaw et al. 2007) which can
naturally be explained as being due to the motion of
the solar system with respect to the CMB rest frame
(Lynden-Bell et al. 1989; Strauss et al. 1992; Erdogdu et al.
2006; Loeb & Narayan 2007). An interesting consistency
check of this is to evaluate the solar system motion from
peculiar velocity surveys (see for example Dale & Giovanelli
(2000)).

SNe luminosity measurements provide an accurate
probe of peculiar velocities. Using observed correlations be-
tween SNe light curves, we can estimate the SNe absolute
magnitudes and thus obtain accurate distance estimates to
the SNe. Combined with spectroscopic measurements of the
host galaxies’ redshifts, this can be used to estimate the pe-
culiar velocity of each SNe’s host galaxy. The motion of the
solar system will then show up as a dipole anisotropy in the
SNe derived peculiar velocities. It is interesting to compare
the estimates of the solar system motion from the SNe with
those derived from the CMB. If they turn out to be inconsis-
tent then it may be an indication that there is a significantly
large intrinsic temperature dipole on the CMB surface of
last scattering (Turner 1991; Langlois & Piran 1996), which
could be caused by a double inflation model (Langlois 1996)
for example.

A number of studies have made this comparison
(Riess et al. 1995; Bonvin et al. 2006; Jha et al. 2007), and
a simplifying assumption used in these studies was that
the peculiar velocities of the individual SNe were uncorre-
lated with each other. However, as the peculiar velocities are
caused by variations in the density field, neighbouring SNe
will have correlated peculiar velocities (Wang et al. 1998;

Sugiura et al. 1999; Hui & Greene 2006; Bonvin et al. 2006;
Gordon et al. 2007). These correlations will increase the er-
ror bars on our peculiar velocity estimate as each new SNe
measurement does not represent a completely independent
realization of the velocity field.

In this article we include the correlations of the peculiar
velocities when estimating the motion of the solar system
with respect to the cosmic rest frame. In Sec. 2 we give a
simple example of the underestimation of the uncertainty
that occurs when correlations between observations are not
taken into account. In Sec. 3 we outline the formalism we use
for the SNe correlations, and in Sec. 4 we apply the method
to SALT calibrated SNe data. In Sec. 5 we look at the im-
plications for future surveys. A summary and discussion of
the results is given in Sec. 6.

2 SIMPLE EXAMPLE OF CORRELATED

ERRORS

In order to illustrate the effect of correlated errors we con-
sider a simple example (also discussed in Eq. 5 and its below
paragraph of Cooray & Caldwell (2006)) where we analyse
N data points (xi) drawn from a multivariate Gaussian like-
lihood

L ∝ |C|−1/2 exp(−(x− µ)TC−1(x− µ)/2). (1)

The vector x is made up of the data points (xi) and each
element of the vector µ is equal to a constant, µ. The co-
variance matrix (C) has diagonal terms which are σ2 and the
off-diagonal terms which are ρσ2. That is each data point
has correlation ρ with the other data points. Suppose that
one attempts to estimate the value of µ and σ2 from the
data and ignores correlations (i.e. assume ρ to be zero). The
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2 Gordon, Land, and Slosar

maximum likelihood estimators of the mean and variance
are then respectively given by

m =
1

N

∑

xi, s2 =
1

N

N
∑

i=1

(xi −m)2. (2)

As the likelihood is a multivariate Gaussian distribution

〈xi〉 = µ and 〈(xi − µ)(xj − µ)〉 = Ci,j (3)

where angular brackets denote the expectation value. Eval-
uating Eq. (2) using Eq. (3) gives

〈m〉 = µ,
〈

s2
〉

≈ (1− ρ)σ2 (4)

in the large N limit, where the approximation approaches
equality for large N . As can be seen from the above equation,
m is an unbiased estimator of the true mean, even when
there are correlations in the data. However, as can also be
seen, s2 is biased by a factor of (1− ρ).

