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Abstract

The possible extensions of GR for description of fermions ona curved space, for supergravity
and for loop quantum gravity require a richer set of 16 independent variables. These variables
can be assembled in a coframe field, i.e., a local set of four linearly independent 1-forms. In this
chapter we study the gravity field models based on a coframe variable alone. We give a short
review of the coframe gravity. This model has the viable Schwarzschild solutions even being
alternative to the standard GR. Moreover, the coframe modeltreating of the gravity energy may
be preferable to the ordinary GR where the gravity energy cannot be defined at all. A principle
problem that the coframe gravity does not have any connection to a specific geometry even being
constructed from the geometrical meaningful objects. A geometrization of the coframe gravity
is an aim of this chapter. We construct a complete class of thecoframe connections which are
linear in the first order derivatives of the coframe field on ann dimensional manifolds with and
without a metric. The subclasses of the torsion-free, metric-compatible and flat connections are
derived. We also study the behavior of the geometrical structures under local transformations
of the coframe. The remarkable fact is an existence of a subclass of connections which are
invariant when the infinitesimal transformations satisfy the Maxwell-like system of equations. In
the framework of the coframe geometry construction, we propose a geometrical action for the
coframe gravity. It is similar to the Einstein-Hilbert action of GR, but the scalar curvature is
constructed from the general coframe connection. We show that this geometric Lagrangian is
equivalent to the coframe Lagrangian up to a total derivative term. Moreover there is a family
of coframe connections which Lagrangian does not include the higher order terms at all. In this
case, the equivalence is complete.
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0 Introduction. Why do we have to go beyond Riemannian ge-
ometry?

General relativity (GR) is, probably, the best of the known theories of gravity. From mathematical
and aesthetic points of view, it can be used as a standard of what a physical theory has to be. Up
to this day, the Einstein theory is in a very good agreement with the observation data. Probably
the main idea of Einstein’s GR is that the physical properties of the gravitational field are in one-
to-one correspondence with the geometry of the base manifold. The standard GR is based on a
Riemannian geometry with a unique metric tensor and a uniqueLevi-Civita connection constructed
from this tensor. Hence, the gravity field equations of GR predicts a unique (up to diffeomorphism
transformations) metric tensor and consequently a unique geometry. Therefore any physical field
except of gravity can not have an intrinsic geometrical sense in the Riemannian geometry.

After the classical works of Weyl, Cartan and others, we knowthat the Riemannian construction
is not a unique possible geometry. A most general geometric framework involves independent metric
and independent connection. A gravity field model based on this general geometry (Metric-affine
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gravity) was studied intensively, see [1]— [17] and the references given therein. Probably a main
problem of this construction is a huge number of geometricalfields which do not find their physical
partner.

In this chapter we study a much more economical constructionbased on a unique geometrical
object — coframe field. Absolute (teleparallel) frame/coframe variables (repèr, vierbein, ...) were
introduced in physics by Einstein in 1928 with an aim of a unification of gravitational and electro-
magnetic fields (for classical references, see [18]). The physical models for gravity based on the
coframe variable are well studied, see [19]— [42]. In some aspects such models are even preferable
from the standard GR. In particular, they involve a meaningful definition of the gravitational energy,
which is in a proper correspondence with the Noether procedure. Moreover some problems inside
and beyond Einstein’s gravity require a richer set of 16 independent variables of the coframe. In
the following issues of gravity, the coframe is not only a useful tool but often it cannot even be
replaced by the standard metric variable: (i) Hamiltonian formulation [43], [44]; (ii) positive energy
proofs [45]; (iii) fermions on a curved manifold [46], [47];(iv) supergravity [48]; (v) loop quantum
gravity [49].

Unfortunately, in the coframe gravity models, the proper connection between physics and the
underlying geometry is lost. In this chapter, we propose a way of geometrization of the coframe
gravity. In particular, we study which geometric structurecan be constructed from the vierbein
(frame/coframe) variables and which gravity field models can be related to this geometry.

The organization of the chapter is as follows:

In the first section, we give a brief account of the gravity field model based on the coframe field
instead of the pure metrical construction of GR. We discuss the following features: (i) The coframe
gravity is described by a 3-parametric set of models; (ii) All the coframe models are derivable from
a Yang-Mills-type Lagrangian; (iii) The coframe field equations are well defined for all values of the
parameters. Only for the pure GR case, the system id degenerated to 10 equations for 16 variables;
(iv) The energy-momentum tensor of the coframe field is well defined for all models except GR. In
the latter case the tensor nature of the energy-momentum expression is lost; (v) There is a subset
of viable fields with a unique spherical symmetric solution,which corresponds to Schwarzschild
metric; (vi) The same subset is derived by the requirement ofthe free field limit approximation. All
these positive properties make the coframe gravity a relevant subject of investigation.

In section 2, we construct a geometrical structure based on acoframe variable as unique building
block. In an addition to the coframe volume element and metric, we present a most general coframe
connection. The Levi-Civita and flat connections are special cases of it. The torsion and nonmetricity
tensors of the general coframe connection are calculated. We identify the subclasses of symmetric
(torsion-free) connections and of metric-compatible connections. The unique symmetric metric-
compatible connection is of Levi-Civita. We study the transformations of the coframe field and
identify a subclass of connections which are invariant under restricted coframe transformations.
Quite remarkable that restriction conditions are approximated by a Maxwell-type system.

In section 3, we are looking for a geometric representation of the gravity coframe model. The
main result is that the free-parametric gravity coframe Lagrangian can be replaced by a standard
Einstein-Hilbert Lagrangian, when the curvature scalar iscalculated on a general coframe connec-
tion. The standard GR Lagrangian contains a second order derivative term which appears in the form
of the total derivative. This term does not influence the fieldequation, but it cannot be consistently
removed. We show that there is a set of coframe connections which Einstein-Hilbert Lagrangian
does not involve the second order derivative term at all.

In the last section, some proposals of possible developments of a geometrical coframe construc-
tion and its applications to gravity are presented.
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1 Coframe gravity

Let us give a brief account of gravity field models based on a coframe field. We refer to such models
ascoframe gravity. This is instead of the Einsteinianmetric gravitybased on a metric tensor field.
We will use here mostly the notations accepted in [33].

1.1 Coframe Lagrangian

Consider a smooth, non-degenerated coframe field{ϑα, α = 0, 1, 2, 3} defined on a4D smooth
differential manifoldM . The 1-formsϑα are declared to be pseudo-orthonormal. Thus a metric on
M is defined by

g = ηαβϑ
α ⊗ ϑβ , ηαβ = (−1, 1, 1, 1) . (1.1)

So, the coframe fieldϑα is considered as a basic dynamical variable while the metricg is treated as
a secondary structure.

The coframe field is defined only up toglobal pseudo-rotations, i.e. SO(1, 3) transformations.
Consequently, the truly dynamical variable is an equivalence class of coframes[ϑα], while the global
pseudo-rotations produce an equivalence relation on this class. Hence, in addition to the invariance
under the diffeomorphic transformations of the manifoldM , the basic geometric structure has to be
global (rigid)SO(1, 3) invariant.

Gravity is described by differential invariants of the coframe structure. There is an important
distinction between the diffeomorphic invariants of the metric and of the coframe structures. Since
the metric invariants of the first order are trivial, the metric structure admits diffeomorphic invariants
only of the second order or greater. A unique invariant of thesecond order is the scalar curvature.
This expression is well known to play the key role of an integrand in the Einstein-Hilbert action.
The coframe structure admits diffeomorphic and rigidSO(1, 3) invariants even of the first order. A
simple example is the expressioneα⌋dϑα, see Appendix for notations and basic definitions. The
operators, which are diffeomorphic invariants and global covariants, can contribute to a general
coframe field equation. A rich class of such equations is constructed in [27]. A requirement of
derivability of the field equations from a Lagrangian strictly restricts the variety of possible options.

We restrict the consideration to odd, quadratic (in the firstorder derivatives of the coframe field
ϑα), diffeomorphic, and globalSO(1, 3) invariant Lagrangians. A general Lagrangian of such a type
is represented by a linear combination of three 4-forms which are referred to as the Weitzenböck
invariants. Consider the exterior differentials of the basis 1-formsdϑα and introduce the coefficients
of their expansion in the basis of even 2-formsϑαβ

dϑα = ϑαi,jdx
i ∧ dxj = 1

2
Cα

βγϑ
βγ . (1.2)

We use here the abbreviationϑαβ··· = ϑα ∧ ϑβ ∧ · · · . By definition, the coefficientsCα
βγ are

antisymmetric,Cα
βγ = −Cα

γβ. Their explicit expression can be given by the differential form
notations (see Appendix)

Cα
βγ = eγ⌋(eβ⌋dϑα) . (1.3)

The symmetric form of a general second order coframe Lagrangian is given by [25]

(cof)L =
1

2ℓ2

3
∑

i=1

ρi
(i)L , (1.4)
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whereℓ denotes the Planck length constant, whileρi are dimensionless parameters. The partial
Lagrangian expressions are

(1)L = dϑα ∧ ∗dϑα =
1

2
CαβγC

αβγ ∗ 1 , (1.5)

(2)L = (dϑα ∧ ϑα) ∧ ∗
(

dϑβ ∧ ϑβ
)

=
1

2
Cαβγ

(

Cαβγ + Cβγα + Cγαβ
)

∗ 1 , (1.6)

(3)L = (dϑα ∧ ϑβ) ∧ ∗ (dϑβ ∧ ϑα) =
1

2

(

CαβγC
αβγ − 2Cα

αγCβ
βγ
)

∗ 1 . (1.7)

The 1-formsϑα are assumed to carry the dimension of length, while the coefficientsρi are dimen-
sionless. Hence the total Lagrangian(cof)L is dimensionless. In order to simplify the formulas
below we will use the LagrangianL = ℓ2(cof)L which dimension is length square. In other worlds
the geometrized units system withG = c = ~ = 1 is applied.

Every term of the Lagrangian (1.4) is independent of a specific choice of a coordinate system
and invariant under a global (rigid)SO(1, 3) transformation of the coframe field. Thus, different
choices of the free parametersρi yield different rigidSO(1, 3) and diffeomorphic invariant classical
field models. Some of them are known to be applicable for description of gravity.

Let us rewrite the coframe Lagrangian in a compact form

(cof)L =
1

4
CαβγCα′β′γ′λαβγα

′β′γ′ ∗ 1 , (1.8)

where the constant symbols

λαβγα
′β′γ′

= (ρ1 + ρ2 + ρ3)η
αα′

ηββ
′

ηγγ
′

+ ρ2(η
αβ′

ηβγ
′

ηγα
′

+ ηαγ
′

ηβα
′

ηγβ
′

)

−2ρ3ηαγηα
′γ′

ηββ
′

(1.9)

are introduced. It can be checked, by straightforward calculation, that theseλ-symbols are invariant
under a transposition of the triplets of indices:

λαβγα
′β′γ′

= λα
′β′γ′αβγ . (1.10)

We also introduce an abbreviated notation

Fαβγ = λαβγα
′β′γ′

Cα′β′γ′ . (1.11)

The total Lagrangian (1.4) reads now as

(cof)L =
1

4
CαβγF

αβγ ∗ 1 . (1.12)

This form of the Lagrangian will be used in sequel for the variation procedure. The Lagrangian
(1.12) can also be rewritten in a component free notations. Define one-indexed 2-forms: afield
strength form

Cα :=
1

2
Cαβγϑβγ = dϑα , (1.13)

and aconjugate field strength formFα := 1
2F

αβγϑβγ

Fα = (ρ1 + ρ3)Cα + ρ2e
α⌋(ϑµ ∧ Cµ)− ρ3ϑα ∧ (eµ⌋Cµ) . (1.14)
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Another form ofFα can be given via the irreducible (under the Lorentz group) decomposition of
the 2-formCα (see [5], [4]). Write

Cα = (1)Cα + (2)Cα + (3)Cα, (1.15)

where

(2)Cα =
1

3
ϑα ∧ (eµ⌋Cµ) , (3)Cα =

1

3
eα⌋(ϑµ ∧ Cµ) , (1.16)

while (1)Cα is the remaining part. Substitute (1.16) into (1.14) to obtain

Fα = (ρ1 + ρ3)
(1)Cα + (ρ1 − 2ρ3)

(2)Cα + (ρ1 + 3ρ2 + ρ3)
(3)Cα. (1.17)

The coefficients in (1.17) coincide with those calculated in[25].
The 2-formsCα andFα do not depend on a choice of a coordinate system. They change as vectors
by globalSO(1, 3) transformations of the coframe. Using (1.13) the coframe Lagrangian can be
rewritten as

(cof)L =
1

2
Cα ∧ ∗Fα . (1.18)

Observe that the Lagrangian (1.18) is of the same form as the standard electromagnetic Lagrangian
(cof)L = 1

2F ∧ ∗F. Observe, however, that the coframe Lagrangian involves thevector valued 2-
forms of the field strength, while the electromagnetic Lagrangian is constructed of the the scalar
valued 2-forms.

