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Abstract

The possible extensions of GR for description of fermiona carved space, for supergravity
and for loop quantum gravity require a richer set of 16 indeleat variables. These variables
can be assembled in a coframe field, i.e., a local set of foeally independent 1-forms. In this
chapter we study the gravity field models based on a coframable alone. We give a short
review of the coframe gravity. This model has the viable Sataachild solutions even being
alternative to the standard GR. Moreover, the coframe mineating of the gravity energy may
be preferable to the ordinary GR where the gravity energyagabe defined at all. A principle
problem that the coframe gravity does not have any connetttia specific geometry even being
constructed from the geometrical meaningful objects. Angetoization of the coframe gravity
is an aim of this chapter. We construct a complete class ofdfirmme connections which are
linear in the first order derivatives of the coframe field onmadimensional manifolds with and
without a metric. The subclasses of the torsion-free, mewmmpatible and flat connections are
derived. We also study the behavior of the geometrical siras under local transformations
of the coframe. The remarkable fact is an existence of a asbabf connections which are
invariant when the infinitesimal transformations satisfy Maxwell-like system of equations. In
the framework of the coframe geometry construction, we @sepa geometrical action for the
coframe gravity. It is similar to the Einstein-Hilbert ami of GR, but the scalar curvature is
constructed from the general coframe connection. We shawttiis geometric Lagrangian is
equivalent to the coframe Lagrangian up to a total derieatiarm. Moreover there is a family
of coframe connections which Lagrangian does not includehtgher order terms at all. In this
case, the equivalence is complete.
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0 Introduction. Why do we have to go beyond Riemannian ge-
ometry?

General relativity (GR) is, probably, the best of the knoweadries of gravity. From mathematical
and aesthetic points of view, it can be used as a standard aff avhhysical theory has to be. Up
to this day, the Einstein theory is in a very good agreemettt thie observation data. Probably
the main idea of Einstein’s GR is that the physical propsentiethe gravitational field are in one-
to-one correspondence with the geometry of the base menifthe standard GR is based on a
Riemannian geometry with a unique metric tensor and a urligueCivita connection constructed
from this tensor. Hence, the gravity field equations of GRljmts a unique (up to diffeomorphism
transformations) metric tensor and consequently a unigoengtry. Therefore any physical field
except of gravity can not have an intrinsic geometrical sémshe Riemannian geometry.

After the classical works of Weyl, Cartan and others, we kiteat the Riemannian construction
is not a unique possible geometry. A most general geomeamedwork involves independent metric
and independent connection. A gravity field model based mngieneral geometry (Metric-affine
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gravity) was studied intensively, see [1]— [17] and the refees given therein. Probably a main
problem of this construction is a huge number of geometfiekls which do not find their physical
partner.

In this chapter we study a much more economical construtiésed on a unique geometrical
object — coframe field. Absolute (teleparallel) frame/enfie variables (repér, vierbein, ...) were
introduced in physics by Einstein in 1928 with an aim of a wailfion of gravitational and electro-
magnetic fields (for classical references, see [18]). Thesighl models for gravity based on the
coframe variable are well studied, see [19]— [42]. In sonpeats such models are even preferable
from the standard GR. In particular, they involve a meanihdéfinition of the gravitational energy,
which is in a proper correspondence with the Noether prageddoreover some problems inside
and beyond Einstein’s gravity require a richer set of 16 paawlent variables of the coframe. In
the following issues of gravity, the coframe is not only afuk#ool but often it cannot even be
replaced by the standard metric variable: (i) Hamilton@amrfulation [43], [44]; (ii) positive energy
proofs [45]; (iii) fermions on a curved manifold [46], [47Jv) supergravity [48]; (v) loop quantum
gravity [49].

Unfortunately, in the coframe gravity models, the propamrection between physics and the
underlying geometry is lost. In this chapter, we propose g @fageometrization of the coframe
gravity. In particular, we study which geometric structesn be constructed from the vierbein
(frame/coframe) variables and which gravity field models loa related to this geometry.

The organization of the chapter is as follows:

In the first section, we give a brief account of the gravityfiglodel based on the coframe field
instead of the pure metrical construction of GR. We dischisgdllowing features: (i) The coframe
gravity is described by a 3-parametric set of models; (il)thé coframe models are derivable from
a Yang-Mills-type Lagrangian; (iii) The coframe field eqjoats are well defined for all values of the
parameters. Only for the pure GR case, the system id degede¢calO equations for 16 variables;
(iv) The energy-momentum tensor of the coframe field is wefirted for all models except GR. In
the latter case the tensor nature of the energy-momentunessipn is lost; (v) There is a subset
of viable fields with a unique spherical symmetric solutiasmich corresponds to Schwarzschild
metric; (vi) The same subset is derived by the requiremetiteofree field limit approximation. All
these positive properties make the coframe gravity a ratestizbject of investigation.

In section 2, we construct a geometrical structure basedtoframe variable as unique building
block. In an addition to the coframe volume element and meiré present a most general coframe
connection. The Levi-Civita and flat connections are speaises of it. The torsion and nonmetricity
tensors of the general coframe connection are calculatedid@tify the subclasses of symmetric
(torsion-free) connections and of metric-compatible @mtions. The unique symmetric metric-
compatible connection is of Levi-Civita. We study the tfansations of the coframe field and
identify a subclass of connections which are invariant undstricted coframe transformations.
Quite remarkable that restriction conditions are appretéd by a Maxwell-type system.

In section 3, we are looking for a geometric representatich® gravity coframe model. The
main result is that the free-parametric gravity coframerhagian can be replaced by a standard
Einstein-Hilbert Lagrangian, when the curvature scalaaisulated on a general coframe connec-
tion. The standard GR Lagrangian contains a second ordieatiee term which appears in the form
of the total derivative. This term does not influence the fegidation, but it cannot be consistently
removed. We show that there is a set of coframe connectiomshvitfinstein-Hilbert Lagrangian
does not involve the second order derivative term at all.

In the last section, some proposals of possible develomoéiatgeometrical coframe construc-
tion and its applications to gravity are presented.
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1 Coframe gravity

Let us give a brief account of gravity field models based onfeacee field. We refer to such models
ascoframe gravity This is instead of the Einsteinianetric gravitybased on a metric tensor field.
We will use here mostly the notations accepted in [33].

1.1 Coframe Lagrangian

Consider a smooth, non-degenerated coframe {i8hkl « = 0,1, 2,3} defined on alD smooth
differential manifoldM . The 1-forms9* are declared to be pseudo-orthonormal. Thus a metric on
M is defined by

9= @9, map=(-1,1,1,1). (1.1)

So, the coframe field® is considered as a basic dynamical variable while the meisdreated as
a secondary structure.

The coframe field is defined only up ghobal pseudo-rotations.e. SO(1, 3) transformations.
Consequently, the truly dynamical variable is an equivegasiass of coframg#|, while the global
pseudo-rotations produce an equivalence relation on ldgs.cHence, in addition to the invariance
under the diffeomorphic transformations of the maniftld the basic geometric structure has to be
global (rigid) SO(1, 3) invariant.

Gravity is described by differential invariants of the @ofre structure. There is an important
distinction between the diffeomorphic invariants of thetriceand of the coframe structures. Since
the metric invariants of the first order are trivial, the neestructure admits diffeomorphic invariants
only of the second order or greater. A unique invariant ofshkeond order is the scalar curvature.
This expression is well known to play the key role of an integt in the Einstein-Hilbert action.
The coframe structure admits diffeomorphic and rigid(1, 3) invariants even of the first order. A
simple example is the expressien|d¥®, see Appendix for notations and basic definitions. The
operators, which are diffeomorphic invariants and glolmlaciants, can contribute to a general
coframe field equation. A rich class of such equations is ttootd in [27]. A requirement of
derivability of the field equations from a Lagrangian styicestricts the variety of possible options.

We restrict the consideration to odd, quadratic (in the &irder derivatives of the coframe field
9%), diffeomorphic, and globa#O(1, 3) invariant Lagrangians. A general Lagrangian of such a type
is represented by a linear combination of three 4-forms kvhi® referred to as the Weitzenbdck
invariants. Consider the exterior differentials of theidsformsd¢ and introduce the coefficients
of their expansion in the basis of even 2-foritg’

« el i j 1 «
di* = J7;da’ N da? = SC 5,977 1.2)
We use here the abbreviatight® = 9> A 9% A --.. By definition, the coefficient&'* ., are
antisymmetricC%g, = —C“,3. Their explicit expression can be given by the differentiin
notations (see Appendix)
Oaﬁ,y = 6,YJ (eﬁj d’l?a) . (13)

The symmetric form of a general second order coframe Laggang given by [25]

3
1 .
(oL = —% " p VL 1.4
2@2 gt p’L I ( )
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where/ denotes the Planck length constant, whileare dimensionless parameters. The partial
Lagrangian expressions are

1

WL = d9™ Axdd, = 5 gy CPY 1, (1.5)
1

AL = (d9a AI*) Ax (dIs ADP) = 5Cas (CoPT + CPr* - C7P) 1, (1.6)
1

BL = (o AO%) Ak (d05 A 9%) = 3 ((JamcaﬂV - 20%70557) 1. (17

The 1-formsy® are assumed to carry the dimension of length, while the ciefisp; are dimen-
sionless. Hence the total Lagrangi&ff) L is dimensionless. In order to simplify the formulas
below we will use the Lagrangiah = ¢2(<°®) I, which dimension is length square. In other worlds
the geometrized units system with= c = h = 1 is applied.

Every term of the Lagrangian (1.4) is independent of a sgecifoice of a coordinate system
and invariant under a global (rigid§O(1, 3) transformation of the coframe field. Thus, different
choices of the free parametersyield different rigidSO(1, 3) and diffeomorphic invariant classical
field models. Some of them are known to be applicable for dasan of gravity.

Let us rewrite the coframe Lagrangian in a compact form

1 ’ !
(cof)f, — 1 oy Gt pry NPV 41 (1.8)
where the constant symbols
PCLRLY: - (pl_|_p2+p3)naa’nﬁ5’n'w'+p2(na6'n57'nva’+na7’n6a’n75')
—2ps1* 0™ (1.9)

are introduced. It can be checked, by straightforward ¢aficun, that these\-symbols are invariant
under a transposition of the triplets of indices:

\aBye' By _ a8’y aBy (1.10)
We also introduce an abbreviated notation
FOBY = \eP1BY O g (1.11)
The total Lagrangian (1.4) reads now as
(o), = iCamF”BV x1. (1.12)
This form of the Lagrangian will be used in sequel for the &@oin procedure. The Lagrangian

(1.12) can also be rewritten in a component free notationsfinB one-indexed 2-forms: feeld
strength form

[e3 1 (o3 (03
C*i=5C P19, = dv®, (1.13)
and aconjugate field strength for&® := %Faﬁwm

F = (pl + p3)Ca + eraJ (19# N Cu) - p319a A (GHJCH) : (114)



6 Yakov Itin

Another form of 7¢ can be given via the irreducible (under the Lorentz grougpdegposition of
the 2-formC® (see [5], [4]). Write

¢ = Mg 4 @ga 4 B)oe (1.15)
where

@) = %w AeuJcty,  Gce = %eﬂ(ﬁ“ ACHY, (1.16)

while ()¢ is the remaining part. Substitute (1.16) into (1.14) to obta
F = (p1+ p3)MC* + (p1 — 2p3)PC™ + (p1 + 3pa + ps)PC™. (1.17)

The coefficients in (1.17) coincide with those calculatefPHi.