If there where no correlations, the error on µ can be
estimated by

δµ =
s√
N

. (5)

If there are correlations present then it follows from Eq. (4)
that this estimator will give

δµ = σ

√

1− ρ

N
. (6)

Now we find the correct value of δµ to see the effects of
ignoring correlations. For large N , the expectation of the
one sigma error on µ can be approximated

δµ ≈
√

(F−1)µ,µ (7)

where (F−1)µ,µ is the (µ, µ) component of the inverse of the
Fisher matrix. For a multivariate Gaussian likelihood the
Fisher matrix is given by (see for example Tegmark et al.
(1997))

Fα,β ≡ −
〈

∂2 lnL
∂pα∂pβ

〉

(8)

= µ,αC
−1

µ
T
,β +

1

2
Tr

(

C
−1

C,αC
−1

C,β

)

(9)

where α and β run over the different model parameters
which are being estimated (µ and σ, with ρ assumed known,
in the current example). Eq. (9) gives the true error on the
value of µ, and in our example this is

δµcorr = σ

√

1 + (N − 1)ρ

N
. (10)

Comparing Eqs. (6) and (10) we see that if the data are
correlated (ρ > 0) but correlations are neglected then one
would underestimate the uncertainty on µ. One would over-
estimate the error if the data is anti-correlated, although we
note that this case is restricted as for the covariance matrix
to be positive definite, ρ > −(N − 1)−1.

As was shown in a earlier studies (Hui & Greene 2006;
Neill et al. 2007; Gordon et al. 2007), an analogous under-
estimation of the error happens if the correlations in low
redshift SNe are not accounted for when using them in a
sample to estimate the dark energy equation of state, w.
In this article we show that there is also an underestima-
tion in error on the motion of our solar system when the
correlations in the SNe are not accounted for.

3 METHOD

The luminosity distance, dL, to a SN at redshift z, is defined
such that

F =
L

4πd2L

where F is the observed flux and L is the SN’s intrinsic
luminosity. Astronomers use magnitudes, which are related
to the luminosity distance (in megaparsec) by

m−M = 5 log10 d
obs
L + 25, (11)

where m and M are the apparent and absolute magnitudes
respectively. In the context of SNe, M is a “nuisance param-
eter” which is completely degenerate with log(H0) and is
marginalised over. For a Friedmann-Robertson-Walker Uni-
verse the predicted luminosity distance is given by

dL(z) = (1 + z)

∫ z

0

dz′

H(z′)
(12)

(taking c = 1), where H is the Hubble parameter. In the
limit of low redshift this reduces to dL ≈ z/H0.

Given very stringent limits on the curvature of the uni-
verse, we can safely work within the assumption of a flat-
ness as the allowed curvature would not play any role at
the scales of interest. In this case, the effect of a pecu-
liar velocity (PV) leads to a perturbation in the luminosity
distance (δdL) given by (Sasaki 1987; Sugiura et al. 1999;
Pyne & Birkinshaw 2004; Bonvin et al. 2006; Hui & Greene
2006)

δdL
dL

= r̂ ·
(

v − (1 + z)2

H(z) dL
[v − vO]

)

(13)

where r is the position of the SN, and vO and v are the pecu-
liar velocites of the observer and SN repectively. In the limit
of low redshift, δdL ≈ r̂ · [vO − v]/H0. This demonstrates
how a SNe survey that measures m and z can estimate the
projected PV field. We now relate this to the cosmology.

The projected velocity correlation function, ξ(r, r′) ≡
〈(v(r) · r̂)(v(r′) · r̂′)〉, must be rotationally invariant, and
therefore it can be decomposed into a parallel and per-
pendicular components (Gorski 1988; Groth et al. 1989;
Dodelson 2003) :

ξ(r, r′) = sin θ sin θ′ξ⊥(∆r, z, z′)+cos θ cos θ′ξ‖(∆r, z, z′)(14)

where ∆r ≡ r − r
′, ∆r = |∆r|, cos θ ≡ r̂ ·∆r̂, and cos θ′ ≡

r̂
′ · ∆r̂. In linear theory, these are given by (Gorski 1988;
Groth et al. 1989; Dodelson 2003):

ξ‖,⊥ = D′(z)D′(z′)

∫ ∞

0

dk

2π2
P (k)K‖,⊥(kr) (15)

where for an arbitrary variable x, K‖(x) ≡ j0(x) − 2j1(x)
x

,
K⊥(x) ≡ j1(x)/x. D(z) is the growth function, and deriva-
tives are with respect to conformal time. P (k) is the matter
power spectrum which can be evaluated either numerically
(e.g. CAMB Lewis et al. (2000)) or using analytical approx-
imations (Eisenstein & Hu 1998).