1.2 Variation of the Lagrangian

The Lagrangian (1.18) depends on the coframe fieldϑa and on its first order derivatives only. Thus
the first order variation formalism guarantee the corresponding Euler-Lagrange equation to be at
most of the second order. Consider the variation of the coframe Lagrangian (1.12) with respect to
small independent variations of the 1-formsϑα. Theλ-symbols (1.9) are constants and obey the
symmetry property (1.10). Thus

CαβγδF
αβγ = Cαβγλ

αβγα′β′γ′

δCα′β′γ′ = δCαβγF
αβγ . (1.19)

Consequently the variation of the Lagrangian (1.12) takes the form

δL =
1

2
δCαβγF

αβγ ∗ 1− L ∗ δ(∗1) . (1.20)

The variation of the volume element is

δ(∗1) = −δ(ϑ0123) = −δϑ0 ∧ ϑ123 − · · · = −δϑ0 ∧ ∗ϑ0 − · · · = δϑα ∧ ∗ϑα .

Thus the second term of (1.20) is given by

L ∗ δ(∗1) = (δϑα ∧ ∗ϑα) ∗ L = −δϑα ∧ (eα⌋L) . (1.21)

As for the variation of theC-coefficients, we calculate them by equating the variationsof the two
sides of the equation (1.2)

δdϑα =
1

2
δCαµνϑ

µν + Cαµνδϑ
µ ∧ ϑν . (1.22)
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Use the formulas (A.12) and (A.13) to derive

δdϑα ∧ ∗ϑβγ =
1

2
δCαµνϑ

µν ∧ ∗ϑβγ + Cαµνδϑ
µ ∧ ϑν ∧ ∗ϑβγ

= −1

2
δCαµνϑ

µ ∧ ∗(eν⌋ϑβγ)− Cαµνδϑ
µ ∧ ∗(eν⌋ϑβγ)

= δCαβγ ∗ 1− 2δϑµ ∧ Cαµ[β ∗ ϑγ] .

Therefore
δCαβγ ∗ 1 = δ(dϑα) ∧ ∗ϑβγ + 2δϑµ ∧ Cαµ[β ∗ ϑγ] . (1.23)

After substitution of (1.21–1.23) into (1.20) the variation of the Lagrangian takes the form

δL =
1

2
Fαβγ

(

δ(dϑα) ∧ ∗ϑβγ + 2δϑµ ∧ Cαµ[β ∗ ϑγ]
)

+ δϑµ ∧ (eµ⌋L) .

Extract the total derivatives to obtain

δL =
1

2
δϑµ ∧

(

d(∗Fµβγϑβγ) + 2FαβγCαµ[β ∗ ϑγ] + 2eµ⌋L
)

+
1

2
d
(

δϑα ∧ ∗Fαβγϑβγ

)

.(1.24)

The variation relation (1.24) plays a basic role in derivation of the field equation and of the conserved
current. We rewrite it in a compact form by using the 2-forms (1.13) and (1.14). The terms of the
formF · C can be rewritten as

FαβγCαµ[β ∗ ϑγ] = (Fαβγ − Fαβγ)Cαµ[β ∗ ϑγ] = Cαµβ ∗ (eβ⌋Fα) = −(eµ⌋Cα) ∧ ∗Fα .

Hence, (1.24) takes the form

δL = δϑµ ∧
(

d(∗Fµ)− (eµ⌋Cα) ∧ ∗Fα + eµ⌋L
)

+ d(δϑµ ∧ Fµ) . (1.25)

Collect now the quadratic terms into a differential 3-form

Tµ := (eµ⌋Cα) ∧ ∗Fα − eµ⌋L . (1.26)

Consequently, the variational relation (1.24) results in acompact form

δL = δϑµ ∧
(

d ∗ Fµ − Tµ
)

+ d
(

δϑµ ∧ Fµ

)

. (1.27)

1.3 The coframe field equations

We are ready now to write down the field equations. Consider independent free variations of a
coframe field vanishing at infinity (or at the boundary of the manifold∂M ). The variational relation
(1.27) yieldsthe coframe field equation

d ∗ Fµ = T µ . (1.28)

Observe that the structure of coframe field equation is formally similar to the structure of the stan-
dard electromagnetic field equationd ∗ F = J . Namely, in both equations, the left hand sides are
the exterior derivative of the dual field strength while the right hand sides are odd 3-forms. Thus the
3-formsT µ serves as a source for the field strengthFµ, as well as the 3-form of electromagnetic
currentJ is a source for the electromagnetic fieldF . There are, however, some important distinc-
tions: (i) The coframe field currentTµ is a vector-valued 3-form while the electromagnetic current
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J is a scalar-valued 3-form. (ii) The field equation (1.28) is nonlinear. (iii) The electromagnetic
currentJ depends on an exterior matter field, while the coframe current T µ is interior (depends on
the coframe itself).

The exterior derivation of the both sides of field equation (1.28) yields the conservation law

dT µ = 0. (1.29)

Note, that this equation obeys all the symmetries of the coframe Lagrangian. It is diffeomorphism
invariant and globalSO(1, 3) covariant. Thus we obtain a conserved total 3-form (1.26) which is
constructed from the first order derivatives of the field variables (coframe). It is local and covariant.
The 3-formTµ is our candidate for the coframe energy-momentum current.

1.4 Conserved current and Noether charge

The currentTµ is obtained directly, i.e., by separation of the terms in thefield equation. In order to
identify the proper nature of this conserved 3-form we have to answer the question:What symmetry
this conserved current can be associated with?

Return to the variational relation (1.27). On shell, for thefields satisfying the field equations
(1.28), it takes the form

δL = d(δϑα ∧ ∗Fα) . (1.30)

Consider the variations of the coframe field produced by the Lie derivative taken relative to a smooth
vector fieldX , i.e.,

δϑα = LXϑα = d(X⌋ϑα) +X⌋dϑα . (1.31)

The Lagrangian (1.12) is a diffeomorphic invariant, hence its variation is produced by the Lie deriva-
tive taken relative to the same vector fieldX , i.e.,

δL = LXL = d(X⌋L) . (1.32)

Thus the relation (1.30) takes a form of a conservation lawdΘ(X) for the Noether 3-form

Θ(X) =
(

d(X⌋ϑα) +X⌋Cα
)

∧ ∗Fα −X⌋L . (1.33)

This quantity includes the derivatives of an arbitrary vector fieldX . Such a non-algebraic depen-
dence of the conserved current is an obstacle for definition of an energy-momentum tensor. This
problem is solved merely by using the canonical form of the current. Let us takeX = eα. The first
term of (1.33) vanishes identically. Thus

Θ(eµ) = (eµ⌋Cα) ∧ ∗Fα − eµ⌋L . (1.34)

Observe that the right hand side of the equation (1.34) is exactly the same expression as the source
term of the field equation (1.28):

Θ(eµ) = Tµ . (1.35)

Thus the conserved currentTµ defined in (1.26) is associated with the diffeomorphism invariance
of the Lagrangian. Consequently the vector-valued 3-form (1.26) represents theenergy-momentum
current of the coframe field.

Let us look for an additional information incorporated in the conserved current (1.33). Extract
the total derivative to obtain

Θ(X) = d
(

(X⌋ϑα) ∗ Fα

)

− (X⌋ϑα)(d ∗ Fα − Tα) . (1.36)
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Thus, up to the field equation (1.28), the currentT (X) represents a total derivative of a certain 2-
formΘ(X) = dQ(X) . This result is a special case of a general proposition due toWald [54] for a
diffeomorphic invariant Lagrangians. The 2-form

Q(X) = (X⌋ϑα) ∗ Fα . (1.37)

can be referred to as theNoether charge for the coframe field. ConsiderX = eα and denote
Qα := Q(eα). From (1.37) we obtain that this canonical Noether charge ofthe coframe field
coincides with the dual of the conjugate strength

Qα = Q(eα) = ∗Fα . (1.38)

In this way, the 2-formFα, which was used above only as a technical device for expressing the
equations in a compact form, obtained now a meaningful description. Note, that the Noether charge
plays an important role in Wald’s treatment of the black holeentropy [54].

1.5 Energy-momentum tensor

In this section we construct an expressions for the energy-momentum tensor for the coframe field.
Let us first introduce the notion of the energy-momentum tensor via the differential-form formalism.
We are looking for a second rank tensor field of a type(0, 2). Such a tensor can always be treated
as a bilinear mapT : X (M) ×X (M) → F(M), whereF(M) is the algebra ofC∞-functions on
M whileX (M) is theF(M)-module of vector fields onM . The unique way to construct a scalar
from a 3-form and a vector is is to take the Hodge dual of the 3-form and to contract the result by
the vector. Consequently, we define the energy-momentum tensor as

T (X,Y ) := Y ⌋ ∗ T (X) . (1.39)

Observe that this quantity is a tensor if and only if the 3-form currentT depends linearly (algebraic)
on the vector fieldX . Certainly,T (X,Y ) is not symmetric in general. The antisymmetric part of
the energy-momentum tensor is known from the Poincaré gauge theory [1] to represent the spinorial
current of the field. The canonical form of the energy-momentumTαβ := T (eα, eβ) tensor is

Tαβ = eβ⌋ ∗ Tα . (1.40)

Another useful form of this tensor can be obtained from (1.40) by applying the rule (A.13)

Tαβ = ∗(Tα ∧ ϑβ) . (1.41)

The familiar procedure of rising the indices by the Lorentz metric ηαβ produces two tensors of a
type(1, 1)

Tα
β = ∗(Tα ∧ ϑβ), and Tα

β = ∗(T α ∧ ϑβ) , (1.42)

which are different, in general. By applying the rule (A.13)the first relation of (1.42) is converted
into

Tα = Tα
β ∗ ϑβ . (1.43)

Thus, the components of the energy-momentum tensor are regarded as the coefficients of the current
Tα in the dual basis∗ϑα of the vector spaceΩ3 of odd 3-forms.

In order to show that (1.43) conforms with the intuitive notion of the energy-momentum tensor
let us restrict to a flat manifold and represent the 3-form conservation law as a tensorial expression.
Take a closed coframedϑα = 0, thusd ∗ ϑβ = 0. From (1.43) we derive

dTα = dTα
β ∧ ∗ϑβ = −Tαβ

,β ∗ 1 .
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Hence, in this approximation, the differential-form conservation lawdTα = 0 is equivalent to the
tensorial conservation lawTα

β
,β = 0.

Apply now the definition (1.40) to the conserved current (1.26) for the coframe field. The energy-
momentum tensorTµν = eν⌋ ∗ Tµ is derived in the form

Tµν = eν⌋ ∗
(

(eµ⌋Cα) ∧ ∗Fα − 1

2
eµ⌋(Cα ∧ ∗Fα)

)

. (1.44)

Using (A.13) we rewrite the first term in (1.44) as

eν⌋ ∗
(

(eµ⌋Cα) ∧ ∗Fα
)

= − ∗
(

(eµ⌋Cα) ∧ ∗(eν⌋Fα)
)

.

As for the second term in (1.44) it takes the form

−1

2
eν⌋ ∗

(

eµ⌋(Cα ∧ ∗Fα)
)

=
1

2
ηµν ∗ (Cα ∧ ∗Fα) .

Consequently the energy-momentum tensor for the coframe field is

Tµν = − ∗
(

(eµ⌋Cα) ∧ ∗(eν⌋Fα)
)

+
1

2
ηµν ∗ (Cα ∧ ∗Fα) . (1.45)

Observe that this expression is formally similar to the known expression for the energy-momentum
tensor of the Maxwell electromagnetic field:

(em)Tµν = − ∗
(

(eµ⌋F ) ∧ ∗(eν⌋F )
)

+
1

2
ηµν ∗ (F ∧ ∗F ) . (1.46)

The form (1.46) is no more than an expression of the electromagnetic energy-momentum tensor in
arbitrary frame. In a specific coordinate chart{xµ} it is enough to take the coordinate basis vectors
ea = ∂α and considerTαβ := (e)T (∂α, ∂β) to obtain the familiar expression

(em)Tαβ = −FαµFβ
µ +

1

4
ηαβFµνF

µν . (1.47)

The electromagnetic energy-momentum tensor is obviously traceless. The same property holds also
for the coframe field tensor. In fact, the coframe energy-momentum tensor defined by (1.45) is
traceless for all models described by the Lagrangian (1.4),i.e., for all values of the parametersρi.
Indeed, compute the traceT µ

µ = Tµνη
µν of (1.45):

(cof)T µ
µ = − ∗

(

(eµ⌋Cα) ∧ ∗(eµ⌋Fα)
)

+ 2 ∗ (Cα ∧ ∗Fα)

= − ∗
(

ϑµ ∧ (eµ⌋Cα) ∧ ∗Fα
)

+ 2 ∗ (Cα ∧ ∗Fα) = 0 .

It is well known that the traceless of the energy-momentum tensor is associated with the scale in-
variance of the Lagrangian. The rigid (λ is a constant) scale transformationxi → λxi, is considered
acting on a matter field asφ→ λdφ, whered is the dimension of the field. The transformation does
not act, however, on the components of the metric tensor and on the frame (coframe) components.
It is convenient to shift the change on the metric and on the frame (coframe) components, i.e., to
consider

gij → λ2gij , ϑαi → λϑαi , andeα
i → λ−1ϑα

i (1.48)
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with no change of coordinates. In the coordinate free formalism the difference between two ap-
proaches is neglected and the transformation is

g → λ2g , ϑα → λϑα , and eα → λ−1eα . (1.49)

The transformation law of the coframe Lagrangian is simple to obtain from the component-wise
form (1.8). Under the transformation (1.49) the volume element changes as∗1 → λ4 ∗ 1. As for
theC-coefficients, they transform due to (1.3) asCa

bc → λ−1Ca
bc. Consequently, by (1.5), the

transformation law of the Lagrangian 4-form isL → λ2L, which is the same as for the Hilbert-
Einstein LagrangianLHE = R

√−gd4x → λ2LHE . After rescaling the Planck length the scale
invariance is reinstated. Hence, for the pure coframe field model the energy-momentum tensor have
to be traceless in accordance with the proposition above.