The 2-formL® and F* do not depend on a choice of a coordinate system. They changtors
by global SO(1, 3) transformations of the coframe. Using (1.13) the coframgraagian can be
rewritten as

(cof) ], = %ca A xFE (1.18)

Observe that the Lagrangian (1.18) is of the same form adaneard electromagnetic Lagrangian
(cof) ], = %F A xF. Observe, however, that the coframe Lagrangian involvesdeor valued 2-
forms of the field strength, while the electromagnetic Lagian is constructed of the the scalar
valued 2-forms.

1.2 Variation of the Lagrangian

The Lagrangian (1.18) depends on the coframe f#ldnd on its first order derivatives only. Thus

the first order variation formalism guarantee the corredpunEuler-Lagrange equation to be at

most of the second order. Consider the variation of the andraagrangian (1.12) with respect to

small independent variations of the 1-form&. The A-symbols (1.9) are constants and obey the
symmetry property (1.10). Thus

CoaprOF T = Cog NPV §C 511 = 6Clnp, FOOT . (1.19)
Consequently the variation of the Lagrangian (1.12) takegdrm
SL = %6C’QMF“57 %1 — Lx6(x1). (1.20)
The variation of the volume element is
S(¥1) = =6 (913) = =00 A9 — o = 090 A 90 — - = 59N A xD,, .
Thus the second term of (1.20) is given by
Lx6(x1) = (09 Axy) x L = =59 A (eq|L) . (1.22)

As for the variation of the”'-coefficients, we calculate them by equating the variatwfithie two
sides of the equation (1.2)

1
0dd, = 560(!,“,19‘“’ + Copn 09" N9V, (1.22)
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Use the formulas (A.12) and (A.13) to derive
1
0dio Nx0gy = 56004“,19‘“’ A x93y + Copn 09" N9 A %03,
1
= —§6C’QW19“ A*(e”]05y) — Capd" A x(e”]03,)
= 0Capy *x1 = 260" N Ca#[ﬁ * 19,” .

Therefore
0Capy * 1 = 6(d0q) A x5, + 260% A Caulp * Uy - (1.23)

After substitution of (1.21-1.23) into (1.20) the variatiof the Lagrangian takes the form
1
oL = S FoP (6(d19a) A5 gy + 200" A Copgs * 197]) + 897 A (e,)L).
Extract the total derivatives to obtain
1 1
5L = 560, (AP 8195,) + 2P Copgs 5 9, + 26, L) + 5d(wa N+FP19, ) (1.24)

The variation relation (1.24) plays a basic role in dervatf the field equation and of the conserved
current. We rewrite it in a compact form by using the 2-forrhd8) and (1.14). The terms of the
form F' - C can be rewritten as

FQB’YOQH[ﬂ * 1) = (FoPY — FO"BV)C’W[IQ *10,) = Coup * (P |F*) = —(eu|Ca) A *F™.
Hence, (1.24) takes the form
SL = 69" A (d(*}',t) — (en)Ca) NF™ + e, JL) +d(6O" AF,). (1.25)
Collect now the quadratic terms into a differential 3-form
Ti=(eu|Ca) NxF* —e€,|L. (1.26)
Consequently, the variational relation (1.24) results doapact form

oL = 60" A (d+ Fy = To) + (0" A F) (1.27)

1.3 The coframe field equations

We are ready now to write down the field equations. Considéependent free variations of a
coframe field vanishing at infinity (or at the boundary of thamifiold 9M). The variational relation
(1.27) yieldsthe coframe field equation

dx F' =TW. (1.28)

Observe that the structure of coframe field equation is ftlynsamilar to the structure of the stan-
dard electromagnetic field equatian: ' = J. Namely, in both equations, the left hand sides are
the exterior derivative of the dual field strength while thght hand sides are odd 3-forms. Thus the
3-formsT* serves as a source for the field strengtt, as well as the 3-form of electromagnetic
currentJ is a source for the electromagnetic fidid There are, however, some important distinc-
tions: (i) The coframe field currenf, is a vector-valued 3-form while the electromagnetic curren
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J is a scalar-valued 3-form. (ii) The field equation (1.28) @nlinear. (iii) The electromagnetic
currentJ depends on an exterior matter field, while the coframe ctiffénis interior (depends on
the coframe itself).

The exterior derivation of the both sides of field equatioi28) yields the conservation law

AT = 0. (1.29)

Note, that this equation obeys all the symmetries of thearoér Lagrangian. It is diffeomorphism
invariant and globabO(1, 3) covariant. Thus we obtain a conserved total 3-form (1.26¢kwis
constructed from the first order derivatives of the field aalés (coframe). It is local and covariant.
The 3-form7,, is our candidate for the coframe energy-momentum current.

1.4 Conserved current and Noether charge

The current7,, is obtained directly, i.e., by separation of the terms infiblel equation. In order to
identify the proper nature of this conserved 3-form we havarnswer the questiolVhat symmetry
this conserved current can be associated with?
Return to the variational relation (1.27). On shell, for fledds satisfying the field equations
(1.28), it takes the form
0L = d(69“ N *Fy) . (1.30)

Consider the variations of the coframe field produced by ikelkrivative taken relative to a smooth
vector fieldX, i.e.,
09 = Lx9 = d(X |[9°) + X |d9™. (1.31)

The Lagrangian (1.12) is a diffeomorphic invariant, hetgs@ariation is produced by the Lie deriva-
tive taken relative to the same vector field i.e.,

SL=LxL=d(X|L). (1.32)

Thus the relation (1.30) takes a form of a conservationd®{X ) for the Noether 3-form
O(X) = (d(XJ9*) + X]C*) A +Fo = X|L. (1.33)

This quantity includes the derivatives of an arbitrary eedield X. Such a non-algebraic depen-
dence of the conserved current is an obstacle for definiiananergy-momentum tensor. This
problem is solved merely by using the canonical form of theent. Let us takeX = e,. The first
term of (1.33) vanishes identically. Thus

O(ey) = (eu]CY) AN xFo — e, L. (1.34)

Observe that the right hand side of the equation (1.34) istixthe same expression as the source
term of the field equation (1.28):
Oen) =Ty (1.35)

Thus the conserved curref, defined in (1.26) is associated with the diffeomorphism iiarece
of the Lagrangian. Consequently the vector-valued 3-fdrr2g) represents thenergy-momentum
current of the coframe field

Let us look for an additional information incorporated ir tbonserved current (1.33). Extract
the total derivative to obtain

O(X) = d((xwa) % ]-“a) (X9 (d* Fa — Ta). (1.36)
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Thus, up to the field equation (1.28), the curr@ritX) represents a total derivative of a certain 2-
form ©(X) = dQ(X). This result is a special case of a general proposition difeatd [54] for a
diffeomorphic invariant Lagrangians. The 2-form

Q(X) =(X]9%) * Fq. (1.37)

can be referred to as thdoether charge for the coframe fieldConsiderX = e, and denote
Qo = Q(en). From (1.37) we obtain that this canonical Noether chargthefcoframe field
coincides with the dual of the conjugate strength

Qo = Qeq) = *Fq . (1.38)

In this way, the 2-formF,, which was used above only as a technical device for exprgdbe
equations in a compact form, obtained now a meaningful gegmm. Note, that the Noether charge
plays an important role in Wald’s treatment of the black resieropy [54].

1.5 Energy-momentum tensor

In this section we construct an expressions for the energyyemtum tensor for the coframe field.
Let us firstintroduce the notion of the energy-momentumdexis the differential-form formalism.
We are looking for a second rank tensor field of a type2). Such a tensor can always be treated
as a bilinear maff’ : X(M) x X(M) — F(M), whereF (M) is the algebra o€>°-functions on

M while X(M) is the F(M)-module of vector fields od/. The unique way to construct a scalar
from a 3-form and a vector is is to take the Hodge dual of ther&fand to contract the result by
the vector. Consequently, we define the energy-momentusoters

T(X,Y):=Y]*T(X). (1.39)

Observe that this quantity is a tensor if and only if the 3¥fa@urrent7 depends linearly (algebraic)
on the vector fieldX. Certainly,7(X,Y") is not symmetric in general. The antisymmetric part of
the energy-momentum tensor is known from the Poincaréegythepry [1] to represent the spinorial
current of the field. The canonical form of the energy-monaertif, s := T'(e,, eg) tensor is

Tog =¢8] *Ta. (1.40)
Another useful form of this tensor can be obtained from (Lby0applying the rule (A.13)
Top = *(Ta NVU3). (1.42)

The familiar procedure of rising the indices by the Lorenttric 7 produces two tensors of a
type(1,1)

T.P = «(To A9P), and T% = +(T*AYs), (1.42)
which are different, in general. By applying the rule (A.18% first relation of (1.42) is converted
into

To =T." x95. (1.43)
Thus, the components of the energy-momentum tensor aradeatjas the coefficients of the current
T, in the dual basis¥® of the vector spac@? of odd 3-forms.
In order to show that (1.43) conforms with the intuitive atiof the energy-momentum tensor
let us restrict to a flat manifold and represent the 3-formseovation law as a tensorial expression.
Take a closed cofram@&}* = 0, thusd = ¥3 = 0. From (1.43) we derive

ATo = dT," Ax9g = —T,° 5% 1.
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Hence, in this approximation, the differential-form comegion lawd7, = 0 is equivalent to the
tensorial conservation lad,” 5 = 0.

Apply now the definition (1.40) to the conserved current@) far the coframe field. The energy-
momentum tensdf,,, = e, | * 7, is derived in the form

1
T = o) # ((€u)Ca) A3F7 = Seu ) (Ca A4 F?)) (1.44)
Using (A.13) we rewrite the first term in (1.44) as

ey * ((euJCa) A *]:a) =k ((euJCa) A *(eVJ]:a)) .

As for the second term in (1.44) it takes the form

1 (6% 1 (0%
—gel s (eHJ(Ca/\*}“ )) = 3 * (Ca A4 F®)

Consequently the energy-momentum tensor for the cofranakeidie

Ty = = ((eu)Ca) A (0] F*)) + S = (Ca A #F2). (1.45)

Observe that this expression is formally similar to the kn@xpression for the energy-momentum
tensor of the Maxwell electromagnetic field:

T, =~ ((€u) F) A x(esJF)) + %mu « (F AXF). (1.46)

The form (1.46) is no more than an expression of the electgmmiic energy-momentum tensor in
arbitrary frame. In a specific coordinate chfrt'} it is enough to take the coordinate basis vectors
ea = 0o and considet, ;3 := ()T(d,, d3) to obtain the familiar expression

1
(em) 5 = —Fy, Fg!' + ZnoéﬁFﬂ,,F’“’. (2.47)
The electromagnetic energy-momentum tensor is obvioustetess. The same property holds also
for the coframe field tensor. In fact, the coframe energy-motum tensor defined by (1.45) is
traceless for all models described by the Lagrangian (Let),for all values of the parametess

Indeed, compute the tra@&*,, = T,,,n*" of (1.45):

i, = =« ((eu)Ca) A H(EHJF)) +25 (Ca AF)

—x (ﬁ“A(e#JCQ)/\*]—"O‘) 425 (Co AHF®) = 0.

Itis well known that the traceless of the energy-momenturadeis associated with the scale in-
variance of the Lagrangian. The rigidl (s a constant) scale transformation— \z¢, is considered
acting on a matter field as — A\%¢, whered is the dimension of the field. The transformation does
not act, however, on the components of the metric tensor artdeframe (coframe) components.
It is convenient to shift the change on the metric and on tamé& (coframe) components, i.e., to
consider

gij — /\QQU‘ s 19ai — /\19ai, andeof — /\71190/’ (148)
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with no change of coordinates. In the coordinate free foisnathe difference between two ap-
proaches is neglected and the transformation is

g— Mg, 9% — A<, and e, — A le,. (1.49)

The transformation law of the coframe Lagrangian is simpleltain from the component-wise
form (1.8). Under the transformation (1.49) the volume elatchanges asl — A* x 1. As for
the C-coefficients, they transform due to (1.3)@8,. — A\~1C%,. Consequently, by (1.5), the
transformation law of the Lagrangian 4-formiis— \2L, which is the same as for the Hilbert-
Einstein Lagrangiad.yr = R\/—gd*z — M\?Lyg. After rescaling the Planck length the scale
invariance is reinstated. Hence, for the pure coframe figdehthe energy-momentum tensor have
to be traceless in accordance with the proposition above.