The above estimate of ξ(r, r′) is based on linear the-
ory. On scales smaller than about 10h−1Mpc, nonlinear con-
tributions dominate. These are usually modeled as an un-
correlated term which is independent of redshift, often set
to σv ∼ 300 km/s. Comparison with N-body simulations

c© 0000 RAS, MNRAS 000, 000–000



Motion of the solar system using SNe 3

(Silberman et al. 2001) indicate that this is an effective way
of accounting for the non-linearities. Other random errors
that are usually considered are those from the lightcurve fit-
ting (merr), and intrinsic magnitude scatter (σm) . It is just
these three errors that are usually included in the analysis
of SNe.

The residual deviations of luminosity distance from the
homogeneous expansion can be packed into a data vector

(

δdL
dL

)

i

=
dobsL (i)− dL(z(i))

dL(z(i))
, (16)

whose covariance matrix (from the correlated PVs) is given
by

Cv(i, j) =

(

1− (1 + z)2

H dL

)

i

(

1− (1 + z)2

H dL

)

j

ξ(ri, rj), (17)

while the standard uncorrelated random errors are given by

σ(i)2 =

(

ln(10)

5

)2

(σ2
m+merr(i)

2)+

(

1− (1 + z)2

H dL

)2

i

σ2
v.(18)

Some example plots of Cv were given in Gordon et al.
(2007). The likelihood is then

L = (2π)−N/2|Σ|−1/2 exp
(

−1

2
∆

T
Σ

−1
∆

)

(19)

where

Σ(i, j) = Cv(i, j) + σ(i)2δij (20)

and

∆i =
(

δdL
dL

)

i

−
(

(1 + z)2

H(z) dL

)

i

r̂i · vO. (21)

We now proceed to find constraints on the observer ve-
locity vO. We assume a standard ΛCDM cosmology and
impose Big Bang Nucleosynthesis (BBN) prior Ωbh

2 ∼
N (0.0214, 0.002) (Kirkman et al. 2003), and a Hubble Space
Telescope (HST) prior h ∼ N (0.72, 0.08) (Freedman et al.
2001). These two priors remove models that are wildly at
odds with standard cosmological probes, but do not unduly
bias results towards standard cosmology. The likelihood has
almost negligible dependence on ns, and to keep it in a range
consistent with CMB and large scale structure estimates we
give it a uniform prior n ∈ [−0.9, 1.1].

We parameterize the solar system peculiar velocity as a
magnitude (vO) and direction in galactic coordinates (l, b).
The prior on (l, b) was assumed to be uniform on the sphere,
i.e flat on l and cos(b). The prior on vO was set to be uniform.

We use a SALT (Guy et al. 2005) calibrated low redshift
SNe data set1 with heliocentric redshifts in the range cz ∈
[2278, 37163]km/s, (z ∈ [0.0076, 0.124]). A histogram of the
61 redshifts is shown in Fig. 1 and the sky positions of the
data are shown in Fig. 2. We also used the higher redshift
71 SNe from the SNLS data set.2

The SALT calibration involves the additional param-
eters (α, β), which account for the shape/luminosity and
colour/luminosity relations of SNe. These and the other
parameters (Ωm, σ8, σv, σm,M) are all given broad uni-
form priors. We use the standard Markov Chain Monte

1 Obtained from http://qold.astro.utoronto.ca/conley/bubble/
2 Obtained from http://snls.in2p3.fr/conf/papers/cosmo1/

0 1 2 3 4
cz H104 km�sL

0

10

20

0 0.05 0.1
z

Figure 1. Heliocentric distribution of redshifts for the low z sam-
ple.