1.6 The field equation for a general system

The coframe field equation have been derived for a pure coframe field. Consider now a general
minimally coupled system of a coframe fieldϑα and a matter fieldψ. The matter field can be
a differential form of an arbitrary degree and can carry arbitrary number of exterior and interior
indices. Take the total Lagrangian of the system to be of the form (ℓ = Planck length)

L =
1

ℓ2
(cof)L(ϑα, dϑα) + (mat)L(ϑα, ψ, dψ) , (1.50)

where the coframe Lagrangian(cof)L, defined by (1.4), is of dimension length square. The matter
Lagrangian(mat)L is dimensionless.

The minimal coupling means here the absence of coframe derivatives in the matter Lagrangian.
Take the variation of (1.50) relative to the coframe fieldϑα to obtain

δL =
1

ℓ2
δϑα ∧

(

d ∗ Fα − (cof)Tα − ℓ2(mat)Tα
)

, (1.51)

where the 3-form of coframe current is defined by (1.28). The 3-form of matter current is defined
via the variation derivative of the matter Lagrangian takenrelative to the coframe fieldϑα:

(mat)Tα := − δ

δϑα
(mat)L . (1.52)

Introduce the total current of the system(tot)Tα = (cof)Tα + ℓ2(mat)Tα , which is of dimension
length (mass). Consequently, the field equation for the general system (1.50) takes the form

d ∗ Fα = (tot)Tα . (1.53)

Using the energy-momentum tensor (1.43) this equation can be rewritten in a tensorial form

eβ⌋ ∗ d ∗ Fα = (tot)Tαβ , (1.54)

or equivalently
ϑβ ∧ d ∗ Fα = (tot)Tαβ ∗ 1 . (1.55)

The conservation law for the total currentdTα = 0 is a straightforward consequence of the field
equation (1.53). The form (1.53) of the field equation looks like the Maxwell field equation for
the electromagnetic fieldd ∗ F = J . Observe, however, an important difference. The source term
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in the right hand side of the electromagnetic field equation depends only on external fields. In the
absence of the external sourcesJ = 0, the electromagnetic strength∗F is a closed form. As a
consequence, its cohomology class interpreted as a charge of the source. The electromagnetic field
itself is uncharged.

As for the coframe field strengthFα its source depends on the coframe and of its first order
derivatives. Consequently, the 2-form∗Fα is not closed even in absence of the external sources.
Hence the gravitational field is massive (charged) itself.

On the other hand the tensorial form (1.54) of the coframe field equation is similar to the Einstein
field equation for the metric tensorGαβ = 8π(mat)Tαβ . Indeed, the left hand side in both equations
are pure geometric quantities. Again, the source terms in the field equations are different. The source
of the Einstein gravity is the energy-momentum tensor only of the matter fields. The conservation of
this tensor is a consequence of the field equation. Thus even if some meaningful conserved energy-
momentum current for the metric field existed it would have been conserved regardless of the matter
field current. Consequently, any redistribution of the energy-momentum current between the matter
and gravitational fields is forbidden in the framework of thetraditional Einstein gravity.

As for the coframe field equation, the total energy-momentumcurrent plays a role of the source
of the field. Consequently the coframe field is completely “self-interacted” - the energy-momentum
current of the coframe field produces an additional field. Theconserved current of the coframe-
matter system is the total energy-momentum current, not only the matter current. Thus in the frame-
work of general coframe construction the redistribution ofthe energy-momentum current between
the matter field and the coframe field is possible, in principle.

1.7 Spherically symmetric solution

Let us look for a static spherically symmetric solution to the field equation (1.28). We will use the
isotropic coordinates{xî , î = 1, 2, 3} with the isotropic radiusρ. Denote

s = ρ2 = δîĵx
îxĵ = x2 + y2 + z2 . (1.56)

Recall that we identify the gravity variable with the coframe field defined up to an infinitesimal
Lorentz transformation. It is equivalent to the metric field. So it is enough to look for a coframe
solution of a “diagonal” form [29]

ϑ0 = f(s) dx0 , ϑî = g(s) dxî . (1.57)

Although this ansatz is not the most general one, it is enoughbecause (1.57) corresponds to a most
general static spherical symmetric metric

ds2 = e2f(s)dt2 − e2g(s)(dx2 + dy2 + dz2) . (1.58)

Substitution of (1.57) into the field equation (1.28) we obtain an over-determined system of three
second order ODE for two independent variablesf(s) andg(s)



















ρ1

(

2f ′′s+ 3f ′ + 2f ′g′s− 2(g′)2s+ (f ′)2s
)

+ 2ρ3

(

2g′′s+ 3g′ + (g′)2s
)

= 0

ρ1

(

2g′′ + 2f ′g′ − 2(f ′)2 − 2(g′)2
)

+ 2ρ3

(

f ′′ + g′′ + (f ′)2 − 2f ′g′ − (g′)2
)

= 0

ρ1

(

4g′′s+ 4g′ + 4f ′g′s− 2(f ′)2s
)

+ 2ρ3

(

2f ′′s+ 2f ′ + 2g′′s+ 2g′ + 2(f ′)2s
)

= 0.

(1.59)
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This system has a solutions with the Newtonian behavior on infinity f ∼ 1 − C/ρ only if the
parameterρ1 is equal to zero. In this case, the system (1.59) has a unique solution

f = ln
1− 1

cρ

1 + 1
cρ

, g = 2 ln

(

1 +
1

cρ

)

. (1.60)

By taking the parameter of integration to be inversely proportional to the mass of the central body
c = 2

m
we obtain the coframe field in the form

ϑ0 =
1− m

2ρ

1 + m
2ρ

dt, ϑi =

(

1 +
m

2ρ

)2

dxi, i = 1, 2, 3 . (1.61)

This coframe field yields the Schwarzschild metric in isotropic coordinates

ds2 =

(

1− m
2ρ

1 + m
2ρ

)2

dt2 −
(

1 +
m

2ρ

)4

(dx2 + dy2 + dz2) . (1.62)

Note that the values of the parametersρ2, ρ3 are not determined via the “diagonal” ansatz. Thus the
Schwarzschild metric is a solution for a family of the coframe field equations which defined by the
parameters:

ρ1 = 0 , ρ2, ρ3 − arbitrary. (1.63)

The ordinary GR is extracted from this family by requiring ofthe local SO(1, 3) invariance, which
is realized by an additional restriction of the parameters:

ρ1 = 0 , 2ρ2 + ρ3 = 0 . (1.64)

1.8 Weak field approximation

Linear approximation of coframe models was usual applied for study the deviation from the standard
GR, and for comparison with the observation data, see [20], [21], [23]. We will use this approach
to study the meaning of the conditionρ1 = 0, see [39]. Recall that this condition guarantees the
existence of viable solutions.

To study the approximate solutions to (1.37), we start with atrivial exact solution, aholonomic
coframe, for which

dϑa = 0 . (1.65)

Consequently,Fa = Ca = 0, so both sides of Eq. (1.37) vanish. By Poincaré’s lemma, the solution
of (1.65) can be locally expressed asϑa = dx̃a(x), wherex̃a(x) is a set of four smooth functions
defined in a some neighborhoodU of a pointx ∈ M. The functions̃xa(x), being treated as the
components of a coordinate mapx̃a : U → R

4, generate a local coordinate system onU . The metric
tensor reduces, in this coordinate chart, to the flat Minkowski metric g = ηabdx̃

a ⊗ dx̃b. Thus the
holonomic coframe plays, in the coframe background, the same role as the Mankowski metric in
the (pseudo-)Riemannian geometry. Moreover, a manifold endowed with a (pseudo-)orthonormal
holonomic coframe is flat. The weak perturbations of the basic solutionϑa = dxa are

ϑa = dxa + ha = (δab + hab) dx
b . (1.66)

The indices inhab can be lowered and raised by the Mankowski metric

hab := ηamh
m

b , hab := ηbmham . (1.67)
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The first operation is exact (covariant to all orders of approximations), while the second is covariant
only to the first order, whengab ≈ ηab. The symmetric and the antisymmetric combinations of the
perturbations

θab := h(ab) =
1

2
(hab + hba), and wab := h[ab] =

1

2
(hab − hba) . (1.68)

as well as the traceθ := hmm = θmm are covariant to the first order. The components of the
metric tensor, in the linear approximation, involve only the symmetric combination of the coframe
perturbations

gab = ηab + 2θab . (1.69)

When the decomposition
hab = θab + wab (1.70)

is applied, the field strength is splitted to a sum of two independent strengths — one defined by the
symmetric fieldθab and the second one defined by the antisymmetric fieldwab

Fa(θmn, wmn) =
(sym)Fa(θmn) +

(ant)Fa(wmn) , (1.71)

where
(sym)Fa = −

[

(ρ1 + ρ3)θa[b,c] + ρ3ηa[bθc]m
,m − ρ3ηa[bθ,c]

]

ϑb ∧ ϑc , (1.72)

and
(ant)Fa = −

[

(ρ1 + ρ3)wa[b,c] + 3ρ2w[ab,c] − ρ3ηa[bwc]m
,m
]

ϑb ∧ ϑc . (1.73)

Hence, for arbitrary values of the parametersρi, the field strengths of the fieldsθab andwab are
independent.

The linearized field equation takes the form

(ρ1 + ρ3)
(

� θab − θam,b
,m
)

+ ρ3
(

− ηab� θ − θmb
,m

,a + θ,a,b + ηabθmn
,m,n

)

+

(ρ1 + 2ρ2 + ρ3)
(

�wab − wam,b
,m
)

+ (2ρ2 + ρ3)wbm,a
,m = 0 . (1.74)

Proposition 1: For the caseρ1 = 0, the linearized coframe field equation (1.74), splits, in arbitrary
coordinates, into two independent systems

(sym)E(ab)(θmn) = � θab = 0 , and (ant)E[ab](wmn) = �wab = 0 .

If ρ1 6= 0, Eq.(1.74) does not split in any coordinate system.
Consequently, forρ1 = 0 and for generic values of the parametersρ2, ρ3, the field equation of

the coframe field is splitted to two independent field equations for two independent field variables.
This splitting emerges also for the Lagrangian and the energy-momentum current.

Proposition 2: For ρ1 = 0, the Lagrangian of the coframe field is reduced, up to a total derivative
term, to the sum of two independent Lagrangians

L(θab, wab) =
(sym)L(θab) + (ant)L(wab) . (1.75)

Moreover, the coframe energy-momentum current is reduced,on shell, in the first order approxima-
tion, as

Ta(θmn, wmn) =
(sym)Ta(θmn) +

(ant)Ta(wmn) , (1.76)

up to a total derivative.
The result of our analysis is as following: In the linear approximation the field variable is splitted

to a sum of two independent fields. These fields do not interactonly in the caseρ1 = 0. Remarkable
that this condition coincides with the viable condition (1.63), which is necessary for Schwarzschild
metric.
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2 Coframe geometry

The coframe gravity represented above is not related to a certain specific geometric structure. In
this section we are looking for a geometry that can be constructed from the coframe field. It is well
known that, on a Riemannian manifold there exists a unique linear connection of Levi-Civita [50].
Already this statement indicates that when we want to deal with some other connection, for instance
with the flat one, we have to use some other non-Riemannian geometric structure. In this section, we
define a geometry based on a coframe field. It is instead of the of the standard Riemannian geometry
based on a metric tensor field.

2.1 Coframe manifold. Definitions and notations

Our construction will repeat the main properties of the Riemannian structure. Let us start with the
basic definitions.

Differential manifold. Let M be a smoothn + 1 dimensional differentiable manifold, which is
locally (in an open setU ⊂ M ) parametrized by a coordinate chart{xi; i = 0, 1, . . . n}. The set
of n+ 1 differentialsdxi provides a coordinate basis for the module of the differential forms onU .
Similarly, the set ofn+1 vector fields∂i = ∂/∂xi forms the coordinate basis for the module of the
vector fields onU . Arbitrary smooth transformations of the coordinatesxi → yi(xj) are admissible.
Under these transformations, the elements of the coordinate bases transform by the tensorial law

dxi → dyi =
∂yi

∂xj
dxj ,

∂

∂xi
→ ∂

∂yi
=
∂xj

∂yi
∂

∂xj
. (2.1)

The Jacobian matrix∂yi/∂xj is assumed to be smooth and invertible. The coordinate basesdxi

and∂i = ∂/∂xi are referred to asholonomic bases. They satisfy the relationsd(dxi) = 0 and
[∂i, ∂j ] = 0.