1.6 The field equation for a general system

The coframe field equation have been derived for a pure cefrideid. Consider now a general
minimally coupled system of a coframe fieltt* and a matter field). The matter field can be
a differential form of an arbitrary degree and can carryteaby number of exterior and interior
indices. Take the total Lagrangian of the system to be ofdha {¢ = Planck length)

1 co (e} (e} ma (e}
L= £—2< DL, d0%) + @20 L%, 4, dy)) (1.50)

where the coframe Lagrangi?t®) L, defined by (1.4), is of dimension length square. The matter
Lagrangiani®®) L is dimensionless.

The minimal coupling means here the absence of coframeadiség in the matter Lagrangian.
Take the variation of (1.50) relative to the coframe fiéftdto obtain

5L = Lago n (d s Fo — (O — £2<mat>7;) , (1.51)
62
where the 3-form of coframe current is defined by (1.28). THerg of matter current is defined
via the variation derivative of the matter Lagrangian takaative to the coframe field®:

0
mat) . _ 9 (mat)j 1.52
Tai= - (1.52)

Introduce the total current of the systéfi®) 7, = (T, + ¢2(t)7. which is of dimension
length (mass). Consequently, the field equation for the gésgstem (1.50) takes the form

ds Fo = 0T, (1.53)
Using the energy-momentum tensor (1.43) this equation eamritten in a tensorial form
ep) xdx Fo=YT,5, (1.54)

or equivalently
Vg Ndx Fo=YT,5%1, (1.55)

The conservation law for the total curreiif, = 0 is a straightforward consequence of the field
equation (1.53). The form (1.53) of the field equation lodke the Maxwell field equation for
the electromagnetic field « ' = J. Observe, however, an important difference. The souree ter
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in the right hand side of the electromagnetic field equatigpethds only on external fields. In the
absence of the external sourcés= 0, the electromagnetic strengf¥’ is a closed form. As a
consequence, its cohomology class interpreted as a chitige source. The electromagnetic field
itself is uncharged.

As for the coframe field strengtiw® its source depends on the coframe and of its first order
derivatives. Consequently, the 2-foriF“ is not closed even in absence of the external sources.
Hence the gravitational field is massive (charged) itself.

On the other hand the tensorial form (1.54) of the coframd &guation is similar to the Einstein
field equation for the metric tenséf, 3 = 87r<’"at)Ta5 . Indeed, the left hand side in both equations
are pure geometric quantities. Again, the source termifiehd equations are different. The source
of the Einstein gravity is the energy-momentum tensor ofth® matter fields. The conservation of
this tensor is a consequence of the field equation. Thus &gemie meaningful conserved energy-
momentum current for the metric field existed it would haverbeonserved regardless of the matter
field current. Consequently, any redistribution of the ggemomentum current between the matter
and gravitational fields is forbidden in the framework of treitional Einstein gravity.

As for the coframe field equation, the total energy-momentument plays a role of the source
of the field. Consequently the coframe field is completelyf“s#eracted” - the energy-momentum
current of the coframe field produces an additional field. heserved current of the coframe-
matter system is the total energy-momentum current, ngttbel matter current. Thus in the frame-
work of general coframe construction the redistributiotha energy-momentum current between
the matter field and the coframe field is possible, in prirecipl

1.7 Spherically symmetric solution

Let us look for a static spherically symmetric solution te ffeld equation (1.28). We will use the
isotropic coordinate$z’ , 7 = 1,2, 3} with the isotropic radiup. Denote

s=p’= 5%3172503 =a2% 4 9% 422, (1.56)

Recall that we identify the gravity variable with the cofrafield defined up to an infinitesimal
Lorentz transformation. It is equivalent to the metric fielb it is enough to look for a coframe
solution of a “diagonal” form [29]

90 = f(s)da®, 9 =g(s)da'. (1.57)

Although this ansatz is not the most general one, it is endweghuse (1.57) corresponds to a most
general static spherical symmetric metric

ds? = 2T qt? — e290) (da? + dy? + d2?). (1.58)

Substitution of (1.57) into the field equation (1.28) we dttan over-determined system of three
second order ODE for two independent variablés) andg(s)

p1(2f"s+3f +2fg's —2(g')%s + (f/)QS) +2p3(2g”s—|—3g’+ (g/)zs) =0

o1 (207 + 275" 207 — 2002 + 200(F7 + 9" + (F)2 209~ ()?) =0
p1 (49" + 49+ 4f'g's = 2(f')%s) + 25 (2f"s + 21 + 295 + 29+ 2(f')?s) =
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This system has a solutions with the Newtonian behavior @nitpy f ~ 1 — C/p only if the
parametep; is equal to zero. In this case, the system (1.59) has a unajutos

1- L
f=In H—E, g=2In (1—|— Cip) . (1.60)
cp

By taking the parameter of integration to be inversely prtpoal to the mass of the central body
¢ = 2 we obtain the coframe field in the form

1- _ 2
190 - 1—|— ipdt’ 191 - <1+2ﬂ> dIla 1= 15273' (161)
m p
2p

This coframe field yields the Schwarzschild metric in ispteccoordinates

1—22N\2 ma 4
ds? = [ —22 ) a2 — (14+ —) (da? + dy? + dz?). 1.62
s (1+;’;) (+2p)(x+y+z) (1.62)

Note that the values of the parametpgssps are not determined via the “diagonal” ansatz. Thus the
Schwarzschild metric is a solution for a family of the cofefield equations which defined by the
parameters:

p1 =0, po,p3 — arbitrary. (1.63)

The ordinary GR is extracted from this family by requiringtieélocal SO(1, 3) invariance, which
is realized by an additional restriction of the parameters:

p1=0, 2ps+p3=0. (1.64)

1.8 Weak field approximation

Linear approximation of coframe models was usual appliedtiady the deviation from the standard
GR, and for comparison with the observation data, see [2Q], [23]. We will use this approach
to study the meaning of the conditign = 0, see [39]. Recall that this condition guarantees the
existence of viable solutions.
To study the approximate solutions to (1.37), we start wittivéal exact solution, éolonomic
coframe for which
d9* =0. (1.65)

ConsequentlyF* = C® = 0, so both sides of Eq. (1.37) vanish. By Poincaré’s lemmastiution
of (1.65) can be locally expressedds = dz*(z), wherez®(z) is a set of four smooth functions
defined in a some neighborhoédof a pointz € M. The functionsz®(x), being treated as the
components of a coordinate map: U — R*, generate a local coordinate systeniariThe metric
tensor reduces, in this coordinate chart, to the flat Minkowsetric g = 7,,dZ* ® di®. Thus the
holonomic coframe plays, in the coframe background, theesaste as the Mankowski metric in
the (pseudo-)Riemannian geometry. Moreover, a manifottbered with a (pseudo-)orthonormal
holonomic coframe is flat. The weak perturbations of thedssiutiond®* = dz* are

9% = dz® + h® = (6% + h%) da® . (1.66)
The indices im?;, can be lowered and raised by the Mankowski metric

hab == namhmb ) hab = nbmham . (167)
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The first operation is exact (covariant to all orders of agjpnations), while the second is covariant
only to the first order, whep® ~ n?. The symmetric and the antisymmetric combinations of the
perturbations

1 1
Oab = hap) = §(hab + ha)s and  wap = higy = Q(hab — hia) - (1.68)

as well as the tracé := h™,, = 6™, are covariant to the first order. The components of the
metric tensor, in the linear approximation, involve onlg symmetric combination of the coframe
perturbations

Jab = Nab + 204 . (169)
When the decomposition

hap = eab + Wap (170)
is applied, the field strength is splitted to a sum of two iretegent strengths — one defined by the
symmetric fieldd,;, and the second one defined by the antisymmetric figid

Fa(emna wmn) = (sym)]_-a(omn) + (ant)fa(wmn) 5 (171)
where
G Fy = = (o1 + p3)0app.] + P37aip0cim™ = patiapt, )] 9° A O, (1.72)
and
(ant)fa == [(Pl + p3)wa[b,c] + 3p2w[ab,c] - p3na[bwc]m’m] ﬁb NI (173)

Hence, for arbitrary values of the parametgysthe field strengths of the fields,;, andw,; are
independent.
The linearized field equation takes the form

(pl + pg)(D eab B oamvb.’m) + p3( - WabD 0 — embym,a + o,a,b + nabomnﬂmyn) +
(p1 +2p2 + p3) (Hwab — Wamp™) + (202 + p3)wWem,a™ = 0. (1.74)

Proposition 1: For the casen; = 0, the linearized coframe field equation (1.74), splits, ibiaary
coordinates, into two independent systems

(Sym)g(ab) (emn) =004 =0, and (ant)g[ab] (wmn) = Dwep = 0.

If p1 # 0, EQ.(1.74) does not split in any coordinate system.

Consequently, fop; = 0 and for generic values of the parametessps, the field equation of
the coframe field is splitted to two independent field equegtifor two independent field variables.
This splitting emerges also for the Lagrangian and the grnergmentum current.

Proposition 2: For p; = 0, the Lagrangian of the coframe field is reduced, up to a totaivative
term, to the sum of two independent Lagrangians

L(Oap, wap) = ™ L(Oap) + @) L(wap) . (1.75)

Moreover, the coframe energy-momentum current is redwnedhell, in the first order approxima-
tion, as
7:1(9777,111 wmn) = (sym)ﬁ(emn) + (ant)n(wmn) s (176)

up to a total derivative.

The result of our analysis is as following: In the linear apgmation the field variable is splitted
to a sum of two independent fields. These fields do not interagtin the cas@; = 0. Remarkable
that this condition coincides with the viable conditiong3), which is necessary for Schwarzschild
metric.
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2 Coframe geometry

The coframe gravity represented above is not related totainepecific geometric structure. In
this section we are looking for a geometry that can be coctsdufrom the coframe field. It is well
known that, on a Riemannian manifold there exists a uniqueali connection of Levi-Civita [50].
Already this statement indicates that when we want to dethl sdme other connection, for instance
with the flat one, we have to use some other non-Riemannianegeic structure. In this section, we
define a geometry based on a coframe field. It is instead offtthe gtandard Riemannian geometry
based on a metric tensor field.

2.1 Coframe manifold. Definitions and notations

Our construction will repeat the main properties of the Riamian structure. Let us start with the
basic definitions.

Differential manifold. Let M be a smoot + 1 dimensional differentiable manifold, which is
locally (in an open set/ C M) parametrized by a coordinate chést’; i = 0,1,...n}. The set
of n + 1 differentialsdz’ provides a coordinate basis for the module of the diffeegfitrms onU.
Similarly, the set of, + 1 vector fieldsd; = 9/9x! forms the coordinate basis for the module of the
vector fields orU. Arbitrary smooth transformations of the coordinatés— y(x7) are admissible.
Under these transformations, the elements of the coorlbetes transform by the tensorial law
oyt 0 0 0xd 0

9z o oyt Oyt OxI

de’ — dy' = (2.2)
The Jacobian matri®y®/dz7 is assumed to be smooth and invertible. The coordinate hases
ando; = 9/0z" are referred to abolonomic basesThey satisfy the relationd(dz?) = 0 and
[0:,0;] = 0.