-0.2 0.2

Figure 2. Positions of the SNe for the low z sample in galactic
coordinates. The size of the disk is inversely proportional to the
redshift. The color of the disk is related to the relative luminosity
distance error (δdL/dL). The stars indicate the direction of the
CMB dipole.

Carlo (MCMC) method to generate samples from the pos-
terior distribution of the parameters (Lewis & Bridle 2002).
Convergence was checked using multiple chains with dif-
ferent starting positions, and also the R − 1 statistic
(Gelman & Rubin 1992). We also checked that the esti-
mated posterior distributions reduced to the prior distribu-
tions when no data was used.The analysis was checked with
two completely independent codes and MCMC chains.

Additionally, we looked at the combination of the
SNe observations with the WMAP data of the CMB
(Spergel et al. 2006) (with the usual CMB priors in this
case). We stress that we do not use the WMAP dipole infor-
mation, but rather just the ℓ > 1 information, which when
combined with the SNe has the effect of constraining matter
density and the amplitude of matter fluctuations.
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4 Gordon, Land, and Slosar

Figure 3. Marginalized one and two sigma contours for the mag-
nitude of the solar system peculiar velocity (vO) vs the dispersion
of the matter density field smoothed on scales of 8h−1Mpc (σ8).
The thick (black) contours are for SNe data with BBN and HST
priors. The thin (blue) contours are for SNe with a WMAP prior.

4 RESULTS

In Fig. 3 we plot the marginalized probability contours for
vO and σ8, where we see that higher values of σ8 have
broader contours on vO . This is because a larger σ8 implies
more correlations between the SNe peculiar velocities and
so less of a reduction in the errors due to averaging effects.
The contours for when WMAP is included are also plotted.

In Fig. 4 a marginalized probability distribution is plot-
ted for vO , and we see that the uncertainty on vO increases
dramatically when the correlations are accounted for. It can
also be seen that adding WMAP data has a negligible effect.
As seen from Fig. 3, this arises because theWMAP data con-
strains σ8 ≈ 0.8, which happens to lie on an approximately
average value for the vO uncertainty. In Fig. 5 the one sigma
confidence intervals are plotted for the direction of the solar
system motion. As can be seen, not accounting for the cor-
relations underestimates the uncertainty by about a factor
of 2.

Also, Figs. 4 and 5 shows that the SNe data are con-
sistent with the CMB dipole estimate of (vO, l, b) = (369 ±
3km/s, 263.86± 0.04◦, 48.24± 0.10◦) (Hinshaw et al. 2007).
In Table 1 the mean and uncertainties of the solar system
peculiar velocity are given. We find that when the corre-
lations are not included, the estimate of vO is about 3.5
standard deviations from zero. While if the correlations are
accounted for then vO is only about 2.5 standard deviations
from zero. One can convert the number of standard devi-
ations of the detection into upper bounds on the Bayesian
odds ratio (Gordon & Trotta 2007). Without correlations
the odds, from SNe data, of vO being non-zero appear to
be at best 119:1. While if the correlations are accounted for
then the odds are at best only 7:1. In Table 1 we also give

Figure 4. Marginalized probability distributions for the magni-
tude of the solar system peculiar velocity, vO . The dotted line is
for when the correlations in the SNe peculiar velocities are not
accounted for. The solid line is with correlations and the dashed
line is with correlations and WMAP temperature data included
to reduce the uncertainty in the cosmological parameters.

Figure 5. One sigma contours for the direction of the solar
system velocity. The cases plotted are when correlated (solid)
and uncorrelated (dashed) SNe peculiar velocities are used. The
star shows the direction as determined by the CMB.

an estimate for the local group motion which was obtained
by subtracting the solar system velocity relative to the local
group (Yahil et al. 1977).