For a compact representation of geometric quantities, it isuseful to have an alternative descrip-
tion via nonholonomic bases. Denote byθa a generic nonholonomic basis of the module of the
1-forms onU . Its dualfa is a basis of of the module of the vector fields onU . In general,dθa 6= 0
and [fa, fb] 6= 0. Relative to the coordinate bases, the elements of the nonholonomic bases are
locally expressed as

θa = θai dx
i , fa = fa

i ∂i . (2.2)

Here the matricesθai andfai are the inverse to each-other, i.e.,

θai fa
j = δji , θai fb

i = δab . (2.3)

Arbitrary smooth pointwise transformations of the nonholonomic bases

θa → Aa
b(x)θ

b , fa → Aa
b(x)fb . (2.4)

are admissible. HereAa
b denotes, as usual, the matrix inverse toAa

b.
Although the basis indices change in the same rangea, b, · · · = {0, 1, . . . , n} they are distin-

guished from the coordinate indicesi, j, · · · . In particular, the contraction of the indices in the
quantitiesθai or fai is forbidden since the result of such an action is not a scalar. The base trans-
formations (2.4) are similar to the coordinate transformations (2.1). Note that the basisθa can be
changed to an arbitrary other basis, for instance to the coordinate one. Indeed, the formulas (2.2) can
be treated as certain transformations of the bases. Consequently, θa cannot be given any intrinsic
geometrical sense. In particular, it cannot be used as a model of a physical field.
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Coframe field. Let the manifoldM be endowed with a smooth nondegenerate coframe fieldϑα. It
comes together with its dual — the frame fieldeα. In an arbitrary chart of local coordinates{xi},
these fields are expressed as

ϑα = ϑαidx
i , eα = eα

i∂i , (2.5)

i.e., by two nondegenerate matricesϑαi andeαi which are the inverse to each-other. In other words,
we are considering a set ofn2 independent smooth functions onM . Also the coframe indices change
in the same rangeα, β, . . . = 0, . . . , n as the coordinate indicesi, j, . . . and the basis indicesa, b, . . ..
They all however have to be strictly distinguished. In particular, the indices inϑαi or eαi cannot be
contracted.

Coframe transformation. For most physical models based on the coframe field, this fieldis defined
only up to global transformations. It is natural to considera wider class of coframe fields related by
local pointwise transformations

ϑα → Lα
β(x)ϑ

β , eα → Lα
β(x)eβ . (2.6)

HereLα
β(x) andLα

β(x) are inverse to each-other at arbitrary pointx. Denote the group of matrices
Lα

β(x) byG. Note two specially important cases: (i)G is a group of global transformations with a
constant matrixLα

β ; (ii) G is a group of arbitrary local transformations such that the entries ofLα
β

are arbitrary functions of a point. In the latter case, the difference between the coframe fieldϑα and
the reference basisθa is completely removed and the coframe structure is trivialized.

Consequently we involve an additional element of the coframe structure —the coframe trans-
formations group

G =
{

Lα
β(x) ∈ GL(n+ 1,R); for everyx ∈M

}

. (2.7)

On this stage, we only require the matricesLα
β(x) to be invertible at an arbitrary pointx ∈M . The

successive specializations of the coframe transformationmatrix will be involved in sequel.

Coframe field volume element.We assume the coframe field to be non-degenerate at an arbitrary
pointx ∈M . Consequently, a specialn+ 1-form, the coframe field volume element, is defined and
nonzero. Define

vol(ϑα) =
1

n!
εαo···αn

ϑαo ∧ · · · ∧ ϑαn , (2.8)

whereεαo···αn
is the Levi-Civita permutation symbol normalized byε01···n = 1. Treating the

coframe volume element as one of the basic elements of the coframe geometric structure, we apply
the following invariance condition.

Volume element invariance postulate:Volume elementvol(ϑα) is assumed to be invariant un-
der pointwise transformations of the coframe field

vol (ϑα) = vol
(

Lα
βϑ

β
)

. (2.9)

This condition is satisfied by matrices with unit determinant. Consequently, the coframe trans-
formation group (2.7) is restricted to

G =
{

Lα
β(x) ∈ SL(n+ 1,R); for everyx ∈M

}

. (2.10)
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Metric tensor. For a meaningful physical field model, it is necessary to havea metric structure on
M . Moreover, the metric tensor has to be of the Lorentzian signature. In a coordinate basis and in
an arbitrary reference basis, a generic metric tensor is written correspondingly as

g = gijdx
i ⊗ dxj , g = gabθ

a ⊗ θb , (2.11)

where the componentsgij andgab are smooth functions of a pointx ∈M .
On a coframe manifold, a metric tensor is not an independent quantity. Instead, we are looking

for a metric explicitly constructed from a given coframe field, g = g(ϑα). We assume the metric
tensor to be quadratic in the coframe field components and independent of its derivatives. Moreover,
it should be of the Lorentzian type, i.e., should be reducible at a point to the Lorentzian metric
ηαβ = diag(−1, 1, · · · , 1). These requirements are justified by an almost flat approximation: for
an almost holonomic coframe,ϑαi ≈ δαi , we have to reach the flat Lorentzian metric. With these
restrictions, we come to a definition of thecoframe field metric tensor

g = ηαβϑ
α ⊗ ϑβ , gij = ηαβϑ

α
iϑ

β
j . (2.12)

Note that the equations (2.12) often appear as a definition ofa (non unique) orthonormal basis of
reference for a given metric. Another interpretation treats (2.12) as an expression of a given metric
in a special orthonormal basis of reference, as in (2.11). Inour approach, (2.12) has a principle
different meaning. It is a definition of the metric tensor field via the coframe field. Certainly the
form of the metricηαβ in the tangential vector spaceTxM is an additional axiom of our construction.
With an aim to define an invariant coframe geometric structure we require:

Metric tensor invariance postulate:Metric tensor is assumed to be invariant under pointwise
transformations of the coframe field, i.e.,

g (ϑα) = g
(

Lα
βϑ

β
)

. (2.13)

This condition is satisfied by pseudo-orthonormal matrices,

ηµνL
µ
αL

ν
β = ηαβ . (2.14)

Consequently, the invariance of the coframe metric restricts the coframe transformation group
to

G =
{

Lα
β(x) ∈ O(1, n,R); for everyx ∈M

}

. (2.15)

In order to have simultaneously a metric and a volume elementstructures both constructed
from the coframe field, we have to assume a successive restriction of the coframe transforma-
tion group:

G =
{

Lα
β(x) ∈ SO(1, n,R); for everyx ∈M

}

. (2.16)

Topological restrictions. A global smooth coframe field may be defined only on a parallelizable
manifold, i.e., on a topological manifold of a zero second Whitney class. This topological restriction
is equivalent to existence of a spinorial structure onM . In this chapter, we restrict ourselves to a
local consideration, thus the global definiteness problemswill be neglected. Moreover, we assume
the coframe field to be smooth and nonsingular only in a ”weak”sense. Namely, the components
ϑαi andeαi are required to be differentiable and linearly independentat almost all points ofM , i.e.,
except of a zero measure set. So, in general, the coframe fieldcan degenerate at singular points,
on singular lines (strings), or even on singular submanifolds (p-branes). This assumption leaves a
room for the standard singular solutions of the physics fieldequations such as the Coulomb field,
the Schwarzschild metric, the Kerr metric etc..



18 Yakov Itin

2.2 Coframe connections

From the geometrical point of view, a differential manifoldendowed with a coframe field is a
rather poor structure. In particular, we can not determine if two vectors attached at distance points
are parallel to each-other or not. In order to have a meaningful geometry and, consequently, a
meaningful geometrical field model for gravity, we have to consider a reacher structure. In this
section we define a coframe manifold with a linear coframe connection. The connection 1-form
Γ a

b will not be an independent variable, as in the Cartan geometry or in MAG [5]. Alternatively
in our construction the connection will be explicitly constructed from the coframe field and its first
order derivatives. Thus we are dealing with a category ofcoframe manifolds with a linear coframe
connection:

{

M ,ϑα, G ,Γa
b(ϑα)

}

. (2.17)

We start with a coframe manifold without an addition metric structure. Metric contributions to the
connection will be considered in sequel.

Affine connection. Recall the main properties of a generic linear affine connection on an(n + 1)
dimensional differential manifold. Relative to a local coordinate chartxi, a connection is represented
by a set of(n + 1)3 independent functionsΓk

ij(x) — the coefficients of the connection.The only
condition these functions have to satisfy is to transform, under a change of coordinatesxi 7→ yi(x),
by an inhomogeneous linear rule:

Γi
jk 7→

(

Γl
mn

∂ym

∂xj
∂yn

∂xk
+

∂2yl

∂xj∂xk

)

∂xi

∂yl
. (2.18)

When an arbitrary reference basis{θa , fb} is involved, the coefficients of the connection are ar-
ranged in aGL(n,R)-valuedconnection 1-form, which is defined as [50]

Γa
b = fa

k
(

θbiΓ
i
jk − θbk,j

)

dxj . (2.19)

In a holonomic coordinate basis, we can simply use the identitiesθai = δai andfai = δia. Conse-
quently, in a coordinate basis, the derivative term is canceled out and (2.19) reads

Γj
i = Γi

jk dx
k . (2.20)

Due to (2.18), this quantity transforms under the coordinate transformations as

Γj
i →

[

Γm
l ∂y

m

∂xj
+ d

(

∂yl

∂xj

)]

∂xi

∂yl
. (2.21)

Alternatively, the connection 1-form (2.19) is invariant under smooth transformations of coordinates.
The inhomogeneous linear behavior is shifted here to the transformations ofΓa

b under a linear local
map of the reference basis(θa, fa) given in (2.6):

Γa
b 7→

(

Γc
dAa

c + dAa
d
)

Ab
d . (2.22)

On a manifold with a given coframe fieldϑα, the connection 1-form (2.19), can also be referred to
this field. We denote this quantity byΓα

β . It is defined similarly to (2.19):

Γα
β =

(

ϑβiΓ
i
jk − ϑβk,j

)

eα
k dxj . (2.23)

This quantity can be treated as an expression of a generic connection (2.19) in a special basis. Note
an essential difference between two very similar equations(2.19) and (2.23). In (2.19), we must
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be able to apply arbitrary pointwise linear transformations of the basis. The coefficients of the
connectionΓi

jk are independent on the basis(θa, fa) used in (2.19). On the other hand, in (2.23),
we permit only the transformations of the coframe fieldϑα that are restricted by some invariance
requirements. Moreover, we will require the connectionΓi

jk to be constructed explicitly from the
derivatives of the coframe field itself.

Linear coframe connections. We restrict ourselves to the quasi-linearΓi
jk(ϑ

α), i.e., we consider
a connection constructed as a linear combination of the firstorder derivatives of the coframe field.
The coefficients in this linear expression may depend on the frame/coframe components. In other
words, we are looking for a coframe analog of an ordinary Levi-Civita connection.

Let us assist ourselves with a similar construction from theRiemannian geometry. So let us
look now for a most general connection that can be constructed from the metric tensor components.
Consider a general linear combination of the first order derivatives of the metric tensor:

gmi(α1gmj,k + α2gmk,j + α3gjk,m) . (2.24)

Although this expression has the same index content asΓi
jk, it is a connection only for some special

values of the parametersα1, α2.α3. Indeed, any two connections are differ by a tensor. Thus an
arbitrary connection can be expressed as a certain special connection plus a tensor

Γi
jk =

∗

Γ
i
jk +Ki

jk . (2.25)

Use for
∗

Γ i
jk the Levi-Civita connection

∗

Γ
i
jk =

1

2
gim(gmj,k + gmk,j − gjk,m) . (2.26)

However in Riemannian geometry, does not exist a tensor constructed from the first order derivatives
of the metric. ThereforeKi

jk = 0, thus the Levi-Civita connection is a unique connection that can
be constructed from the first order derivatives of the metrictensor. It is evidently symmetric and
metric compatible.

In an analogy to this construction, we will look for a most general coframe connection of the
form

Γi
jk(ϑ

α) =
o

Γ
i
jk(ϑ

α) +Ki
jk(ϑ

α) . (2.27)

Here
o

Γ i
jk is a certain special connection, whileKi

jk is a tensor. To start with, we need a certain
analog of the Levi-Civita connection, i.e., a special connection constructed from the coframe field.

The flat Weitzenböck connection. On a bare differentiable manifoldM , without any additional
structure, the notion of parallelism of two vectors attached to distance points depends on a curve
joint the points. Oppositely, on a coframe manifold{M ,ϑα}, a certain type of the parallelism of
distance vectors may be defined in an absolute (curve independent) sense [52]. Namely, two vectors
u(x1) andv(x2) may be declared parallel to each other, if, being referred tothe local elements of
the coframe fieldu(x1) = uα(x1)ϑ

α(x1) andv(x2) = vα(x2)ϑ
α(x2), they have the proportional

componentsuα(x1) = Cvα(x2). This definition is independent on the coordinates used on the
manifold and on the nonholonomic frame of reference. It do depends on the coframe field. Since,
by local transformations, the coframes at distance points change differently, only rigid linear coframe
transformations preserve such type of a parallelism.

This geometric picture may be reformulated in term of a special connection. The elements of the
coframe field attached to distinct points have to be assumed parallel to each other. It means that a
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special connection
o

Γ i
jk exists such that the corresponding covariant derivative ofthe coframe field

components is zero:

ϑαj;k = ϑαj,k−
o

Γ
i
jkϑ

α
i = 0 . (2.28)

Multiplying by eαi, we have an explicit expression

o

Γ
i
jk = eα

iϑαk,j . (2.29)

Under a smooth transform of coordinates, this expression istransformed in accordance with the
inhomogeneous linear rule (2.18). Consequently, (2.29) indeed gives the coefficients of a special
connection which is referred to as theWeitzenb̈ock flat connection. This connection is unique for a
class of coframes related by rigid linear transformations.