For a compact representation of geometric quantities usésul to have an alternative descrip-
tion via nonholonomic basesDenote by§* a generic nonholonomic basis of the module of the
1-forms onU. Its dualf, is a basis of of the module of the vector fields@@nin generald6® # 0
and|[f., f»] # 0. Relative to the coordinate bases, the elements of the hambmic bases are
locally expressed as _ _

0% = 6%; dz" | fo=fa"0;. (2.2)

Here the matrice8®; and f,* are the inverse to each-other, i.e.,
0% f0 =07, 0% fit =57, (2.3)
Arbitrary smooth pointwise transformations of the nonmaimic bases
0° = A%(@)0°,  fo— A (@) ]y (2.4)

are admissible. Herd,” denotes, as usual, the matrix inverseito,.

Although the basis indices change in the same range -- = {0,1,...,n} they are distin-
guished from the coordinate indicegsj,---. In particular, the contraction of the indices in the
quantities§®; or f,* is forbidden since the result of such an action is not a scalae base trans-
formations (2.4) are similar to the coordinate transfoioret (2.1). Note that the basi$ can be
changed to an arbitrary other basis, for instance to thed@oate one. Indeed, the formulas (2.2) can
be treated as certain transformations of the bases. Coamstyg@® cannot be given any intrinsic
geometrical sense. In particular, it cannot be used as alrbdehysical field.
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Coframe field. Let the manifoldM be endowed with a smooth nondegenerate coframedfieldt
comes together with its dual — the frame field. In an arbitrary chart of local coordinatés®},
these fields are expressed as

9 = 9% dat, o = €4'0; (2.5)

i.e., by two nondegenerate matriag; ande,’ which are the inverse to each-other. In other words,
we are considering a setof independent smooth functions . Also the coframe indices change
inthe samerange, 5,... = 0,...,n as the coordinate indicésj, . . . and the basis indices, . . ..
They all however have to be strictly distinguished. In gartr, the indices if®; or e,* cannot be
contracted.

Coframe transformation. For most physical models based on the coframe field, thisifeldfined
only up to global transformations. It is natural to considevider class of coframe fields related by
local pointwise transformations

9% — Lg(x)9" ea — Lo’ (x)es . (2.6)

HereL“s(x) andL,”(z) are inverse to each-other at arbitrary painDenote the group of matrices
L*s(z) by G. Note two specially important cases: @)is a group of global transformations with a
constant matrix.“ z; (ii) G is a group of arbitrary local transformations such that thieies of L g
are arbitrary functions of a point. In the latter case, thiedénce between the coframe field and
the reference bast' is completely removed and the coframe structure is trixéali

Consequently we involve an additional element of the cofatnucture —the coframe trans-
formations group

G= {L(’B(x) € GL(n + 1,R); for everyx € M} . (2.7)

On this stage, we only require the matride¥s;(z) to be invertible at an arbitrary pointe M. The
successive specializations of the coframe transformatiatnix will be involved in sequel.

Coframe field volume element.We assume the coframe field to be non-degenerate at an gybitra
pointz € M. Consequently, a special+ 1-form, the coframe field volume elemeistdefined and

nonzero. Define
1
vol(¥*) = = €apan U A AP (2.8)
n.
wheree,, ..., IS the Levi-Civita permutation symbol normalized by,...,, = 1. Treating the
coframe volume element as one of the basic elements of themefgeometric structure, we apply

the following invariance condition.

Volume element invariance postulat&lume elementol(9¢) is assumed to be invariant un-
der pointwise transformations of the coframe field

vol (9%) = vol (L") . (2.9)

This condition is satisfied by matrices with unit determin&Zonsequently, the coframe trans-
formation group (2.7) is restricted to

G= {Laﬁ(x) € SL(n+ 1,R); for everyx € M} . (2.10)
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Metric tensor. For a meaningful physical field model, it is necessary to feaweetric structure on
M. Moreover, the metric tensor has to be of the Lorentzianatigne. In a coordinate basis and in
an arbitrary reference basis, a generic metric tensor isemnrcorrespondingly as

9= gijda’ ©da’ 9= gab" @0, (2.11)

where the componentg; andg,; are smooth functions of a poimte M.

On a coframe manifold, a metric tensor is not an independeattify. Instead, we are looking
for a metric explicitly constructed from a given coframedigj = ¢g(¥*). We assume the metric
tensor to be quadratic in the coframe field components arepmadent of its derivatives. Moreover,
it should be of the Lorentzian type, i.e., should be redec#tl a point to the Lorentzian metric
Nep = diag(—1,1,---,1). These requirements are justified by an almost flat apprdiomafor
an almost holonomic coframé?; ~ ¢¢, we have to reach the flat Lorentzian metric. With these

K2

restrictions, we come to a definition of theframe field metric tensor
9="1ap9" @Y%, gij = 1ap9%9"; . (2.12)

Note that the equations (2.12) often appear as a definitian(abn unique) orthonormal basis of
reference for a given metric. Another interpretation €at12) as an expression of a given metric
in a special orthonormal basis of reference, as in (2.11)ouinapproach, (2.12) has a principle
different meaning. It is a definition of the metric tensordigia the coframe field. Certainly the
form of the metria), g in the tangential vector spa@g M is an additional axiom of our construction.
With an aim to define an invariant coframe geometric structue require:

Metric tensor invariance postulatdetric tensor is assumed to be invariant under pointwise
transformations of the coframe field, i.e.,

g (%) =g (L*s9") . (2.13)

This condition is satisfied by pseudo-orthonormal matrices

n;LVLMaLE = NapB- (214)
Consequently, the invariance of the coframe metric rdsttie coframe transformation group
to
G = {L“B(x) € O(1,n,R); for everyz € M}. (2.15)

In order to have simultaneously a metric and a volume elerstenttures both constructed
from the coframe field, we have to assume a successive tesirif the coframe transforma-
tion group:

G= {L”B(x) € SO(1,n,R); for everyz M}. (2.16)

Topological restrictions. A global smooth coframe field may be defined only on a paralélie
manifold, i.e., on a topological manifold of a zero second#y class. This topological restriction
is equivalent to existence of a spinorial structureidn In this chapter, we restrict ourselves to a
local consideration, thus the global definiteness probheitide neglected. Moreover, we assume
the coframe field to be smooth and nonsingular only in a "wesgkise. Namely, the components
99, ande,,’ are required to be differentiable and linearly independéatmost all points of//, i.e.,
except of a zero measure set. So, in general, the coframectieldlegenerate at singular points,
on singular lines (strings), or even on singular submadg@b-branes). This assumption leaves a
room for the standard singular solutions of the physics fegldations such as the Coulomb field,
the Schwarzschild metric, the Kerr metric etc..
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2.2 Coframe connections

From the geometrical point of view, a differential manif@ddowed with a coframe field is a
rather poor structure. In particular, we can not deternfilwaé vectors attached at distance points
are parallel to each-other or not. In order to have a meanirgfometry and, consequently, a
meaningful geometrical field model for gravity, we have tosider a reacher structure. In this
section we define a coframe manifold with a linear coframenegtion. The connection 1-form
I’ will not be an independent variable, as in the Cartan gegnuetm MAG [5]. Alternatively
in our construction the connection will be explicitly conatted from the coframe field and its first
order derivatives. Thus we are dealing with a categoryofifame manifolds with a linear coframe
connection:

{M,ﬁo‘,G,Fab(ﬁa)}. (2.17)

We start with a coframe manifold without an addition mettizisture. Metric contributions to the
connection will be considered in sequel.

Affine connection. Recall the main properties of a generic linear affine conaean an(n + 1)
dimensional differential manifold. Relative to a local cdimate chart:?, a connection is represented
by a set of(n + 1)? independent functiong®;; (z) — the coefficients of the connectichhe only
condition these functions have to satisfy is to transfomuar a change of coordinates— y*(x),

by an inhomogeneous linear rule:

m n 2,10 i
Ay™ Ay 0%y )817 2.18)

Ozl dzk T fxidxk ) oyt

When an arbitrary reference bagié®, f,} is involved, the coefficients of the connection are ar-
ranged in &5 L(n,R)-valuedconnection 1-formwhich is defined as [50]

L= " (0" — 0%y ;) da? . (2.19)

In a holonomic coordinate basis, we can simply use the ilesti*; = §¢ and f,* = §i. Conse-
qguently, in a coordinate basis, the derivative term is clateut and (2.19) reads

Iyt =T do* . (2.20)
Due to (2.18), this quantity transforms under the coorditi@nsformations as
. oy™ oy ox'
4 1ZJ -7
Iyt — {Pm 9 +d ((%j oy (2.21)

Alternatively, the connection 1-form (2.19) is invariamider smooth transformations of coordinates.
The inhomogeneous linear behavior is shifted here to tmsfoamations of ,” under a linear local
map of the reference bagi#®, f,) givenin (2.6):

I (%A 4+ dAY) Ay (2.22)

On a manifold with a given coframe fiel#f*, the connection 1-form (2.19), can also be referred to
this field. We denote this quantity by, ”. It is defined similarly to (2.19):

This quantity can be treated as an expression of a geneneection (2.19) in a special basis. Note
an essential difference between two very similar equat{@r9) and (2.23). In (2.19), we must
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be able to apply arbitrary pointwise linear transformadiar the basis. The coefficients of the
connection ;;, are independent on the bagié, f,) used in (2.19). On the other hand, in (2.23),
we permit only the transformations of the coframe fiéldthat are restricted by some invariance
requirements. Moreover, we will require the connectitip, to be constructed explicitly from the
derivatives of the coframe field itself.

Linear coframe connections. We restrict ourselves to the quasi-linddr (9*), i.e., we consider
a connection constructed as a linear combination of thedid#r derivatives of the coframe field.
The coefficients in this linear expression may depend onrdmad/coframe components. In other
words, we are looking for a coframe analog of an ordinary {@wita connection.

Let us assist ourselves with a similar construction fromRiemannian geometry. So let us
look now for a most general connection that can be constifoden the metric tensor components.
Consider a general linear combination of the first ordenadgities of the metric tensor:

9" (1 Gmjk + Q2Gmk,j + 3Gjkm) - (2.24)

Although this expression has the same index contelit gsit is a connection only for some special
values of the parameters, as.a3. Indeed, any two connections are differ by a tensor. Thus an
arbitrary connection can be expressed as a certain speaiaéction plus a tensor

e =Tk + Kk . (2.25)

Use forf ¢,k the Levi-Civita connection

Ik = %gzm(gmj,k + Gmk,j — Gjkm) - (2.26)
However in Riemannian geometry, does not exist a tensotreated from the first order derivatives
of the metric. Thereforé(®;; = 0, thus the Levi-Civita connection is a unique connectiorn taa
be constructed from the first order derivatives of the meértsor. It is evidently symmetric and
metric compatible.
In an analogy to this construction, we will look for a most geal coframe connection of the
form

T (9%) =T (9°) + K5, (9%) . (2.27)

HereT ‘. is a certain special connection, whil€' ;; is a tensor. To start with, we need a certain
analog of the Levi-Civita connection, i.e., a special cartioe constructed from the coframe field.

The flat Weitzenbdck connection. On a bare differentiable manifoltl/, without any additional
structure, the notion of parallelism of two vectors attathe distance points depends on a curve
joint the points. Oppositely, on a coframe manifélti/ , 9}, a certain type of the parallelism of
distance vectors may be defined in an absolute (curve indepérsense [52]. Namely, two vectors
u(z1) andv(x2) may be declared parallel to each other, if, being referreti¢docal elements of
the coframe fieldi(x1) = uq(21)9%(z1) andv(az) = v (22)9*(22), they have the proportional
components., (x1) = Cuv,(x2). This definition is independent on the coordinates used en th
manifold and on the nonholonomic frame of reference. It doethels on the coframe field. Since,
by local transformations, the coframes at distance pohaage differently, only rigid linear coframe
transformations preserve such type of a parallelism.