5 FORECASTS

In this section we forecast constraints on the motion
of the solar system from GAIA (the “super-Hipparcos”

c© 0000 RAS, MNRAS 000, 000–000
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l b vO (km/s)

Solar System uncorrelated 238 ± 26◦ 45 ± 14◦ 475 ± 134
Solar System correlated 234 ± 44◦ 39 ± 21◦ 468 ± 186
Local Group uncorrelated 260 ± 14◦ 32 ± 11◦ 697 ± 137
Local Group correlated 257 ± 24◦ 29 ± 16◦ 690 ± 201

Table 1. The mean and standard deviation for the estimate of
the solar system and local group velocity from current SNe data.
The results for both the correlated and uncorrelated peculiar ve-
locities are shown.

l b vO (km/s)

GAIA Uncorrelated PVs 8◦ 5◦ 36
LSST Uncorrelated PVs 7◦ 5◦ 32
GAIA Correlated PVS 10◦ 6◦ 42
LSST Correlated PVS 8◦ 5◦ 34

Table 2. The forecasted marginalised standard deviation for the
estimate of the solar system peculiar velocity from the future SNe
surveys GAIA and LSST, where SNe peculiar velocities (PVs) are
treated as uncorrelated and correlated.

satellite) and LSST. For GAIA, based on the simu-
lations by Belokurov & Evans (2003), we generate a
sample of 6,317 SNe distributed over the full sky with
z < 0.14. For LSST we generate 30,000 SNe distributed
over the full sky with z < 0.3 (Wang et al. 2005). We
weighted the distribution of SNe by cos(b)z2 to ac-
count for the volume in spherical coordinates, that is
we keep the density constant with z. As our fiducial
model we took {vO , l, b,Ωm,Ωb, h, ns, w, σ8, σv, σm,merr} =
{369, 264◦, 48◦, 0.3, 0.041, 0.72, 0.96,−1, 0.85, 300, 0.1, 0.1}.
We do not include the SALT calibration parameters (α, β)
in the forecast, but we have checked using forecasts for the
data sets used in Sec. 3 that this does not have a significant
effect. In order to use the Fisher matrix (see Eq. (9)), we
consider the function

d = dobsL 10M0/5 (22)

where dobsL is given by Eq.(11). The expectation value vector
has each element given by

〈d〉 = 10M0/5

(

dthL + r̂ · vO
(1 + z)2

H(z)

)

, (23)

with dthL given by Eq.(12). The covariance matrix
(C) is as before, Eq.(20), but with the extra factor
(

10M0/5
)2

dL(i)dL(j). Note the reason for the slightly dif-
ferent function of the data compared to Eq. (21) is so that
the data vector does not depend on any of the parameters.

In Table 2 we present our main forecast results. As can
be seen there is a dramatic improvement in the constraints
compared to current data. Also, unlike current data, taking
into account the correlations does not have a large effect.
This is because most of the constraining power for GAIA
and LSST comes from higher redshifts, where the peculiar
velocity errors are negligible compared to the other types
of error. This can be understood as follows. From Eq. 17
we see that the error induced by peculiar coherent veloc-
ity flows drops as 1/z, and thus for high enough redshift
(z > 0.015 for a typical experiment) they become unim-
portant compared to the redshift independent measurement
errors in Eq. (18). In this limit the weakening of the dipole

0.00 0.02 0.04 0.06 0.08 0.10 0.12
z1

10

100

1000

104
number

Figure 6. A plot of the lower bound on the number of SNe needed
at or with redshift less than z for correlations in the peculiar
velocities to be important (solid line). Also plotted are the number
of SNe, with a redshift less than or equal to z, for the currently
available low redshift SNe (dotted line) and for volume weighted
GAIA (short dashed) and LSST (long dashed) surveys.

signal, that drops as 1/z in Eq.(21), is exactly compensated
by the number of supernova in a redshift slice, which in-
creases as z2, for a volume-weighted survey. The signal to
noise is therefore low and increasing at low redshift, tailing
off to a constant value at redshifts at which peculiar veloci-
ties become unimportant.