In an arbitrary nonholonomic reference basis(θa, fa), we have correspondingly a unique
Weitzenböck’s connection 1-form which is constructed by (2.19) from (2.29)

Γa
b = fa

k
(

θbi
o

Γ
i
jk − θbk,j

)

dxj . (2.30)

Substituting the coframe fieldϑα instead of the nonholonomic basisθa we have

o

Γ α
β =

(

−ϑβi,j + ϑβkeα
kϑαi,j

)

eα
i dxj = 0 . (2.31)

Thus the Weitzenböck connection 1-form is zero, when it is referred to the coframe field(ϑα, eα)
itself. Certainly, this property is only a basis related fact. It yields, however, vanishing of the
curvature of the Weitzenböck connection, which is a basis independent property.

General coframe connections. Recall that we are looking for a general coframe connection
constructed from the first order derivatives of the coframe field components. In the Riemannian
geometry, the analogous construction yields an unique connection of Levi-Civita. In the coframe
geometry, however, the situation is different.

Proposition 3: The general linear connection constructed from the first order derivatives of the
coframe field is given by a 3-parametric family:

Γi
jk =

o

Γ
i
jk + α1C

i
jk + α2Cjδ

i
k + α3Ckδ

i
j . (2.32)

Proof: The difference of two connections is a tensor of a type(1, 2), so an arbitrary connection can
be expressed as the Weitzenböck connection plus a tensor

Γi
jk =

o

Γ
i
jk +Ki

jk . (2.33)

Since
o

Γ i
jk is already a linear combination of the first order derivatives, the additional tensor also

has to be of the same form. Observe thatKi
jk involves only coordinate indices, while the partial

derivativesϑαj,i have a coframe indexα. This coframe index has to be suppressed. Hence the first
order derivatives of the coframe components may appear inKi

jk only by the expressionseαiϑαj,k.
Notice that this quantity coincides with the coefficients ofWeitzenböck’s connection (2.29), which is
not a tensor. Since the matrix of the frame field componentseα

j is the inverse ofϑαi, the derivatives
of the frame fieldeαj

,k are linear combinations ofϑαj,k. Thus we do not need to involve additional
derivatives of the frame field intoKi

jk. Consequently, the components of the tensorKi
jk have to

be linear in
o

Γ i
jk. Write a general expression of such a type:

Ki
jk =

1

2
χjkl

imn
o

Γ
l
mn . (2.34)
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Since, under a transformation of coordinates, the connection
o

Γ l
mn changes by inhomogeneous rule,

it can appear in the tensorKi
jk only in the antisymmetric combination. Thus the most general

expression for this tensor is

Ki
jk =

1

2
χjkl

imn
o

Γ
l
[mn] =

1

2
χjkl

imnCl
mn . (2.35)

Hence, the symmetry relationχjkl
imn = χjkl

i[mn] holds. The coefficientsχjkl
imn have to be

constructed from the components of the absolute basisϑαm andeαm. Again, sinceχjkl
imn involves

only coordinate indices, it has to be constructed from the traced products of the frame and the
coframe components. However all such products are equal to the Kronecker symbol. Thusχjkl

imn

has to be a tensor expressed only by the Kronecker symbols. Consequently, the general expression
for χjkl

imn can be written as

χjkl
imn = α1δ

[m
j δ

n]
k δ

i
l + α2δ

[m
l δ

n]
k δ

i
j + α3δ

[m
l δ

n]
j δ

i
k . (2.36)

Substituting into (2.35) we have

Ki
jk = α1C

i
jk + α2Cjδ

i
k + α3Ckδ

i
j . (2.37)

Consequently (2.32) is proved.�
By (2.19), the connection 1-form corresponded to the coefficients (2.32), being referred to a

nonholonomic basis, takes the form

Γa
b = fa

k
(

−θbk,m + θbl
o

Γ
l
mk +K l

mkθ
b
l

)

dxm . (2.38)

When this quantity is referred to the coframe field itself, the first two terms are canceled. In this
special basis, the expression is simplified to

Γα
β = Ki

jkeα
kϑβidx

j , (2.39)

whereKi
jk is given in (2.37). Since the 1-form (2.39) depends only on antisymmetric combinations

of the first order derivatives, it can be expressed by the exterior derivative of the coframe:

Γα
β =

(

α1C
β
γα + α2Cγδ

β
α + α3Cαδ

β
γ

)

ϑγ . (2.40)

Also a components free expression is available

Γα
β = −1

2

[

α1eα⌋dϑβ + α2(eα⌋A)ϑβ + α3δ
β
αA

]

. (2.41)

Metric-coframe connection. Consider a manifold endowed with the coframe metric tensor (2.12).
Again, we are looking for a most general coframe connection that can be constructed from the
first order derivatives of the coframe field. We will refer to it as themetric-coframe connection.
Thus we are deal with a category ofcoframe manifolds with a coframe metric and a linear coframe
connection:

{

M ,ϑα, G , g(ϑa),Γa
b(ϑα)

}

. (2.42)

Now the connection expression will involve some additionalterms which depend on the metric ten-
sor (2.12). To describe all possible combinations of the metric tensor components and frame/coframe
components it is useful to pull down all the indices. Define:

Γijk = gimΓm
jk , Cijk = gimC

m
jk . (2.43)
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Proposition 4: The most general metric-coframe connection constructed from the first order deriva-
tives of the coframe field is represented by a 6-parametric family:

Γijk =
o

Γ ijk + α1Cijk + α2gikCj + α3gijCk + β1gjkCi + β2Cjki + β3Ckij . (2.44)

Proof: Similarly to the case of a pure coframe connection, a metric-coframe connection can be
represented as the Weitzenböck connection plus an arbitrary tensor. So we can write

Γijk =
o

Γ ijk +Kijk . (2.45)

The tensorKijk has to be proportional to the derivatives of the coframe fieldϑαi,j . Repeating the
consideration given above we come to the same conclusion: the first order derivatives of the coframe
field can appear in the tensorKijk only via the antisymmetric combination of the flat connection
o

Γ l[mn] = Clmn. Consequently we have a relation

Kijk =
1

2
χijk

lmnClmn . (2.46)

The tensorχijk
lmn may involve now the components of the metric tensor in addition to the Kro-

necker symbol. Using the symmetry relationχijk
lmn = χijk

l[mn] we construct a most general
expression of such a type

χijk
lmn = α1δ

l
iδ

[m
j δ

n]
k + β2δ

l
jδ

[m
k δ

n]
i + β3δ

l
kδ

[m
i δ

n]
j +

α2gikg
l[mδ

n]
j + α3gijg

l[mδ
n]
k + β1gjkg

l[mδ
n]
i . (2.47)

Consequently, the additional tensor takes the required form

Kijk = α1Cijk + α2gikCj + α3gijCk + β1gjkCi + β2Cjki + β3Ckij . (2.48)

�

The expression (2.44) can be rewritten in a

Γi
jk =

o

Γ
i
jk + α1C

i
jk + α2δ

i
kCj + α3δ

i
jCk + β1g

ilgjkCl + β2g
ilCjkl + β3g

ilCklj . (2.49)

In fact, this expression is a proper form of the coefficients of the coframe connection. Here we can
identify two groups of terms: (i) The terms with the coefficientαi that do not depend on the metric;
(ii) The terms with the coefficientβi that can be constructed only by use of the metric tensor.

With respect to a nonholonomic basis(fa, θa), the coefficients of a connection (2.49) correspond
to a connection 1-form (2.19)

Γa
b =

o

Γ a
b +Ki

jkfa
kθbidx

j . (2.50)

When (2.50) is referred to the coframe field itself, it is simplified to

Γα
β = Ki

jkeα
kϑβidx

j . (2.51)

This expression depends only on the antisymmetric combinations of the first order derivatives of the
coframe components. So it can be expressed by the exterior derivative of the coframe. We have

Γα
β =

(

α1C
β
γα + α2Cγδ

β
α + α3Cαδ

β
γ + β1C

βηαγ + β2Cγανη
βν + β3Cανγη

βν
)

ϑγ , (2.52)
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or, equivalently,

Γβ
α = −1

2

[

α1eβ⌋dϑα + α2ϑ
α(eβ⌋A) + α3δ

α
βA+ β1(e

α⌋A)ϑβ +

β2e
α⌋(eβ⌋dϑµ)ϑµ + β3e

α⌋dϑβ
]

. (2.53)

2.3 Torsion of the coframe connection

Torsion tensor and torsion 2-form. Definitions.Consider a connection 1-formΓb
a referred to an

arbitrary basis(θa, fa). For a tensor valuedp-form of a representation typeρ
(

Aa
b
)

, thecovariant
exterior derivativeoperatorD : Ωp(M)→ Ωp+1(M) is defined as [24], [5]

D = d+ Γb
aρ

(

Aa
b
)

∧ . (2.54)

In particular, the covariant exterior derivative of a scalar-valued formφ isDφ = dφ. For a vector-
valued formφa, it is given byDφa = dφa + Γb

a ∧ φb, etc.
For a connection 1-formΓa

b written with respect to a nonholonomic basis, thetorsion 2-form
T a is defined as

T a = Dθa = dθa + Γb
a ∧ θb . (2.55)

On aD dimensional manifold, this covector valued 2-form hasD(D2 −D)/2 independent compo-
nents. Substituting (2.19) into (2.55), we observe that thecoframe derivative termdϑa cancels out.
Hence,

T a = Γi
jkθ

a
idx

j ∧ dxk = Γi
[jk]θ

a
idx

j ∧ dxk . (2.56)

In a coordinate coframe, this expression is simplified to

T i = Γi
[jk]dx

j ∧ dxk . (2.57)

Consequently, the torsion 2-formT a is completely determined by an antisymmetric combination
of the coefficients of the connection. Observe that such combination is a tensor. Thus, the torsion
2-form is completely equivalent to a(1, 2)-ranktorsion tensorwhich is defined as

T i
jk = 2Γi

[jk] . (2.58)

In a holonomic and a nonholonomic bases, the torsion 2-form is expressed respectively as

T i =
1

2
T i

jkdx
j ∧ dxk , T a =

1

2
T i

jkθ
a
idx

j ∧ dxk . (2.59)

It is useful to define also a quantity

T α =
1

2
T i

jkϑ
α
idx

j ∧ dxk . (2.60)

Observe that this set of 2-forms cannot be regarded as a vector-valued form since the transformations
of the coframe fieldϑα are restricted. However, the proper vector valued torsion 2-forms (2.59) are
related to the quantity (2.60) by the following simple equations

T i = eα
iT α , T a = θaieα

iT α . (2.61)

With respect to the coframe field, the torsion 2-form of the Weitzenböck connection (2.60) reads

o

T α = dϑα . (2.62)
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Torsion of the metric-coframe connection. For the metric-coframe connection (2.44), the covari-
ant componentsTijk = 2gimΓm

[jk] of the torsion tensor take the form

Tijk = 2(1 + α1)Cijk + (α2 − α3)(gikCj − gijCk) + (β2 + β3)(Cjki + Ckij) . (2.63)

The corresponded torsion 2-form is expressed in the coordinate basis as

T i =
[

(1 + α1)C
i
jk + (α2 − α3)Cjδ

i
k + (β2 + β3)g

imCjkm

]

dxj ∧ dxk . (2.64)

In term of the differential formsA andB (see Appendix) we derive

T α = (1 + α1) dϑ
a − 1

2
(α2 − α3)ϑ

α ∧A− 1

2
(β2 + β3)

(

dϑa − eα⌋B
)

. (2.65)

Irreducible decomposition of the torsion. On a manifold of a dimensionD ≥ 3 endowed
with a metric tensor, the torsion 2-form admits an irreducible decomposition into three independent
pieces [5]

T a = (1)T a + (2)T a + (3)T a . (2.66)

Herethe tratorandthe axitorparts [5] are defined correspondingly as

(2)T a =
1

n− 1
θa ∧ (fb⌋T b) , (3)T a =

1

3
fa⌋(θb ∧ Tβ) . (2.67)

The remainder(1)T a is referred to as atentor part. The irreducible decomposition means that the
different pieces transform independently by the same tensorial rule as the total quantity. Particularly,
we can check straightforwardly that for every part of the torsion tensor

(p)T a = (p)T αθaieα
i , p = 1, 2, 3. (2.68)

So it is enough to provide the calculations of the irreducible pieces with respect to the coframe field
itself. We have the second piece of the torsion as

(2)T α =
1

n− 1
ϑα ∧ (eβ⌋T β) =

τ2
2(n− 1)

ϑα ∧ A , (2.69)

where
τ2 = 2(1 + α1)− (β2 + β3)− (α2 − α3)(n− 1) . (2.70)

The third piece of torsion is given by

(3)T α =
1

3
eα⌋(ϑβ ∧ Tβ) =

τ3
3
eα⌋B , (2.71)

where
τ3 = (1 + α1) + (β2 + β3) . (2.72)

The first part takes the form

(1)T α = T α − (2)T α − (3)T α = τ1

(

dϑa − 1

n− 1
ϑα ∧ A− 1

3
eα⌋B

)

, (2.73)

where

τ1 = (1 + α1)−
1

2
(β2 + β3) . (2.74)
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Torsion-free metric-coframe connection. Let us look for which values of the parameters the
torsion of the metric-coframe connection is identically zero. The corresponded connection is called
the symmetric or torsion-free connection. It is clear from (2.63) that the metric-coframe connection
is symmetric if

α1 = −1 , α2 = α3 , β2 = −β3 . (2.75)

The necessity of this condition can be derived from the irreducible decomposition. Indeed, since
the three pieces of the torsion are mutually independent, they have to vanish simultaneously. Hence
we have a conditionτ1 = τ2 = τ3 = 0 which is equivalent to (2.75). Note that this requirement
is necessary only for a manifold of the dimensionD ≥ 3. On a two-dimensional manifold, the
metric-coframe connection is symmetric under a weaker condition

2(1 + α1) + (α2 − α3)− (β2 + β3) = 0 . (2.76)

On a curve, every connection is unique and symmetric.
Thus on a manifold of the dimensionD ≥ 3 there exists a 3-parametric family of the symmetric

(torsion-free) connections:

Γi
jk =

o

Γ
i
jk − Ci

jk + α2

(

δikCj + δijCk

)

+ β1gjkg
imCm + β2g

im (Cjkm − Ckmj) . (2.77)

2.4 Nonmetricity of the metric-coframe connection

Nonmetricity tensor and nonmetricity 2-form. Definition. When Cartan’s manifold is endowed
with a metric tensor, the connection generates an additional tensor field calledthe nonmetricity
tensor. It is expressed as a covariant derivative of the metric tensor components. For a metric given
in a local system of coordinates asg = gijdx

i ⊗ dxj , the nonmetricity tensor is defined as

Qkij = −∇kgij = −gij,k + Γm
ikgmj + Γm

jkgim , (2.78)

or,
Qkij = −gij,k + Γjik + Γijk . (2.79)

Evidently, this tensor is symmetric in the last pair of indicesQkij = Qkji. Hence, on aD dimen-
sional manifold, the nonmetricity tensor hasD(D2 +D)/2 independent components.