This geometric picture may be reformulated in term of a gd@cinnection. The elements of the
coframe field attached to distinct points have to be assuraedllgl to each other. It means that a
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special connectioﬁijk exists such that the corresponding covariant derivatite@toframe field
components is zero:

9% e = 9% = D 9% = 0. (2.28)
Multiplying by e, we have an explicit expression
ik = a5 - (2.29)
Under a smooth transform of coordinates, this expressidraissformed in accordance with the
inhomogeneous linear rule (2.18). Consequently, (2.2 éd gives the coefficients of a special
connection which is referred to as tkiéeitzenbck flat connectionThis connection is unique for a
class of coframes related by rigid linear transformations.

In an arbitrary nonholonomic reference basi¥, f.), we have correspondingly a unique
Weitzenbdck’s connection 1-form which is constructed yL9) from (2.29)

L= f4 (07 T = 0;) da (2.30)
Substituting the coframe fielé* instead of the nonholonomic bagié we have
Fof = (=9% ) + 9%keat9%: ;) e’ da? =0. (2.31)

Thus the Weitzenbdck connection 1-form is zero, when iefenred to the coframe fiel@®, e,,)
itself. Certainly, this property is only a basis relatedtfatt yields, however, vanishing of the
curvature of the Weitzenbdck connection, which is a bamigpendent property.

General coframe connections. Recall that we are looking for a general coframe connection
constructed from the first order derivatives of the coframtelfcomponents. In the Riemannian
geometry, the analogous construction yields an uniqueeaxtion of Levi-Civita. In the coframe
geometry, however, the situation is different.

Proposition 3: The general linear connection constructed from the firsteorderivatives of the
coframe field is given by a 3-parametric family:

T =Tk + a1 C'gp, + a2Cy8, + a3 Cid (2.32)

Proof: The difference of two connections is a tensor of a type), so an arbitrary connection can
be expressed as the Weitzenbdck connection plus a tensor

Fijk ZI‘ijk + Kijk . (233)

Sincef ijk is already a linear combination of the first order derivagjwhe additional tensor also
has to be of the same form. Observe thét; involves only coordinate indices, while the partial
derivativesd*; ; have a coframe index. This coframe index has to be suppressed. Hence the first
order derivatives of the coframe components may appe&¥ jp only by the expressions, 92 .
Notice that this quantity coincides with the coefficient¥\itzenbdck’s connection (2.29), which is
not a tensor. Since the matrix of the frame field componeptss the inverse of#*;, the derivatives

of the frame fielct,,’  are linear combinations @ . Thus we do not need to involve additional
derivatives of the frame field int&* ;. Consequently, the components of the tenséy;, have to

be linear infijk. Write a general expression of such a type:

. 1
Kk = = Xjri

imn Al
5 r

- (2.34)
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Since, under a transformation of coordinates, the corme}%l’imn changes by inhomogeneousrule,
it can appear in the tensdt?;; only in the antisymmetric combination. Thus the most genera
expression for this tensor is
i 1 imn 21 1 imn vl

K'j, = 3 Xkt T ) = 5 Xkt C'mn - (2.35)
Hence, the symmetry relatiog;; " = ;'™ holds. The coefficients ™" have to be
constructed from the components of the absolute bsjsande, . Again, sincexjklim” involves
only coordinate indices, it has to be constructed from theed products of the frame and the
coframe components. However all such products are equiaétitonecker symbol. Thug;x, ™"
has to be a tensor expressed only by the Kronecker symbofsegaently, the general expression
for x "™ can be written as

Xk = 018" 0167 4 o] 81088 + a8 o, (2.36)

Substituting into (2.35) we have
Kijk = alcijk + O[QCj(slic + Oéng(S; . (237)

Consequently (2.32) is provell
By (2.19), the connection 1-form corresponded to the caeffts (2.32), being referred to a
nonholonomic basis, takes the form

L = fb (=00 + 07 T s+ K ) da™ (2.38)

When this quantity is referred to the coframe field itselg fist two terms are canceled. In this
special basis, the expression is simplified to

I =K' el 9%,da? (2.39)

whereK' . is givenin (2.37). Since the 1-form (2.39) depends only disgmmetric combinations
of the first order derivatives, it can be expressed by theaiextderivative of the coframe:

Faﬁ = (Ollcﬁ'ya —+ OQC.Y(Sg + agC’adff) 9. (240)

Also a components free expression is available

R = =1 areadd? + an(ea )97 + 082 A] @.41)

Metric-coframe connection. Consider a manifold endowed with the coframe metric terddr2).
Again, we are looking for a most general coframe connectiat tan be constructed from the
first order derivatives of the coframe field. We will refer toas themetric-coframe connection
Thus we are deal with a categoryafframe manifolds with a coframe metric and a linear coframe
connection:

{M L9%,G, g(99), rab(ﬁa)} . (2.42)

Now the connection expression will involve some additideains which depend on the metric ten-
sor (2.12). To describe all possible combinations of theimttnsor components and frame/coframe
components it is useful to pull down all the indices. Define:

Cijk = gimI™ jk Cijk = 9imC™ jk . (2.43)



22 Yakov Itin

Proposition 4: The most general metric-coframe connection constructed the first order deriva-
tives of the coframe field is represented by a 6-parametnilfa

Lijk =Tk + 01Cijk + @29k C + a39i;Cr + B19jxCi + B2Cki + B3Chij - (2.44)

Proof: Similarly to the case of a pure coframe connection, a metrsftame connection can be
represented as the Weitzenbodck connection plus an agbitiasor. So we can write

Lijk =Tijr + Kijk - (2.45)

The tensotk';;;, has to be proportional to the derivatives of the coframe fi¢ld;. Repeating the
consideration given above we come to the same conclusieffirsh order derivatives of the coframe
field can appear in the tenséf;;, only via the antisymmetric combination of the flat connectio
o

T ifmn] = Cimn. Consequently we have a relation

1
Kijk = 3 Xijk' ™" Clmn - (2.46)

The tensory;;,'™" may involve now the components of the metric tensor in adidito the Kro-
necker symbol. Using the symmetry relatigp, ™" = Xijkl[m”] we construct a most general
expression of such a type

Xigh™ = ondlalme7) 4 Bydlofm e + BaoLolma +
02gikg'™07 + a3giig' "oy + Brgjeg' oy (2.47)
Consequently, the additional tensor takes the required for
Kijr = a1Ciji + a29iCy + a39i;Cr + B19xCi + B2C5ki + B3Chij - (2.48)

[ |
The expression (2.44) can be rewritten in a

T =Tk + a1C%jx + a2diCj + OCB(S;CI@ + 19" gjiCr + B29" Cjra + Bag" Crij . (2.49)

In fact, this expression is a proper form of the coefficieritthe coframe connection. Here we can
identify two groups of terms: (i) The terms with the coeffitie;; that do not depend on the metric;
(ii) The terms with the coefficient; that can be constructed only by use of the metric tensor.

With respect to a nonholonomic basjs,, %), the coefficients of a connection (2.49) correspond
to a connection 1-form (2.19)

TP =1+ Ky 500 da? . (2.50)
When (2.50) is referred to the coframe field itself, it is slifigd to
I =K' el 9%,da? . (2.51)

This expression depends only on the antisymmetric combimabf the first order derivatives of the
coframe components. So it can be expressed by the exterivatiee of the coframe. We have

I’ = (a1C” 0 + 020405 + a3Cadl + B1C Ny + B2Chawn™ + B3Caryn™) 97, (2.52)
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or, equivalently,

1
Ig* = ~3 areg]dd® + azd®(eg|A) + azdg A+ Bi(e*]A)dp +

Bae® |(ep)di, ) 9" + Bze® Jcmﬂ} . (2.53)

2.3 Torsion of the coframe connection

Torsion tensor and torsion 2-form. Definitions. Consider a connection 1-forin,® referred to an
arbitrary basig6“, f,). For a tensor valueg-form of a representation typ@(Aab), thecovariant
exterior derivativeoperatorD : QP (M) — QPT1(M) is defined as [24], [5]

D=d+ I (AL) A . (2.54)

In particular, the covariant exterior derivative of a scalalued form¢ is D¢ = d¢. For a vector-
valued formg?, it is given byD¢® = d¢® + I,* A ¢°, etc.
For a connection 1-fornf,” written with respect to a nonholonomic basis, thesion 2-form
T is defined as
T = DO = dh* + I, N 6°. (2.55)

On aD dimensional manifold, this covector valued 2-form #asD? — D)/2 independent compo-
nents. Substituting (2.19) into (2.55), we observe thattifeame derivative terrdd* cancels out.
Hence, _ _ _ _
T =T"10%da? Ada® =T ;370" da? A da® . (2.56)
In a coordinate coframe, this expression is simplified to
T =T"da? Ada". (2.57)

Consequently, the torsion 2-forfi® is completely determined by an antisymmetric combination
of the coefficients of the connection. Observe that such @oatibn is a tensor. Thus, the torsion
2-form is completely equivalent to(@, 2)-ranktorsion tensomwhich is defined as

T i = 2"y - (2.58)
In a holonomic and a nonholonomic bases, the torsion 2-ferexpressed respectively as
1. . 1 . )
T = 5T jeda’ A A 5 T"3k0%da? A dz* . (2.59)
It is useful to define also a quantity
1 . )
T = iTijﬁaid:cJ Adz® . (2.60)

Observe that this set of 2-forms cannot be regarded as arweadteed form since the transformations
of the coframe field)* are restricted. However, the proper vector valued torsifors (2.59) are
related to the quantity (2.60) by the following simple eduias

TH=el' T, T =0%e,' T, (2.61)
With respect to the coframe field, the torsion 2-form of that¥¢abdck connection (2.60) reads

o

T = dy°. (2.62)



24 Yakov Itin

Torsion of the metric-coframe connection. For the metric-coframe connection (2.44), the covari-
ant component®;;; = 2g;,,['" ;) of the torsion tensor take the form

Tije = 2(1 4 o1)Cijk + (2 — as)(9ikCj — 9i5Ck) + (B2 + B3)(Cjki + Crij) - (2.63)
The corresponded torsion 2-form is expressed in the coatelivasis as
T = [(1 +a1)C g + (a2 — a3)C;6 + (B2 + Bg)gimcjkm} dzd A da* . (2.64)
In term of the differential formsd and3 (see Appendix) we derive

TO = (1+ o) d9® — % (az — )0 A A — % (B2 + 53)(d0a - eaJB) . (2.65)

Irreducible decomposition of the torsion. On a manifold of a dimensio® > 3 endowed
with a metric tensor, the torsion 2-form admits an irredleedecomposition into three independent
pieces [5]

T =0T 4 A0 4 @ 7a (2.66)

Herethe tratorandthe axitorparts [5] are defined correspondingly as
1 1
OT = ——0"A(RIT),  OT =2fJ0" A Tp). (2.67)

The remaindef?) 7 is referred to as &entor part The irreducible decomposition means that the
different pieces transform independently by the same té&dsale as the total quantity. Particularly,
we can check straightforwardly that for every part of thesitmm tensor

(p)Ta — (p)Taeaieai ’ p = 17 2’ 3. (268)

So itis enough to provide the calculations of the irredwejtieces with respect to the coframe field
itself. We have the second piece of the torsion as

1 T
(2) T _ « B _ 2 «
T n—lﬁ A (eg]T") 2(n_1)19 ANA, (2.69)
where
T2 :2(14—0[1) — (ﬂg—Fﬂg) — (OQ —Oég)(n— 1) (270)
The third piece of torsion is given by
@7 - %eamﬂ AT =2 e, 2.71)
where
= (1+a1)+ (B2 + B3). (2.72)