As a rough measure of whether the correlated error will
be important, at a redshift z, we look at the ratio N=σ2/Cv

where Cv is evaluated using Eq. (17) with two SNe both at
redshift z and 90◦ apart. This is effectively the ratio of the
measurement error on the SN luminosity to its covariance
with a typical SN in the dataset. Eq. (10) tells us that this is
approximately equal to the number of SNe for which the co-
variance will become important to our error estimates, and
we plot this in Fig. 6. As can be seen this simple estimate is
in agreement with the more complete analysis: current data
are effected by correlated errors much more so than GAIA
and LSST, which will be practically uneffected by correla-
tions. In other words, under the assumption of a volume
weighted redshift distribution for the SNe, GAIA and LSST
can rely on the much higher redshift data to constrain our
peculiar motion, as these are considerably less affected by
PV correlations.

6 DISCUSSION

To summarize, we have used SALT calibrated SNe data to
estimate the motion of he solar system. As seen from Ta-
ble 1 the error bars are under-estimated by about 50% if
the correlations in the peculiar velocity are not accounted
for.

We now compare our findings to previous published re-
sults. In Bonvin et al. (2006) they used 44 SALT calibrated
SNe. They only allowed {l, b, vO} to vary and all the other
parameters where fixed to standard values. They did not ac-
count for correlations in the peculiar velocities. They found
v0 = 405± 192km/s which is compatible with our result.

In Jha et al. (2007) they used 69 SNe with z ∈
{0.005, 0.025}. They also only allowed {l, b, vO} to vary.
Additionally, they used MLCS2k2 to calibrate the data,

c© 0000 RAS, MNRAS 000, 000–000



6 Gordon, Land, and Slosar

rather than the SALT method. They also did not account
for the correlations in the peculiar velocities. They evalu-
ated the motion of the local group and found {l, b, vO} =
{258± 18◦, 51± 12◦, 541± 75km/s}. Our local group veloc-
ity results, which are listed in Table 1, are compatible with
those of Jha et al. (2007) but, even when we don’t take into
account the correlations in the peculiar velocities, our error
on the magnitude of v0 is about 80% larger than that of
Jha et al. (2007) study. This is due to several factors. They
had a lower redshift limit than us: 0.005 vs. 0.0076. One of
the reasons we did not go to such a low redshift is that the
peculiar velocities (including the motion of our solar system)
become of order the Hubble expansion. This means that the
motion of our solar system has a high signal (hence the low
error bars obtained by Jha et al. (2007)) but one can no
longer use Eq. (13) to evaluate the effects of peculiar veloc-
ity on the luminosity distance. It would be possible to use
a higher order version of Eq. (13) but this was not done by
Jha et al. (2007) and so their results will have an additional
unreported systematic error due to the induced luminosity
change being calculated incorrectly. Also, the extra very low
redshift SNe that were used are dominated by SNe that are
too close together to model the correlations in the peculiar
velocity using linear theory, Eq. (15). Overall, our results
are the only ones that take into account the correlations in
peculiar velocities and account for the uncertainties in the
cosmological and calibration parameters.

We also made forecasts for the GAIA and LSST sur-
veys, assuming volume weighting for the redshift distribu-
tion. We found that the error bars will be about 4 times
smaller than those of current data, but still not competitive
with those from the CMB by a factor of ∼ 10 (assuming
that the CMB dipole is due to our local motion). Also, for
GAIA and especially LSST we found that correlations had
little effect as most of the signal came from higher redshifts
where the correlations are almost negligible for the sample
sizes considered.

In future work, we plan to test the techniques we have
used in this paper against simulated SNe surveys generated
from N-body simulations. These will test the assumptions
that go into our data modeling - most importantly the effect
of non-linearities (Haugboelle et al. 2006).

In Watkins & Feldman (2007) it was shown that the
large scale properties (bulk flow and shear (Kaiser 1991;
Jaffe & Kaiser 1995)) of the peculiar velocity field derived
from a low redshift sample of 73 SNe was consistent with
the bulk flow and shear of the velocity field derived from
the SFI, ENEAR, and SBF surveys. It would be interesting
to combine all these surveys together (with SFI replaced by
SFI++ (Springob et al. 2007)) to estimate the solar system
velocity with respect to the CMB and put robust limits on
the intrinsic CMB dipole.
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