For the exterior form representation, it is useful to definethe nonmetricity 1-form. In a coordinate
basis, it is given by

Qij = Qkijdx
k = −dgij + Γij + Γji . (2.80)

In an arbitrary reference basis(fa , θa), the metric tensor is expressed asg = gabθ
a ⊗ θb. Corre-

spondingly, the nonmetricity 1-form reads

Qab = −dgab + Γab + Γba . (2.81)

With respect to the coframe fieldϑα, the components of the metric are constantsηαβ , thus the
nonmetricity is merely the symmetric combination of the connection 1-form components

Qαβ = Γαβ + Γβα . (2.82)

Note, that this expression is not a usual tensorial quantity. In fact, it is an expression of a tensor-
valued 1-form of nonmetricity with respect to a special class of bases. Its relation to a proper
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tensorial valued 1-form (2.80) is, however, very simple. Bya substitution of (2.23) into (2.82) we
have

Qij = Qαβϑ
α
iϑ

β
j . (2.83)

The following generalization of the Levi-Civita theorem from the Riemannian geometry pro-
vides a decomposition of an arbitrary affine connection [53]. Its simple proof is instructive for our
construction.

Proposition 5: Let a metricg on a manifold M be fixed and two tensorsTijk andQijk with the
symmetries

Tijk = −Tikj , Qkij = Qkji . (2.84)

be given. A unique connectionΓijk exists onM such thatTijk is its torsion andQijk is its non-
metricity. Explicitly,

Γijk =
∗

Γ ijk −
1

2

(

Qijk −Qjki −Qkij

)

+
1

2

(

Tijk + Tjki − Tkij
)

, (2.85)

where
∗

Γ ijk =
1

2

(

gij,k + gik,j − gjk,i
)

(2.86)

are the components of the Levi-Civita connection.

Proof: On aD-dimensional manifold definitions of the torsion and the nonmetricity tensors

Tijk = 2Γi[jk] , Qkij = −gij,k + Γijk + Γjik (2.87)

can be viewed as a linear system ofD3 linear equations forD3 independent variablesΓijk

Γi[jk] =
1

2
Tijk , Γ(ij)k =

1

2
(Qkij + gij,k) . (2.88)

ForTijk = Qkij = 0, the system has a unique solution — the Levi-Civita connection
∗

Γ ijk. Thus
the determinant of the matrix of the system (2.88) is nonsingular. Consequently also for arbitrary
tensorsTijk andQkij , the system has a unique solution. In order to check the specific form of the
solution (2.85), it is enough to substitute the definitions (2.87).�

Nonmetricity of the metric-coframe connection. We calculate now the nonmetricity tensor of the
metric-coframe connection (2.44)

Qkij =
(

− gij,k+
o

Γ ijk+
o

Γ jik

)

+

(α1 − β2)(Cijk − Cjki) + (α2 + β1)(gikCj + gjkCi) + 2α3gijCk . (2.89)

The first parenthesis represent the nonmetricity tensor of the Weitzenböck connection. This expres-
sion vanishes identically, i.e., the Weitzenböck connection is metric-compatible. Indeed, we have

gij,k = ηαβ(ϑ
α
i,kϑ

β
j + ϑαiϑ

β
j,k) =

o

Γ ijk+
o

Γ jik . (2.90)

Consequently, (2.89) is simplified to

Qkij = (α1 − β2)(Cijk + Cjki) + (α2 + β1)(gikCj + gjkCi) + 2α3gijCk . (2.91)
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Relative to the coframe field, we have, using (2.52,2.82), the 1-form of nonmetricity

Qαβ = −1

4
(α1 − β2)

(

eα⌋dϑβ + eβ⌋dϑα
)

+
1

2
α3ηαβA+

1

4
(α2 + β1)

[

(eα⌋A)ϑβ + (eβ⌋A)ϑα
]

. (2.92)

Irreducible decomposition of the nonmetricity. We are looking now for an irreducible decompo-
sition of the nonmetricity 1-formQab under the pseudo-orthogonal group. SinceQab is a tensor-
valued 1-form it can be calculated in an arbitrary basis. Certainly, the basis of the coframe field is
the best for these purposes. We have only remember that for a transformation to an arbitrary basis
we have simple multiply the corresponding quantityQαβ by the matrix of the transformation. We
cannot, however, transform the coframe basis to an arbitrary basis. This is because the coframe field
is a fixed building block of our construction.

The irreducible decomposition of the nonmetricity 1-form under the pseudo-orthogonal group
SO(1, n) is constructed by the in correspondence to the Young diagrams. For actual calculations we
use the algorithm given in [5]. The resulting decompositionis given as a sum of four independent
pieces

Qαβ = (1)Qαβ + (2)Qαβ + (3)Qαβ + (4)Qαβ . (2.93)

For the nonmetricity 1-form (2.82),the irreducible parts are

(1)Qαβ = µ1

[

(n− 1)e(α⌋dϑβ) + (e(α⌋A)ϑβ) − 4ηαβA
]

, (2.94)

(2)Qαβ = µ2

[

(n− 1)e(α⌋dϑβ) + (e(α⌋A)ϑβ) + 2ηαβA
]

, (2.95)

(3)Qαβ = µ3

[

(e(α⌋A)ϑβ) +
2

n
ηαβA

]

, (2.96)

(4)Qαβ = µ4

[ 1

n
ηαβA

]

. (2.97)

The coefficients of these quantities depend on the parameters of the general connection as

µ1 = − 1

6(n− 1)
(α1 − β2) , µ2 =

1

2
µ1 , (2.98)

µ3 =
1

4

[ 1

n− 1
(α1 − β2) + (α2 + β1)

]

, (2.99)

µ4 =
1

2

[

− (α1 − β2) + nα3 + (α2 + β1)
]

. (2.100)

Metric compatible metric-coframe connection.Let us look for which values of the coefficients the
connection ismetric-compatible, i.e., has an identically zero non-metricity tensor. Recall that both
quantities, the metric tensor and the connection, are constructed from the same building block — the
coframe fieldϑα. It is clear from (2.92) that the metric-coframe connectionis metric-compatible if

α1 = β2 , α2 = −β1 , α3 = 0 . (2.101)

The necessity of this condition can be derived from the irreducible decomposition of the nonmetric-
ity tensor. Four irreducible pieces of the non-metricity tensor are mutually independent, so they have
to vanish simultaneously. Hence we have a conditionµ1 = µ2 = µ3 = µ4 = 0 which turns out to be
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equivalent to (2.101). Note that this requirement is necessary only for a manifold of the dimension
D ≥ 3, where the irreducible decomposition (2.93) is valid. On a two-dimensional manifold, the
metric-coframe connection is metric-compatible if and only if

α1 − β2 = α2 + β1 = α3 . (2.102)

On a one-dimensional manifold, every connection is metric-compatible.

Metric compatible and torsion-free metric-coframe connection. Let us look now for a general
coframe connection of a zero torsion and zero non-metricity, i.e., for a symmetric metric compatible
connection constructed from the coframe field. The system ofconditions (2.75) and (2.101) has a
unique solution

α1 = β2 = −β3 = −1 , β1 = α2 = α3 = 0 . (2.103)

Consequently, a metric-compatible symmetric connection is unique. This is in a correspondence to
the original Levi-Civita theorem, and the unique connection is of Levi-Civita. Moreover, substitut-

ing (2.103) into (2.44) we can express now the standard Levi-Civita connection
∗

Γ i
jk via the flat

connection of Weitzenböck
o

Γ i
jk —

∗

Γ ijk =
o

Γ i(jk) + Ckij − Cjki . (2.104)

In the basis constructed from the coframe field itself, the nonmetricity 1-form for the Levi-Civita
connection reads

∗

Γαβ = eα⌋dϑβ − eβ⌋dϑα −
1

2
eα⌋eβ⌋B . (2.105)

It is in a correspondence with a formula given in [5].

2.5 Gauge transformations

Local transformations of the coframe field. The geometrical structure considered above is well
defined for a fixed coframe fieldeα. Moreover, it is invariant under rigid coframe transformations.
The gauge paradigm suggests now to look for a localization ofsuch transformations:

ϑα 7→ Lα
β ϑ

β , eα 7→ Lα
β eβ , (2.106)

or, in the components,
ϑαi 7→ Lα

β ϑ
β
i , eα

i 7→ Lα
β eβ

i . (2.107)

Here the matrixLα
β and its inverseLα

β are functions of a pointx ∈ M . We require the volume
element (2.8) and the metric tensor (2.12) both to be invariant under the pointwise transformations
(2.106). Consequently,Lα

β is assumed to be a pseudo-orthonormal matrix whit enters aresmooth
functions of a point. We will also use an infinitesimal version of the transformation (2.107) with
Lα

β = δαβ +Xα
β . In the components, it takes the form

ϑαi 7→ ϑαi +Xα
β ϑ

β
i , eα

i 7→ eα
i −Xβ

α eβ
i . (2.108)

As the elements of the algebraso(1, n), the matrixXαβ = ηαµX
µ
β is antisymmetric. We define a

corresponded antisymmetric tensor

Fij = ϑαiϑ
β
jXαβ . (2.109)



Coframe geometry and gravity 29

Connection invariance postulate. Recall that we are looking for a most general geometric struc-
ture that can be explicitly constructed from the coframe field. Moreover, we are interested not in a
one fixed coframe field, but rather in a family of fields relatedby the left action of the elements of
some continuous groupG.

In a general setting, the different geometrical structuressuch as the volume element, the metric
tensor, and the field of affine connections, are completely independent. We have already postulated
the invariance of the volume element and of the metric tensorunder the coframe transformations. It
is natural to involve now an additional invariance requirement concerning the affine connection.

Connection invariance postulate:Affine coframe connection is assumed to be invariant under
pointwise transformations of the coframe field

Γi
jk (ϑ

α) = Γi
jk

(

Lα
βϑ

β
)

. (2.110)

Since the coframe connection is constructed from the first order derivatives of the coframe field,
(2.110) is a first order PDE for the elements of the groupG and for the components of the coframe
field.

Weitzenböck connection transformation.Since the Weitzenböck connection is a basis tool of our
construction, it is useful to calculate the change of this quantity under the coframe transformations
(2.106). We have

∆
o

Γ
i
jk = eα

iϑβkY
α
βj , where Y α

βj = Lα
γL

γ
β,j . (2.111)

All matrices involved here are nonsingular, consequently the Weitzenböck connection is preserved
only under the rigid transformations of the coframe field withLγ

β,j = 0.
Let us rewrite (2.111) in alternative forms. Since the metric tensor is invariant under the trans-

formations (2.106) we have

∆
o

Γ ijk = ∆
(

gim
o

Γ
m

jk

)

= gim∆
o

Γ
m

jk . (2.112)

Consequently

∆
o

Γ ijk = ϑαiϑ
β
kYαβj , where Yαβj = ηαµY

µ
βj . (2.113)

In the infinitesimal approximation, (2.111) takes the form

∆
o

Γ
i
jk = eα

iϑβkX
α
β,j . (2.114)

while (2.112) withXαβ = ηαµX
µ
β reads

∆
o

Γ ijk = ϑαiϑ
β
kXαβ,j . (2.115)

Note that sinceXαβ is antisymmetric, we have in this approximation

∆
o

Γ ijk = −∆
o

Γkji . (2.116)

We will also consider an additional physical meaningful approximation when the derivatives of the
coframe is considered to be small relative to the derivatives of the transformation matrix. In this
case, (2.114) and (2.115) read

∆
o

Γ
i
jk = F i

k,j , where F i
k = eα

iϑβkX
α
β , (2.117)
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and

∆
o

Γ ijk = Fik,j , where Fij = ϑαiϑ
β
jXαβ . (2.118)

Transformations preserved the geometric structure. Since the coframe field appears in the
coframe geometrical structure only implicitly, (2.106) isa type of a gauge transformation. Invari-
ance of the metric tensor and of the volume element restrictsLα

β to a pseudo-orthonormal matrix
G = SO(1, n). Let us ask now, under what conditions the general coframe connection (2.44) is
invariant under the coframe transformations (2.106). First we rewrite (2.44) via the Levi-Civita
connection. Using (2.103) we have

o

Γ ijk =
∗

Γ ijk + Cijk − Ckij + Cjki . (2.119)

Thus (2.44) takes the form

Γijk =
∗

Γ ijk+(α1+1)Cijk+α2gikCj+α3gijCk+β1gjkCi+(β2+1)Cjki+(β3−1)Ckij . (2.120)

Since the Levi-Civita connection
∗

Γ ijk is invariant under the transformations (2.106), the equation
∆Γijk = 0 takes the form

(α1 + 1)∆Cijk + α2gik∆Cj + α3gij∆Ck + β1gjk∆Ci + (β2 + 1)∆Cjki + (β3 − 1)∆Ckij = 0 .
(2.121)

Hence in order to have an invariant coframe connection, we have to look for possible solutions of
equation (2.121).