The first part takes the form

n —

My = o_OFe_OFe_q (dﬁ“ St A %eO‘JB) . @73)

where )
7'12(14-0(1)—5(524-53). (274)
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Torsion-free metric-coframe connection. Let us look for which values of the parameters the
torsion of the metric-coframe connection is identicallyxerhe corresponded connection is called
the symmetric or torsion-free connectidhis clear from (2.63) that the metric-coframe connection
is symmetric if

ap =—1, az = ag, Ba = —f3. (2.75)

The necessity of this condition can be derived from the iro#tldle decomposition. Indeed, since
the three pieces of the torsion are mutually independesy, lthve to vanish simultaneously. Hence
we have a conditiom; = 5 = 73 = 0 which is equivalent to (2.75). Note that this requirement
is necessary only for a manifold of the dimensibn> 3. On a two-dimensional manifold, the
metric-coframe connection is symmetric under a weaker itiond

2(1+ 1) + (a2 —az) — (B2 + f3) = 0. (2.76)

On a curve, every connection is unique and symmetric.
Thus on a manifold of the dimensidn > 3 there exists a 3-parametric family of the symmetric
(torsion-free) connections:

T =T — Clip + an (61.C5 + 6:Cr) + Brgjng™™ Crm + B2 (Cikm — Crmy) - (2.77)
2.4 Nonmetricity of the metric-coframe connection

Nonmetricity tensor and nonmetricity 2-form. Definition. When Cartan’s manifold is endowed
with a metric tensor, the connection generates an additienaor field calledhe nonmetricity
tensor It is expressed as a covariant derivative of the metricdecemponents. For a metric given
in a local system of coordinates @s= g;;dz’ ® dz’, the nonmetricity tensor is defined as

Qrij = —Vigij = —Gijk + T ikgmj + T jrgim , (2.78)
or,
Qrij = —ijk + Tjir + Lije - (2.79)

Evidently, this tensor is symmetric in the last pair of irelic).;; = Qx;;. Hence, on & dimen-
sional manifold, the nonmetricity tensor hB§D? + D) /2 independent components.
For the exterior form representation, it is useful to defirenonmetricity 1-formin a coordinate
basis, it is given by
Qij = Qrijda® = —dgij +Tij + T . (2.80)

In an arbitrary reference basig, , #%), the metric tensor is expressed@s- g,,0* @ 6°. Corre-
spondingly, the nonmetricity 1-form reads

Qab = _dgab +Tap + g (281)

With respect to the coframe fiel@d*, the components of the metric are constapis, thus the
nonmetricity is merely the symmetric combination of the mwection 1-form components

Qaﬁ = Faﬁ + Fﬁa . (282)

Note, that this expression is not a usual tensorial quanititfact, it is an expression of a tensor-
valued 1-form of nonmetricity with respect to a special sla$ bases. Its relation to a proper
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tensorial valued 1-form (2.80) is, however, very simple. &8gubstitution of (2.23) into (2.82) we
have

Qij = QupV®0%; . (2.83)
The following generalization of the Levi-Civita theorenoffin the Riemannian geometry pro-

vides a decomposition of an arbitrary affine connection.[®3]simple proof is instructive for our
construction.

Proposition 5: Let a metricg on a manifold M be fixed and two tensdfs;;, and Q;;, with the
symmetries

Tij = —Tikj Qrij = Qurji - (2.84)

be given. A unique connectidh;, exists onM such thatl};; is its torsion andQ);;, is its non-
metricity. Explicitly,

* 1 1
Tijk = Dijk— 3 (Qije — Qjni — Quij) + i(Tijk + Tjki — Thij) » (2.85)
where )
Tije = 5 (gij,k + Gik,j — gjk,i) (2.86)

are the components of the Levi-Civita connection.

Proof: On aD-dimensional manifold definitions of the torsion and the metricity tensors
Tijk = 20551, Qrij = —Gijk + Do + Ty (2.87)
can be viewed as a linear system/of linear equations foD? independent variablds; ;.

1
Ligy = 5Tk, Tape =

5 (Qrij + ijik) - (2.88)

N =

ForT;;r = Qri; = 0, the system has a unique solution — the Levi-Civita conneq*tiijk. Thus
the determinant of the matrix of the system (2.88) is nonderg Consequently also for arbitrary
tensorsT;;, andQy;;, the system has a unigue solution. In order to check the fapémim of the
solution (2.85), it is enough to substitute the definiticAS87).

Nonmetricity of the metric-coframe connection. We calculate now the nonmetricity tensor of the
metric-coframe connection (2.44)

Qrij = ( — 9ij.k+ Dije+ I‘jik) +
(1 = B2)(Cijk — Cjri) + (a2 + B1)(9ikCj + gjrCi) + 2039:5Cr . (2.89)

The first parenthesis represent the nonmetricity tensdreofieitzenbdck connection. This expres-
sion vanishes identically, i.e., the Weitzenbdck conioeds metric-compatible. Indeed, we have

Gijk = naﬁ(ﬁai,kﬁf + 0aiﬁik) =Tije+ Tjik - (2.90)
Consequently, (2.89) is simplified to

Qrij = (a1 — B2)(Ciji + Cjri) + (a2 + 1) (9ixCj + 9k Ci) + 23945 Cy . (2.91)
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Relative to the coframe field, we have, using (2.52,2.82) Itfiorm of nhonmetricity

Qo = —i (a1 — 52)(€aJd19[5 + 65Jd19a) + %06377a514 +
@ 4 60)[(eal A)95 + (e 400 ] (2.92)

Irreducible decomposition of the nonmetricity. We are looking now for an irreducible decompo-
sition of the nonmetricity 1-forn@),;, under the pseudo-orthogonal group. Sidgg is a tensor-
valued 1-form it can be calculated in an arbitrary basis.t&dely, the basis of the coframe field is
the best for these purposes. We have only remember that fansférmation to an arbitrary basis
we have simple multiply the corresponding quanttys by the matrix of the transformation. We
cannot, however, transform the coframe basis to an arbibasis. This is because the coframe field
is a fixed building block of our construction.

The irreducible decomposition of the nonmetricity 1-formder the pseudo-orthogonal group
SO(1,n) is constructed by the in correspondence to the Young disgr&or actual calculations we
use the algorithm given in [5]. The resulting decompositogiven as a sum of four independent
pieces

QaB = (I)Qa,ﬁ + (Q)Qa,é’ + (3)Qa6 + (4)Qa6 . (293)
For the nonmetricity 1-form (2.82),the irreducible pants a
D Qas = i [ (0 = Ve(aldilp) + (e(a] A)5) — DA (2.94)
O Qas = iz | (0 = Ve(aldip) + (e(a ) A)) + 24| (2.95)
2
©)Qap = ns[(e(a) )0p) + = mag ] (2.96)
1
4 N et
Qap = pa| = A (2.97)
The coefficients of these quantities depend on the parasngfténe general connection as
1 1
H1 = —m(al - B2), H2 = §M1a (2.98)
1 1
pso= 7 {n—l (a1 —ﬁz)'f'(az"’ﬁl)} ; (2.99)
1
po= 5[ (an—B2) +nas + (az+ Bu)]. (2.100)

Metric compatible metric-coframe connection.Let us look for which values of the coefficients the
connection ignetric-compatiblei.e., has an identically zero non-metricity tensor. Rttt both
guantities, the metric tensor and the connection, are nartst from the same building block — the
coframe fieldy®. Itis clear from (2.92) that the metric-coframe conneci®metric-compatible if

a; = P2, az = —f, az =0. (2.101)

The necessity of this condition can be derived from the uroitole decomposition of the nonmetric-
ity tensor. Four irreducible pieces of the non-metricityger are mutually independent, so they have
to vanish simultaneously. Hence we have a conditipe= 12 = pu3 = ug = 0 which turns out to be



28 Yakov Itin

equivalent to (2.101). Note that this requirement is neargssnly for a manifold of the dimension
D > 3, where the irreducible decomposition (2.93) is valid. Omva-tlimensional manifold, the
metric-coframe connection is metric-compatible if andyahl

a1 —Pe=az+f1=as. (2.102)
On a one-dimensional manifold, every connection is metoisypatible.

Metric compatible and torsion-free metric-coframe connetion. Let us look now for a general
coframe connection of a zero torsion and zero non-metyiaity for a symmetric metric compatible
connection constructed from the coframe field. The systenoatiitions (2.75) and (2.101) has a
unigue solution

041252:—53:—1, ﬂlzagzagzo. (2103)

Consequently, a metric-compatible symmetric connecgamique. This is in a correspondence to
the original Levi-Civita theorem, and the unique conneatt®of Levi-Civita. Moreover, substitut-

ing (2.103) into (2.44) we can express now the standard Céxita connectior1t i,k via the flat
connection of Weitzenb'dcfzijk —

Dijk = f‘i(jk) + Crij — Cji - (2.104)

In the basis constructed from the coframe field itself, themetricity 1-form for the Levi-Civita
connection reads

* 1
Tag = eaJdﬁﬂ—eﬁjdﬁa—faJeﬁJB. (2.105)

Itis in a correspondence with a formula given in [5].
2.5 Gauge transformations

Local transformations of the coframe field. The geometrical structure considered above is well
defined for a fixed coframe fielel,. Moreover, it is invariant under rigid coframe transforioas.
The gauge paradigm suggests now to look for a localizaticuofi transformations:

9 L2097, en > LiPes, (2.106)
or, in the components, . ‘
9% Lo 07, ea' = Lo eg’. (2.107)

Here the matrixL® s and its inverse.,,” are functions of a point € M. We require the volume
element (2.8) and the metric tensor (2.12) both to be inaatiader the pointwise transformations
(2.106). Consequently,“s is assumed to be a pseudo-orthonormal matrix whit entersraoeth
functions of a point. We will also use an infinitesimal versiaf the transformation (2.107) with
L%s = 65 + X 4. In the components, it takes the form

9 0%+ X098, ea' et — XPhest. (2.108)

As the elements of the algebsa(1,n), the matrixX,s = 7.,X" g is antisymmetric. We define a
corresponded antisymmetric tensor

Fij = 9%9°, X5 . (2.109)
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Connection invariance postulate. Recall that we are looking for a most general geometric struc
ture that can be explicitly constructed from the coframadfidlloreover, we are interested not in a
one fixed coframe field, but rather in a family of fields relabgdthe left action of the elements of
some continuous groug.

In a general setting, the different geometrical structstesh as the volume element, the metric
tensor, and the field of affine connections, are completelgpendent. We have already postulated
the invariance of the volume element and of the metric tenader the coframe transformations. It
is natural to involve now an additional invariance requiestnconcerning the affine connection.

Connection invariance postulatéffine coframe connection is assumed to be invariant under
pointwise transformations of the coframe field

Dij (0%) = T (L930"7) (2.110)

Since the coframe connection is constructed from the fidémoderivatives of the coframe field,
(2.110) is a first order PDE for the elements of the gréuand for the components of the coframe
field.

Weitzenbdck connection transformation. Since the Weitzenbodck connection is a basis tool of our
construction, it is useful to calculate the change of thiargity under the coframe transformations
(2.106). We have

ATl = eaP Y%,  where Y% = L% L7s,. (2.111)

All matrices involved here are nonsingular, consequehiiy\Weitzenbdck connection is preserved
only under the rigid transformations of the coframe fieldwif' s ; = 0.

Let us rewrite (2.111) in alternative forms. Since the negignsor is invariant under the trans-
formations (2.106) we have

A fijk =A (gim f‘mjk) = gimA f‘mjk . (2.112)
Consequently
ATk =009 Yas;,  where  Yagj =Y "5, . (2.113)
In the infinitesimal approximation, (2.111) takes the form
AT = ea P X%, . (2.114)
while (2.112) withX g = 1., X" 5 reads
AT e = 009% Xap; - (2.115)
Note that sinceX g is antisymmetric, we have in this approximation
A f‘ijk =-A lgzm : (2.116)

We will also consider an additional physical meaningful mpgmation when the derivatives of the
coframe is considered to be small relative to the derivatafethe transformation matrix. In this
case, (2.114) and (2.115) read

ADiyp=Fi;,  where Fiy=ea0%pX%), (2.117)
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and
ATijk = Firj,  where  Fj =9%0°;Xup. (2.118)

Transformations preserved the geometric structure. Since the coframe field appears in the
coframe geometrical structure only implicitly, (2.106)agype of a gauge transformation. Invari-
ance of the metric tensor and of the volume element resifi¢tsto a pseudo-orthonormal matrix
G = SO(1,n). Let us ask now, under what conditions the general coframeexction (2.44) is
invariant under the coframe transformations (2.106). tRirs rewrite (2.44) via the Levi-Civita
connection. Using (2.103) we have

Tijk =Tijk + Cijk — Crij + Ciii - (2.119)
Thus (2.44) takes the form
Tijk =Tije+(a1+1)Cijp+a29ikCi+039i;Cr+ 819 Ci+ (B2+1)Cjri+ (83 —1)Chij . (2.120)

Since the Levi-Civita connectiof\ ijk IS invariant under the transformations (2.106), the equati
AT, = 0 takes the form

(Ozl + 1)AC’ijk + OéQgikACj + OzggijACk + B1gjkACi + ([’32 + 1)A0jki + ([‘33 — 1)ACW =0.

(2.121)
Hence in order to have an invariant coframe connection, we k@look for possible solutions of
equation (2.121).

Trivial solutions of the invariance equation. Consider first two trivial solutions of (2.121) which
turn out to be non-dynamical.

(i) Arbitrary transformations — Levi-Civita connection.
The equation (2.121) is evidently satisfied when all the mizakcoefficients mutually equal to
zero. It is easy to check that these six relations are earivab (2.103). Thus the corresponded
connection is of Levi-Civita. In this case, the elementdefmatrixL“ g are arbitrary functions of a
point. Thus we come to a trivial fact that the Levi-Civita o@ction is a unique coframe connection
which is invariant under arbitrary localO(1, n) transformations of the coframe field.

(i) Rigid transformations.
Another trivial solution of the system (2.121) emerges whverrequireAC;;, = 0. All permuta-
tions and traces of this tensor are also equal to zero sol(pid ivially valid. Due to (2.113), it
means that the matrix of transformations is independentamird. In this case, an arbitrary coframe
connection, in particular the Weitzenbdck connectiomams unchanged. Thus we come to another
trivial fact that the coframe connection is invariant undgid transformations of the coframe field.

Dynamical solution. We will look now for nontrivial solutions of the system (212 Three traces
of this system vyield the equations of the typAC; = 0, where)\ is a linear combination of the
coefficientsy;, 5;. Thus we have to apply the first condition

AC; =0. (2.122)
The system (2.121) remains now in the form

(a1 + 1)AC i + (B2 + 1)AC ik + (83 — 1)ACk;; =0. (2.123)
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Applying the complete antisymetrization in three indicesderive the second equation
ACj = 0. (2.124)
The equation (2.123) remains now in the form
(B2 — a1)ACri + (B3 — a1 — 2)ACjk; = 0. (2.125)

We have to restrict now the coefficients, otherwise we obfsir;;, = 0, i.e., only the rigid trans-
formations. Consequently we require

B2 =aq, B3 =a1+2. (2.126)
Thus we have proved

Proposition 6: The coframe connection

Lijk = Tijr + (1 + 1)Clijpg + a29ixCy + a39iCr + B1gjxCi - (2.127)
is invariant under the coframe transformations satisfiezl¢lquations
AC; =0. ACj = 0. (2.128)

Observe that this family includes the Levi-Civita connentiwhich is invariant under arbitrary
transformations of the coframe field. The torsion tensohefdonnection (2.127) is expressed as

Tijk = (al + 1)C[ijk] + (ag — a3)(giij - gijCk). (2129)

Thus a torsion-free subfamily of (2.127) is given by

*

Lijk =Tigjk) + a2(9Cj + 9i5Cr) + BrgjnCi - (2.130)
The nonmetricity tensor of the connection (2.127) reads
Qkij = (a2 + £1)(9ikCj + gjxCi) + 2039, Cy . (2.131)

Thus a metric compatible subfamily of (2.127) is given by

*

LCije =iy + (a1 + 1)Clijiy + a2(9iCj — g1 Ci) - (2.132)
From (2.129) and (2.131) we derive an interesting conchssio
AQrij =0 <<= AC; =0. (2.133)
and, together with this relation,
ATijr =0 <= AC =0. (2.134)

Thus the relations (2.128) obtain a geometric meaning, tberespond to invariance of the torsion
and nonmetricity tensors under coframe transformations.
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2.6 Maxwell-type system
Let us examine now what physical meaning can be given to tlagiance conditions [41]
AC};, =0, AC; =0. (2.135)
DenoteK;;;, = AC;; ;. Thus (2.135) takes the form
Ky =0, K"m=0. (2.136)

The tensol;;;, depends on the derivatives of the Lorentz parameXers and on the components
of the coframe field

1
Kijr = 5 0% (Xaﬂ,jﬁﬁi - Xaﬁ,z'ﬁﬂj) : (2.137)

Thus, in fact, we have in (2.136), two first order partial elifintial equations for the entries of an
antisymmetric matrixX,g. Let us construct from this matrix an antisymmetric tensgr

Fij = Xl“ﬂ?“iﬁyj 5 X;w = Fijeuiel,j . (2138)
Substituting into (2.137), we derive
1
Kije = Fipig) = 5 Xap [(19%1961'),.1 - (190‘1@19[3.7'),1']
1 o o
= Fijig) = FemC™ = 5 (Fms D5 = Fnj 1) (2.139)

Consequently, the first equation from (2.136) takes the form
Flijng = g(Cmiijm +C" i Fim + C™ ki Fjm) , (2.140)
while the second equation from (2.136) is rewritten as
Fiji = —2F,C™ + Fryg" i + Fingg™ Tki — Frig™ T (2.141)

Observe first a significant approximation to (2.140—2.1#1he right hand sides in both equations
are neglected, the equations take the form of the ordinaywdh equations for the electromagnetic
field in vacuum —

Fijn =0, F';i=0. (2.142)

In the coframe models, the gravity is modeled by a variabteacee field, i.e., by nonzero values of

the quantitiesg i;*. Consequently, the right hand sides of (2.140—2.141) caridveed as curved
space additions, i.e., as the gravitational correctiorted¢oelectromagnetic field equations. In the
flat spacetime, when a suitable coordinate system is chtsese corrections are identically equal
to zero. Consequently, in the flat spacetime, the invariaoogitions (2.136) take the form of the
vacuum Maxwell system.

On a curved manifold, the standard Maxwell equations ama@dated in a covariant form. Let
us show that our system (2.140—2.141) is already covanNsatrewrite (2.139) as

1 o 1 . .
Kz'jk = Q(Fkl}j — Fem I‘mij — Fh kaj) - 5( 14— ] ) (2.143)

Consequently,
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where the covariant derivative (denoted by the semicobmtgken relative to the Weitzenbock con-
nection. Consequently, the system (2.140—2.141) takesatberiant form

Fijw =0,  F'j=0. (2.145)

These equations are literally the same as the electroniageetor field equations of the Maxwell-
Einstein system. The crucial difference is encoded in tipe ©yf the covariant derivative. In the
Maxwell-Einstein system, the covariant derivative is takelative to the Levi-Civita connection,
while, in our case, the corresponding connection is of \Weitwhck. Observe that, due to our ap-
proach, the Weitzenbock connection is rather natural ib4®). Indeed, since the electromagnetic-
type field describes the local change of the coframe fielthgti&l itself be referred only to the global
changes of the coframe. As we have shown, such global tnanafins correspond precisely to the
teleparallel geometry with the Weitzenbock connections.

3 Geometrized coframe field model

3.1 Generalized Einstein-Hilbert Lagrangian

One of the most important feature of the Einstein gravitpthés its pure geometrical content. The
basic field variable of this theory is the metric tensor figld The action integral is given by the
Einstein-Hilbert Lagrangian

@M:LR@M%@Ha (3)

whereR is the curvature scalar constructed from the metric tensdiits partial derivatives while
x1 is the invariant volume element constructed from the mewsor. When we restrict to the
quasilinear second order field equations the Lagrangidn iBa unique possible.

The coframe field model also constructed from the geoméfiiedd variable — coframe. Its
Lagrangian however is taken as an arbitrary linear comioinaif the globalSO(1, 3) invariants.
The geometrical sense of this expression is not clear. Afthahe coframe Lagrangian can be
written in term of the torsion of the flat connection it does nwan that it corresponds to the
Weitzenbdck geometry with a flat curvature and a non-zermeotion. Indeed also the standard
Einstein-Hilbert Lagrangian (3.1) can be rewritten in sadbrm. Moreover, as we have seen in the
previous section, there is a wide class of connections altracted from Weitzenbodck connection
and its torsion. In particular, using the coframe Lagrangmathe form (1.4) we cannot answer the
guestion:What special geometry corresponds to the set of viable nefrmodels?

Our proposal is to consider for the coframe Lagrangian amesson similar to (3.1)

WM:AR@WMMWDM, (32)

which is constructed from the general free parametric cofraonnection. Also the invariant volume
element«1 is constructed here from the coframe field. Since the Levit&€connection is included
as a special case of general coframe connection we have2hg3jeneralization of the standard
GR.

3.2 Curvature of the coframe connection

Riemannian curvature 2-form. We start with the definitions of the Riemannian curvature ma-
chinery. Although it is a classical subject of differentidometry [50], in the case of a general
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connection of non-zero torsion and nonmetricity, sligldifferent notations are in use. Moreover,
in this case, it is useful to apply the formalism of diffefi@ahforms. We accept the agreements used
in metric-affine gravity [5].
Let a connection 1-forni’,” referred to a general nonholonomic ba@ls, f,) be given. The
curvature 2-forms defined as
Rl =dIb — I, ATE. (3.3)

It satisfies two fundamental identities:
The first Bianchy identitinvolves the first order derivatives of the connection

DT —RyAN =0, or dT°+DAAT =Ry A0°=0. (3.4)
The second Bianchy identityvolves the second order derivatives of the connection
DRy =0, or  dRSSHTCARSL—TLPARS =0. (3.5)

It is useful to consider the Riemannian curvature of thearmof connection to be referred to a basis
composed from the elements of the coframe field itself. Thieesponded quantity

Ro’ =dlP — T, NT,P. (3.6)
is related to the generic basis expression by the standasdrial rule with the matrices of transfor-
mation¥®; f,* _ _
Rab = RaP (9% fa) (e576";) . (3.7)
From (3.6), we see that the Riemannian curvature of the Afditack connection is zero being

referred to a basis of the coframe field. Due to (3.6), it i®Zeran arbitrary basis.
Being referred to a coordinate basis, the Riemannian aure@-form reads

R = dI) —TF ALY (3.8)
= dlY, Ada™ — Tk, T, dz™ A dz" (3.9)
_ (rjm_,m - rkimr-fkn)da:m Adz™ . (3.10)