Trivial solutions of the invariance equation. Consider first two trivial solutions of (2.121) which
turn out to be non-dynamical.

(i) Arbitrary transformations — Levi-Civita connection.
The equation (2.121) is evidently satisfied when all the numerical coefficients mutually equal to
zero. It is easy to check that these six relations are equivalent to (2.103). Thus the corresponded
connection is of Levi-Civita. In this case, the elements of the matrixLα

β are arbitrary functions of a
point. Thus we come to a trivial fact that the Levi-Civita connection is a unique coframe connection
which is invariant under arbitrary localSO(1, n) transformations of the coframe field.

(ii) Rigid transformations.
Another trivial solution of the system (2.121) emerges whenwe require∆Cijk = 0. All permuta-
tions and traces of this tensor are also equal to zero so (2.121) is trivially valid. Due to (2.113), it
means that the matrix of transformations is independent on apoint. In this case, an arbitrary coframe
connection, in particular the Weitzenböck connection, remains unchanged. Thus we come to another
trivial fact that the coframe connection is invariant underrigid transformations of the coframe field.

Dynamical solution. We will look now for nontrivial solutions of the system (2.121). Three traces
of this system yield the equations of the typeλ∆Ci = 0, whereλ is a linear combination of the
coefficientsαi, βi. Thus we have to apply the first condition

∆Ci = 0 . (2.122)

The system (2.121) remains now in the form

(α1 + 1)∆Cijk + (β2 + 1)∆Cjki + (β3 − 1)∆Ckij = 0 . (2.123)
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Applying the complete antisymetrization in three indices we derive the second equation

∆C[ijk] = 0 . (2.124)

The equation (2.123) remains now in the form

(β2 − α1)∆Cjki + (β3 − α1 − 2)∆Cjki = 0 . (2.125)

We have to restrict now the coefficients, otherwise we obtain∆Cijk = 0, i.e., only the rigid trans-
formations. Consequently we require

β2 = α1 , β3 = α1 + 2 . (2.126)

Thus we have proved

Proposition 6: The coframe connection

Γijk =
∗

Γ ijk + (α1 + 1)C[ijk] + α2gikCj + α3gijCk + β1gjkCi . (2.127)

is invariant under the coframe transformations satisfied the equations

∆Ci = 0 . ∆C[ijk] = 0 . (2.128)

Observe that this family includes the Levi-Civita connection, which is invariant under arbitrary
transformations of the coframe field. The torsion tensor of the connection (2.127) is expressed as

Tijk = (α1 + 1)C[ijk] + (α2 − α3)(gikCj − gijCk) . (2.129)

Thus a torsion-free subfamily of (2.127) is given by

Γijk =
∗

Γ i(jk) + α2(gikCj + gijCk) + β1gjkCi . (2.130)

The nonmetricity tensor of the connection (2.127) reads

Qkij = (α2 + β1)(gikCj + gjkCi) + 2α3gjjCk . (2.131)

Thus a metric compatible subfamily of (2.127) is given by

Γijk =
∗

Γ i(jk) + (α1 + 1)C[ijk] + α2(gikCj − gjkCi) . (2.132)

From (2.129) and (2.131) we derive an interesting conclusions:

∆Qkij = 0 ⇐⇒ ∆Ci = 0 . (2.133)

and, together with this relation,

∆Tijk = 0 ⇐⇒ ∆C[ijk] = 0 . (2.134)

Thus the relations (2.128) obtain a geometric meaning, theycorrespond to invariance of the torsion
and nonmetricity tensors under coframe transformations.
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2.6 Maxwell-type system

Let us examine now what physical meaning can be given to the invariance conditions [41]

∆C[ijk] = 0 , ∆Ci = 0 . (2.135)

DenoteKijk = ∆Cijk . Thus (2.135) takes the form

K[ijk] = 0 , Km
im = 0 . (2.136)

The tensorKijk depends on the derivatives of the Lorentz parametersXαβ and on the components
of the coframe field

Kijk =
1

2
ϑαk

(

Xαβ,jϑ
β
i −Xαβ,iϑ

β
j

)

. (2.137)

Thus, in fact, we have in (2.136), two first order partial differential equations for the entries of an
antisymmetric matrixXαβ . Let us construct from this matrix an antisymmetric tensorFij

Fij = Xµνϑ
µ
iϑ

ν
j , Xµν = Fijeµ

ieν
j . (2.138)

Substituting into (2.137), we derive

Kijk = Fk[i,j] −
1

2
Xαβ

[

(ϑαkϑ
β
i),j − (ϑαkϑ

β
j),i

]

= Fk[i,j] − FkmC
m

ij −
1

2

(

Fmi

o

Γ
m

kj − Fmj

o

Γ
m

ki

)

. (2.139)

Consequently, the first equation from (2.136) takes the form

F[ij,k] =
2

3
(Cm

ijFkm + Cm
jkFim + Cm

kiFjm) , (2.140)

while the second equation from (2.136) is rewritten as

F i
j,i = −2F i

mC
m

ij + Fkjg
ki

,i + Fmjg
ki

o

Γ
m

ki − Fmig
ki

o

Γ
m

kj . (2.141)

Observe first a significant approximation to (2.140—2.141).If the right hand sides in both equations
are neglected, the equations take the form of the ordinary Maxwell equations for the electromagnetic
field in vacuum —

F[ij,k] = 0 , F i
j,i = 0 . (2.142)

In the coframe models, the gravity is modeled by a variable coframe field, i.e., by nonzero values of

the quantities
o

Γ ij
k. Consequently, the right hand sides of (2.140—2.141) can beviewed as curved

space additions, i.e., as the gravitational corrections tothe electromagnetic field equations. In the
flat spacetime, when a suitable coordinate system is chosen,these corrections are identically equal
to zero. Consequently, in the flat spacetime, the invarianceconditions (2.136) take the form of the
vacuum Maxwell system.

On a curved manifold, the standard Maxwell equations are formulated in a covariant form. Let
us show that our system (2.140—2.141) is already covariant.We rewrite (2.139) as

Kijk =
1

2
(Fki,j − Fkm

o

Γ
m

ij − Fmi

o

Γ
m

kj)−
1

2
( i←→ j ) . (2.143)

Consequently,

Kijk = Fk[i;j] , (2.144)
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where the covariant derivative (denoted by the semicolon) is taken relative to the Weitzenböck con-
nection. Consequently, the system (2.140—2.141) takes thecovariant form

F[ij;k] = 0 , F i
j;i = 0 . (2.145)

These equations are literally the same as the electromagnetic sector field equations of the Maxwell-
Einstein system. The crucial difference is encoded in the type of the covariant derivative. In the
Maxwell-Einstein system, the covariant derivative is taken relative to the Levi-Civita connection,
while, in our case, the corresponding connection is of Weitzenböck. Observe that, due to our ap-
proach, the Weitzenböck connection is rather natural in (2.145). Indeed, since the electromagnetic-
type field describes the local change of the coframe field, it should itself be referred only to the global
changes of the coframe. As we have shown, such global transformations correspond precisely to the
teleparallel geometry with the Weitzenböck connections.

3 Geometrized coframe field model

3.1 Generalized Einstein-Hilbert Lagrangian

One of the most important feature of the Einstein gravity theory is its pure geometrical content. The
basic field variable of this theory is the metric tensor fieldgij . The action integral is given by the
Einstein-Hilbert Lagrangian

(GR)A =

∫

M

R
(

∗

Γ
i
jk(g), g

)

∗ 1 , (3.1)

whereR is the curvature scalar constructed from the metric tensor and its partial derivatives while
∗1 is the invariant volume element constructed from the metrictensor. When we restrict to the
quasilinear second order field equations the Lagrangian (3.1) is a unique possible.

The coframe field model also constructed from the geometrical field variable — coframe. Its
Lagrangian however is taken as an arbitrary linear combination of the globalSO(1, 3) invariants.
The geometrical sense of this expression is not clear. Although the coframe Lagrangian can be
written in term of the torsion of the flat connection it does not mean that it corresponds to the
Weitzenböck geometry with a flat curvature and a non-zero connection. Indeed also the standard
Einstein-Hilbert Lagrangian (3.1) can be rewritten in sucha form. Moreover, as we have seen in the
previous section, there is a wide class of connections all constructed from Weitzenböck connection
and its torsion. In particular, using the coframe Lagrangian in the form (1.4) we cannot answer the
question:What special geometry corresponds to the set of viable coframe models?

Our proposal is to consider for the coframe Lagrangian an expression similar to (3.1)

(cof)A =

∫

M

R
(

Γi
jk(ϑ

α), g(ϑα)
)

∗ 1 , (3.2)

which is constructed from the general free parametric coframe connection. Also the invariant volume
element∗1 is constructed here from the coframe field. Since the Levi-Civita connection is included
as a special case of general coframe connection we have in (3.2) a generalization of the standard
GR.

3.2 Curvature of the coframe connection

Riemannian curvature 2-form. We start with the definitions of the Riemannian curvature ma-
chinery. Although it is a classical subject of differentialgeometry [50], in the case of a general
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connection of non-zero torsion and nonmetricity, slightlydifferent notations are in use. Moreover,
in this case, it is useful to apply the formalism of differential forms. We accept the agreements used
in metric-affine gravity [5].

Let a connection 1-formΓa
b referred to a general nonholonomic basis(θa, fa) be given. The

curvature 2-formis defined as
Ra

b = dΓa
b − Γa

c ∧ Γc
b . (3.3)

It satisfies two fundamental identities:
The first Bianchy identityinvolves the first order derivatives of the connection

DT a −Rb
a ∧ θb = 0 , or dT a + Γb

a ∧ T b −Rb
a ∧ θb = 0 . (3.4)

The second Bianchy identityinvolves the second order derivatives of the connection

DRb
a = 0 , or dRa

b + Γa
c ∧Rc

b − Γc
b ∧Ra

c = 0 . (3.5)

It is useful to consider the Riemannian curvature of the coframe connection to be referred to a basis
composed from the elements of the coframe field itself. The corresponded quantity

Rα
β = dΓα

β − Γα
γ ∧ Γγ

β . (3.6)

is related to the generic basis expression by the standard tensorial rule with the matrices of transfor-
mationϑαifa

i

Ra
b = Rα

β(ϑαifa
i)(eβ

jθbj) . (3.7)

From (3.6), we see that the Riemannian curvature of the Weitzenböck connection is zero being
referred to a basis of the coframe field. Due to (3.6), it is zero in an arbitrary basis.