The components of the Riemannian curvature 2-form
R = 3 R jmndx™ A dx (3.11)
are arranged in the familiar expression of Riemannian curvature tensor
Rjimn - Fjin,fn - Fjim,n + 1—‘lkmr']km - Fkimrjkn . (312)
Curvature scalar density. Curvature scalar plays an important role in physical agibms. In
fact, it is used as an integrand in action of geometrical fietitlels — Hilbert-Einstein Lagrangian

density
L=Rvol=Rx1, (3.13)

where star denotes the Hodge dual. In term of the curvatfioen; this expression is rewritten as

L=TRiy A*(de' ANdax?) = Rap A x09°P. (3.14)
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where the abbreviation®® = 9~ A 97 is used. Extracting in (3.14) the total derivative term we
obtain

L = (dlag — T ALyg) Ax09%8
= d(Fap Ax0P) + Toap ANd* 9 — LY A Lyg A5 927 (3.15)

For actual calculation of this quantity, it is useful to esps the connection 1-form in the basis of
the coframe field. We denote

Fap = Koyp?? . (3.16)
Substituting it in the total derivative term of (3.15) we kav
d(Tap Ax0°P) = d(Kayp?? Ax9°%) = (—1)"d [Kayps * (7] 9°7)]
= (-1)"d[(K%p — Kpa®) x9°] . (3.17)
The second term of (3.15) reads
Toap Nd# 9P = Koyg9? Adx 9% = Koyp [d07 Ax9°P —d (97 Ax09*P)] . (3.18)
Calculate:
d9Y A x9%P = %CVWW” Ax 0P = (—1)"HCrel x 1, (3.19)
and

d (07 A *9°P) = (=1)"d * (p*79P — n9%) = (=1)" (PPC™ — > C%) x 1.  (3.20)
Consequently the second term of (3.15) takes the form
Lap Ndx (0 AOP) = (=1)" [KaypgC? — (K%p — Kga®)C%] 1 (3.21)
The third term of (3.15) reads

LY A Tyg A (9% A99) Koy Koypg9™ A s 9P

(1) (KK op — K¥0 K7P5) % 1. (3.22)
Consequently the Lagrangian density takes the form
L-1)" = d[(K%p— Kpga®) *9°] + [KargC? — (K%ap — Kpa®) C”] x1
—(K*PV K0 — K0y K7P5) 1. (3.23)
Due to (2.52), the tensdt .~ is of the form
Konp = a1Cpya + a2C0ynap + a3Cangy + B1CsNay + B2Cyap + B3Casy (3.24)

Substituting this expression in (3.23) we obtain a totalvdgive term plus a sum of terms which
are quadratic irC,g-. Since (1.4) is the most general expression quadratic,in,, the following
statement is clear.

Proposition 7 The Hilbert-Einstein Lagrangian of the general metricteofie connection (2.52) is
equivalent up to a total derivative term to the general cofeaLagrangian

R(Tap) %1 = Cod(Cy #9%) + ((1CapyCPT + (2C0apy O™ + (30,C%) % 1, (3.25)
where the parameteis are expressed by second order polynomials of the coeffirigns; .

The actual expressions for the coefficiefitare rather involved. We discuss the paraméien
sequel.
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3.3 Einstein-Hilbert Lagrangian without second order derivatives

It is well known that in GR the Einstein-Hilbert Lagrangiawvolves the second order derivatives
of the metric tensor. These terms joint in a total derivatesen which is not relevant for the field
equation. Although, the total derivative terms cannot iastly dropped out. In particular, the
guantization procedure requires an addition of a boundary in order to compensate the total
derivative [56], [57]. Let us calculate the total derivatierm in our model. Withe (3.24) we have

Kaag = navKa,Yﬁ = [OéQ + Qa3 + (TL + 1)[‘31 + ﬂQ - ﬂ3] C[j y (326)
and
Kgo® =0 Konp = 01 + az + (n+1)B1 + B2 — B3] Cs . (3.27)
Thus
d[(K%p — Kga®) ¥ 9°] = =1 + n(az — B1) + 282 — B3] d (Cp % 9°) . (3.28)

Consequently, the coefficiegy in (3.25) takes the form

Co=a1+n(az—p1)+262 — Ps. (3.29)

For the Weitzenbock connection, this coefficient is zemgetber with all other terms of the La-
grangian. For the Levi-Civita connectiofy, = —2 on a manifold of an arbitrary dimension.
We can identify now a family of coframe connections withotb&l derivative term at all. It is
enough to require
a1 + TL(Oég - Bl) + 2B2 - ﬂg =0. (330)

The corresponding connection is given by
Tijk = Tijk +a1(Cijr + Crij) + a20iCj + a3(gi;Cr + nClij) +
B1(9jkCi — nChij) + B2(Cjri + 2Ckij) . (3.31)

This family includes the metric-compatible connections

Tiji =Tiji + a1(Ciji + Cjri + 3Chij) + a2(9ixCj — gxCi + nClhij) , (3.32)

and the symmetric (torsion-free) connections

Lijk :f‘i(jk) + a2 (9iCj + 6:;Ck) + B19jxCs + [1 — n(a2 — 1)] (Cjki + Crji) - (3.33)

Also the gauge invariant connections (2.127) can be foutadtire family (3.31).

Consequently we identified a remarkable property of theazo& geometry. There is a family
of coframe connections which standard Einstein-Hilbegraagian does not involve second or-
der derivatives terms at all. It means that there is a fanfilgoframe models with a geometrical
Lagrangian which is completely equivalent to the Yang-Milagrangians of particle physics.

4 Conclusion

GR is a well-posed classical field theory for 10 independeaniables — the components of the
metric tensor. Although, this theory is completely satitfay in the pure gravity sector, its possi-
ble extensions to other physics phenomena is rather preatiemn particular, the description of
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fermions on a curved space and the supergravity constnscteEquire a richer set of 16 indepen-
dent variables. These variables can be assembled in a afild i.e., a local set of four linearly

independent 1-forms. Moreover, in supergravity, it is 1Is8egy to involve a special flat connection
constructed from the derivatives of the coframe field. THasts justify the study of the field models
based on a coframe variable alone.

The classical field construction of the coframe gravity isdghon a Yang-Mills-type Lagrangian
which is a linear combination of quadratic terms with dimenkess coefficients. Such model turns
to be satisfactory in the gravity sector and has the viablen&czschild solutions even being al-
ternative to the standard GR. Moreover, the coframe modatitrg of the gravity energy makes it
even preferable than the ordinary GR where the gravity gneagnot be defined at all. A principle
problem that the coframe gravity construction does not lz@yeconnection to a specific geometry
even being constructed from the geometrical meaningfidabj A geometrization of the coframe
gravity is an aim of this chapter.

We construct a general family of coframe connections whinlolves as the special cases the
Levi-Civita connection of GR and the flat Weitzenbock coctien. Every specific connection gener-
ates a geometry of a specific type. We identify the subclads@etric-compatible and torsion-free
connections. Moreover we study the local linear transfdiona of the coframe fields and identify a
class of connections which are invariant under restrictdchme transformations. Quite remarkable
that the restriction conditions are necessary approxidiagen Maxwell-type system of equations.

On a basis of the coframe geometry, we propose a geometiaméor the coframe gravity.

It has the same form as the Einstein-Hilbert action of GR,thatscalar curvature is constructed
from the general coframe connection. We show that this géierieagrangian is equivalent to the

coframe Lagrangian up to a total derivative term. Moreokere is a family of coframe connections
which Lagrangian does not include the higher order termghigncase, the equivalence is complete.

However, the Hilbert-Einstein-type action itself is nobegh to predict a unique coframe con-
nection. Indeed, the coframe connection has six free paeamevhile the action involves only four
of their combinations. Moreover, one combination représariotal derivative term in Lagrangian
which does not influence the field equations. So the gravitipmdtself is not defined uniquely
the geometry on the base manifold. It should not be, howaverpblem. Indeed, the gravitational
field is not a unique physical field. Moreover, gravity doesewen exist without matter fields as its
origin. An action for an arbitrary (non-scalar) field ne@gsnvolves the connection. So the prob-
lem can be formulated as following: To find out which matteldfieas to be added to the coframe
Lagrangian in order to predict uniquely the type of the cofeaconnection and consequently the
geometry of the underlying manifold. This problem can serw@ basis for future investigation.
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5 Appendix — differential form notations

We collect here some algebraic rules which are useful farutations with the differential forms.
Recall that we are working on an+ 1 dimensional manifold.
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1. Interior product
In a basis of 1-form#*, ap-form ¥ is expressed as

1
U= W, U7 A AT (A.1)

Interior product couples the basis vectors and basis 15@sn
e =58 . (A.2)
By bilinearity and the Leibniz-type rule,
(w1 Aws) = (eq|wi) Awy + (—=1)38%1w; A (eq |ws), (A.3)

the definition of the interior product is extended to formadiitrary degree. Mixed applications of
the exterior and interior products tgpaform w satisfy the relations

I A (eq]w) = pw, (A.4)

and
ea] (P Aw) = (n—pw. (A5)

2. Hodge star operator

The Hodge star operator mapgorms into(n + 1 — p)-forms. In a pseudo-orthonormal basis,
the metric tensor is represented by the constant compongnts diag(—1,1,---,1). In this case,
the Hodge star operator is defined as

e 1 aoBo a3 B +1/\.../\19/3n
WS T e T e O )

where the permutation symbol is normalized as
€0-m =1, gl =1, (A.7)

For the basis forms themselves, this formula can be rewritse

1
*(19040 TARRRRA 1904;,) = maao...%gl...gnwﬁﬁl A A 19'8"7p . (A8)
In particular,
1
(P AN  ANa,) = Eageean, 5 x] = —'5%,..%19”1 Ao A (A.9)
n:

When the Hodge map defined by a Lorentzian-type metricit acts on ap-formw
sk w = (—1)PFLI=PIHLyy — ()Pt (A.10)
For the formsw;, wo of the same degree,
wy A *wg = wa A *wy . (A.11)

With the Hodge map, the wedge product can be transformedhietmterior product and vice versa
by the relations
(WA D) = eq] *w, (A.12)
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and
Vo Asw = (=1)""7P) x (eq |w). (A.13)

3. Exterior derivative and coderivative of the coframe field
We express the exterior derivative of the coframe field as

« 1 (e}
o™ = 50 0P AN Cp = Oy (A.14)

The divergence of the coframe 1-form is

dx o =—Cy 1. (A.15)
Indeed, using (A.8) we calculate
1
A+, = asagl...ﬁnd(ﬁﬁl Ao ANOP)
1 ’ v
= maaﬁl._ﬁncﬂlww AP NDP2 N NP (A.16)
Using (A.9) and (A.10) we have
AP NI A N 9P = g BBy (A.17)
Consequently,
1
d*ﬁa = _mgaﬂl"'anlgl“/ﬂz'”ﬂnilCBlHV x]1 =
1 L SV 17
L 405 )CP %1 = CFapx1=—Cox1. (A.18)
In a coordinate basis we consider the tensors
. 1 /0. o .
C'jx = B (szk— I‘ij) ; Ci =C" i - (A.29)

Itis easy to check the relations
Clir = C%rea’ 07y, Ci=Cald. (A.20)
Define a non-indexed (scalar-valued) 1-form
A= e, |do* = 20M; e’ da? = 2C;da" = 3C,0° . (A.21)

On a manifold with a metrig = 7, 9* ® ¥~ (Section 3), we define, in addition, a scalar-valued
3-form

B = nu,d9" A9 = —n,, 0" ;9" de’ A da? A da®
= Cyrdr’ Adad Nda® = Copy9® NP NI (A.22)

The operations of symmetrization and antisymmetrizatibtensors are used here in the nor-
malized form:

1 1
(a1---ap) = ] Sym(az - - ap), [a1---ap) = EAnt(al ). (A.23)
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