Being referred to a coordinate basis, the Riemannian curvature 2-form reads

Ri
j = dΓi

j − Γ
k
i ∧ Γk

j (3.8)

= dΓj
in ∧ dxn − Γk

imΓj
kndx

m ∧ dxn (3.9)

=
(

Γj
in,m − Γk

imΓj
kn

)

dxm ∧ dxn . (3.10)

The components of the Riemannian curvature 2-form

Ri
j =

1

2
Rj

imndx
m ∧ dxn (3.11)

are arranged in the familiar expression of theRiemannian curvature tensor

Rj
imn = Γj

in,m − Γj
im,n + Γk

inΓ
j
km − Γk

imΓj
kn . (3.12)

Curvature scalar density. Curvature scalar plays an important role in physical applications. In
fact, it is used as an integrand in action of geometrical fieldmodels — Hilbert-Einstein Lagrangian
density

L = R vol = R ∗ 1 , (3.13)

where star denotes the Hodge dual. In term of the curvature 2-form, this expression is rewritten as

L = Rij ∧ ∗ (dxi ∧ dxj) = Rαβ ∧ ∗ϑαβ . (3.14)



Coframe geometry and gravity 35

where the abbreviationϑαβ = ϑα ∧ ϑβ is used. Extracting in (3.14) the total derivative term we
obtain

L = (dΓαβ − Γα
γ ∧ Γγβ) ∧ ∗ϑαβ

= d
(

Γαβ ∧ ∗ϑαβ
)

+ Γαβ ∧ d ∗ ϑαβ − Γα
γ ∧ Γγβ ∧ ∗ϑαβ . (3.15)

For actual calculation of this quantity, it is useful to express the connection 1-form in the basis of
the coframe field. We denote

Γαβ = Kαγβϑ
γ . (3.16)

Substituting it in the total derivative term of (3.15) we have

d
(

Γαβ ∧ ∗ϑαβ
)

= d
(

Kαγβϑ
γ ∧ ∗ϑαβ

)

= (−1)nd
[

Kαγβ ∗
(

eγ⌋ϑαβ
)]

= (−1)nd
[

(Kα
αβ −Kβα

α) ∗ ϑβ
]

. (3.17)

The second term of (3.15) reads

Γαβ ∧ d ∗ ϑαβ = Kαγβϑ
γ ∧ d ∗ ϑαβ = Kαγβ

[

dϑγ ∧ ∗ϑαβ − d
(

ϑγ ∧ ∗ϑαβ
)]

. (3.18)

Calculate:

dϑγ ∧ ∗ϑαβ =
1

2
Cγ

µνϑ
µν ∧ ∗ϑαβ = (−1)n+1Cγαβ ∗ 1 . (3.19)

and

d
(

ϑγ ∧ ∗ϑαβ
)

= (−1)nd ∗ (ηαγϑβ − ηβγϑα) = (−1)n
(

ηβγCα − ηαγCβ
)

∗ 1 . (3.20)

Consequently the second term of (3.15) takes the form

Γαβ ∧ d ∗ (ϑα ∧ ϑβ) = (−1)n
[

KαγβC
γαβ − (Kα

αβ −Kβα
α)Cβ

]

∗ 1 (3.21)

The third term of (3.15) reads

Γα
γ ∧ Γγβ ∧ ∗(ϑα ∧ ϑβ) = Kαµ

γKγνβϑ
µν ∧ ∗ϑαβ

= (−1)n
(

KαβγKγαβ −Kα
αγK

γβ
β

)

∗ 1 . (3.22)

Consequently the Lagrangian density takes the form

L(−1)n = d
[

(Kα
αβ −Kβα

α) ∗ ϑβ
]

+
[

KαγβC
γαβ − (Kα

αβ −Kβα
α)Cβ

]

∗ 1
−
(

KαβγKγαβ −Kα
αγK

γβ
β

)

∗ 1 . (3.23)

Due to (2.52), the tensorKαγβ is of the form

Kαγβ = α1Cβγα + α2Cγηαβ + α3Cαηβγ + β1Cβηαγ + β2Cγαβ + β3Cαβγ , (3.24)

Substituting this expression in (3.23) we obtain a total derivative term plus a sum of terms which
are quadratic inCαβγ . Since (1.4) is the most general expression quadratic inCαβγ , the following
statement is clear.

Proposition 7 The Hilbert-Einstein Lagrangian of the general metric-coframe connection (2.52) is
equivalent up to a total derivative term to the general coframe Lagrangian

R(Γαβ) ∗ 1 = ζ0d(Cα ∗ ϑα) +
(

ζ1CαβγC
αβγ + ζ2CαβγC

βγα + ζ3CαC
α
)

∗ 1 , (3.25)

where the parametersζi are expressed by second order polynomials of the coefficientsαi, βi.

The actual expressions for the coefficientsζi are rather involved. We discuss the parameterζ0 in
sequel.
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3.3 Einstein-Hilbert Lagrangian without second order derivatives

It is well known that in GR the Einstein-Hilbert Lagrangian involves the second order derivatives
of the metric tensor. These terms joint in a total derivativeterm which is not relevant for the field
equation. Although, the total derivative terms cannot consistently dropped out. In particular, the
quantization procedure requires an addition of a boundary term in order to compensate the total
derivative [56], [57]. Let us calculate the total derivative term in our model. Withe (3.24) we have

Kα
αβ = ηαγKαγβ = [α2 + α3 + (n+ 1)β1 + β2 − β3]Cβ , (3.26)

and
Kβα

α = ηβγKαγβ = [α1 + α2 + (n+ 1)β1 + β2 − β3]Cβ . (3.27)

Thus

d
[

(Kα
αβ −Kβα

α) ∗ ϑβ
]

= − [α1 + n(α3 − β1) + 2β2 − β3] d
(

Cβ ∗ ϑβ
)

. (3.28)

Consequently, the coefficientζ0 in (3.25) takes the form

ζ0 = α1 + n(α3 − β1) + 2β2 − β3 . (3.29)

For the Weitzenböck connection, this coefficient is zero together with all other terms of the La-
grangian. For the Levi-Civita connection,ζ0 = −2 on a manifold of an arbitrary dimension.

We can identify now a family of coframe connections without atotal derivative term at all. It is
enough to require

α1 + n(α3 − β1) + 2β2 − β3 = 0 . (3.30)

The corresponding connection is given by

Γijk =
o

Γ ijk + α1(Cijk + Ckij) + α2gikCj + α3(gijCk + nCkij) +

β1(gjkCi − nCkij) + β2(Cjki + 2Ckij) . (3.31)

This family includes the metric-compatible connections

Γijk =
o

Γ ijk + α1(Cijk + Cjki + 3Ckij) + α2(gikCj − gjkCi + nCkij) , (3.32)

and the symmetric (torsion-free) connections

Γijk =
o

Γ i(jk) + α2 (gikCj + gijCk) + β1gjkCi + [1− n(α2 − β1)] (Cjki + Ckji) . (3.33)

Also the gauge invariant connections (2.127) can be found into the family (3.31).
Consequently we identified a remarkable property of the coframe geometry. There is a family

of coframe connections which standard Einstein-Hilbert Lagrangian does not involve second or-
der derivatives terms at all. It means that there is a family of coframe models with a geometrical
Lagrangian which is completely equivalent to the Yang-Mills Lagrangians of particle physics.

4 Conclusion

GR is a well-posed classical field theory for 10 independent variables — the components of the
metric tensor. Although, this theory is completely satisfactory in the pure gravity sector, its possi-
ble extensions to other physics phenomena is rather problematic. In particular, the description of
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fermions on a curved space and the supergravity constructions require a richer set of 16 indepen-
dent variables. These variables can be assembled in a coframe field, i.e., a local set of four linearly
independent 1-forms. Moreover, in supergravity, it is necessary to involve a special flat connection
constructed from the derivatives of the coframe field. Thesefacts justify the study of the field models
based on a coframe variable alone.

The classical field construction of the coframe gravity is based on a Yang-Mills-type Lagrangian
which is a linear combination of quadratic terms with dimensionless coefficients. Such model turns
to be satisfactory in the gravity sector and has the viable Schwarzschild solutions even being al-
ternative to the standard GR. Moreover, the coframe model treating of the gravity energy makes it
even preferable than the ordinary GR where the gravity energy cannot be defined at all. A principle
problem that the coframe gravity construction does not haveany connection to a specific geometry
even being constructed from the geometrical meaningful objects. A geometrization of the coframe
gravity is an aim of this chapter.

We construct a general family of coframe connections which involves as the special cases the
Levi-Civita connection of GR and the flat Weitzenböck connection. Every specific connection gener-
ates a geometry of a specific type. We identify the subclassesof metric-compatible and torsion-free
connections. Moreover we study the local linear transformations of the coframe fields and identify a
class of connections which are invariant under restricted coframe transformations. Quite remarkable
that the restriction conditions are necessary approximated by a Maxwell-type system of equations.

On a basis of the coframe geometry, we propose a geometric action for the coframe gravity.
It has the same form as the Einstein-Hilbert action of GR, butthe scalar curvature is constructed
from the general coframe connection. We show that this geometric Lagrangian is equivalent to the
coframe Lagrangian up to a total derivative term. Moreover there is a family of coframe connections
which Lagrangian does not include the higher order terms. Inthis case, the equivalence is complete.

However, the Hilbert-Einstein-type action itself is not enough to predict a unique coframe con-
nection. Indeed, the coframe connection has six free parameters, while the action involves only four
of their combinations. Moreover, one combination represents a total derivative term in Lagrangian
which does not influence the field equations. So the gravity action itself is not defined uniquely
the geometry on the base manifold. It should not be, however,a problem. Indeed, the gravitational
field is not a unique physical field. Moreover, gravity does not even exist without matter fields as its
origin. An action for an arbitrary (non-scalar) field necessary involves the connection. So the prob-
lem can be formulated as following: To find out which matter field has to be added to the coframe
Lagrangian in order to predict uniquely the type of the coframe connection and consequently the
geometry of the underlying manifold. This problem can serveas a basis for future investigation.
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5 Appendix — differential form notations

We collect here some algebraic rules which are useful for calculations with the differential forms.
Recall that we are working on ann+ 1 dimensional manifold.
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1. Interior product
In a basis of 1-formsϑα, ap-formΨ is expressed as

Ψ =
1

p!
Ψα1···αp

ϑα1 ∧ · · · ∧ ϑαp . (A.1)

Interior product couples the basis vectors and basis 1-forms as

eα⌋ϑβ = δbα . (A.2)

By bilinearity and the Leibniz-type rule,

eα⌋(w1 ∧ w2) = (eα⌋w1) ∧w2 + (−1)degw1w1 ∧ (eα⌋w2) , (A.3)

the definition of the interior product is extended to forms ofarbitrary degree. Mixed applications of
the exterior and interior products to ap-formw satisfy the relations

ϑα ∧ (ea⌋w) = pw , (A.4)

and
ea⌋(ϑα ∧ w) = (n− p)w . (A.5)

2. Hodge star operator
The Hodge star operator mapsp-forms into(n+ 1 − p)-forms. In a pseudo-orthonormal basisϑα,
the metric tensor is represented by the constant componentsηαβ = diag(−1, 1, · · · , 1). In this case,
the Hodge star operator is defined as

∗Ψ =
1

p!(n+ 1− p)!Ψα0···αp
ηα0β0 · · · ηαpβpεβ0···βn

ϑβp+1∧···∧ϑβn

, (A.6)

where the permutation symbol is normalized as

ε0···n = 1 , ε0···n = −1 . (A.7)

For the basis forms themselves, this formula can be rewritten as

∗(ϑα0
∧ · · · ∧ ϑαp

) =
1

(n+ 1− p)!εα0···αpβ1···βn−p
ϑβ1 ∧ · · · ∧ ϑβn−p . (A.8)

In particular,

∗(ϑα0
∧ · · · ∧ ϑαn

) = εα0···αn
, ∗1 =

1

n!
εα0···αn

ϑα1 ∧ · · · ∧ ϑαn . (A.9)

When the Hodge map defined by a Lorentzian-type metricηαβ it acts on ap-formw

∗ ∗ w = (−1)p(n+1−p)+1w = (−1)pn+1w . (A.10)

For the formsw1, w2 of the same degree,

w1 ∧ ∗w2 = w2 ∧ ∗w1 . (A.11)

With the Hodge map, the wedge product can be transformed intothe interior product and vice versa
by the relations

∗(w ∧ ϑα) = eα⌋ ∗ w , (A.12)
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and
ϑα ∧ ∗w = (−1)n(n−p) ∗ (eα⌋w) . (A.13)

3. Exterior derivative and coderivative of the coframe field
We express the exterior derivative of the coframe field as

dϑα =
1

2
Cα

βγϑ
β ∧ ϑγ Cα = Cµ

µα . (A.14)

The divergence of the coframe 1-form is

d ∗ ϑα = −Cα ∗ 1 . (A.15)

Indeed, using (A.8) we calculate

d ∗ ϑα =
1

n!
εαβ1···βn

d(ϑβ1 ∧ · · · ∧ ϑβn)

=
1

2(n− 1)!
εαβ1···βn

Cβ1
µνϑ

µ ∧ ϑν ∧ ϑβ2 ∧ · · · ∧ ϑβn . (A.16)

Using (A.9) and (A.10) we have

ϑµ ∧ ϑν ∧ ϑβ2 ∧ · · · ∧ ϑβn = −εµνβ2···βn ∗ 1 . (A.17)

Consequently,

d ∗ ϑα = − 1

2(n− 2)!
εαβ1···βn−1

εµνβ2···βn−1Cβ1
µν ∗ 1 =

=
1

2
(δµαδ

ν
β1
− δναδµβ1

)Cβ1
µν ∗ 1 = Cµ

αµ ∗ 1 = −Cα ∗ 1 . (A.18)

In a coordinate basis we consider the tensors

Ci
jk =

1

2

(o

Γ
i
jk−

o

Γ
i
kj

)

, Ci = Cm
mi . (A.19)

It is easy to check the relations

Ci
jk = Cα

βγeα
iϑβjϑ

γ
k , Ci = Cαϑ

α
i . (A.20)

Define a non-indexed (scalar-valued) 1-form

A = eµ⌋dϑµ = 2ϑµ[i,j]eµ
i dxj = 2Cidx

i = 3Cαϑ
α . (A.21)

On a manifold with a metricg = ηµνϑ
µ ⊗ ϑν (Section 3), we define, in addition, a scalar-valued

3-form

B = ηµν dϑ
µ ∧ ϑν = −ηµνϑµi,jϑ

ν
k dx

i ∧ dxj ∧ dxk

= Cijkdx
i ∧ dxj ∧ dxk = Cαβγϑ

α ∧ ϑβ ∧ ϑγ . (A.22)

The operations of symmetrization and antisymmetrization of tensors are used here in the nor-
malized form:

(a1 · · ·ap) =
1

p!
Sym(a1 · · · ap) , [a1 · · · ap] =

1

p!
Ant(a1 · · ·ap) . (A.23)
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