RADIAL DEPENDENCE OF EXTINCTION IN PARENT GALAXIES OF SUPERNOVAE

D. Onić, B. Arbutina and D. Urošević

Department of Astronomy, Faculty of Mathematics, University of Belgrade, Serbia Version 3.16, 2003/04/07

RESUMEN

El problema de la extinción es el asunto más importante que se ocupará en del proceso de obtener magnitudes absolutas verdaderas de corazo'n-se derrumba (pelar-sobre incluyendo) las supernovas (SNe). El modelo plano-paralelo, usado extensamente en el pasado, fue demostrado para no describir la extinción adecuadamente. Intentamos aplicar un modelo alternativo que introduzca la dependencia radial de la extinción en galaxias del padre de supernovas. Para la extinción calculadora en nuestra galaxia utilizamos dos diversos métodos y comparamos los resultados obtenidos. Nuestro análisis se centra sobretodo en una muestra elegida del pelar-sobre SNe (Ib/c) para el cual encontramos la magnitud absoluta máxima intrínseca ${\rm M}_{\rm B}^0=-17.80\pm0.43.$

ABSTRACT

The problem of extinction is the most important issue to be dealt with in the process of obtaining true absolute magnitudes of core-collapse (including stripped-envelope) supernovae (SNe). The plane-parallel model, widely used in the past, was shown not to describe extinction adequately. We try to apply an alternative model which introduces radial dependance of extinction in parent galaxies of supernovae. For calculating extinction in our Galaxy we use two different methods and compare the results obtained. Our analysis is primarily focused on a chosen sample of stripped-envelope SNe (Ib/c) for which we find intrinsic peak absolute magnitude $M_{\rm R}^0 = -17.80 \pm 0.43$.

Key Words: SUPERNOVAE: GENERAL - GALAXIES: SPIRAL - ISM: DUST, EXTINCTION.

1. INTRODUCTION

As well known, the supernovae (hereafter SNe) type Ia are widely used by astronomers as distance indicators due to their small dispersion in peak absolute magnitude and similar light curves. Today, they are thought to originate primarily in the explosion of a Chandrasekhar mass C-O white dwarf in close binary system, where the secondary star is filling its Roche lobe and transferring mass through the Lagrange point to the white dwarf companion. SNe type II, on the other hand, are a quite heterogenous class. They come from stars of initial mass greater than approximately 8 \mathcal{M}_{\odot} , which can have quite different properties. The situation is still unclear regarding stripped-envelope SNe (Ib/c). The progenitors of these SNe are massive stars that have lost most or all of their hydrogen/helium envelopes, by strong winds such as in Wolf-Rayet stars or through mass transfer to a companion star in Roche lobe overflow or a common envelope phase.

Whatever the exact scenario for strippedenvelope SNe is, there is some quite unique physics involved in producing these events characterized by a complete loss of hydrogen/helium. This "uniqueness" may lead to a smaller dispersion in their observational properties (e.g. peak brightness), at least in comparison to more heterogeneous SNe type II. SNe Ib/c thus may be the second best "standard candles" among supernovae, after SNe Ia. Our intention is to analyze this possibility. We will primarily focus on finding the peak absolute magnitude for SNe Ib/c. In doing so we must be able to eliminate extinction, which in the case of all core-collapse SNe should be significant. The problem of extinction is the most important issue to be dealt with in the process of obtaining true absolute magnitudes of core-collapse (including stripped-envelope) SNe. The plane-parallel model which gives absorption dependent on galaxy inclination, $A_g = A_0 \sec i$, widely used in the past, was shown not to describe extinction adequately (Cappellaro 1997). We try to apply an alternative model which introduces radial dependance of extinction (Hatano et al. 1997, 1998).

A certain trend of dimmer SNe with decreasing distance from the center of a galaxy was already found by Arbutina (2007a,b). In present more detailed analysis we have increased the number of SNe in the sample, applied a new model for extinction in the parent galaxy, and more carefully calculated Galactic extinction.

2. THE MODEL

Because of their long-lived progenitors, only SNe Ia have been observed in elliptical galaxies, which are, practically, gas and dust free. In spirals SNe Ia can be found in inter-arm regions and galaxy's halos. Hence, extinction does not influence their luminosities as much as in the case of core-collapse SNe (Ib/c and II) which are all observed in spiral and irregular galaxies which have significant amounts of dust.

As just mentioned in the previous section, we have chosen to work with SNe Ib/c because we expect them to be relatively homogenous class, at least in comparison to SNe II. Ideally, we should further separate SN Ib from Ic, but the sample is already too small for doing this, as we shall see. On the other hand, a sample of stripped-envelope SNe also comprises peculiar SNe Ic (the so called hypernovae) which can have very different properties, and thereby were not included in this analysis.

Extinction has a selective nature, meaning it depends on wavelength. Shorter wavelengths are more weakened and therefore we expect blue magnitudes (B) to be more extincted than, for example, visual ones (V). Apparent peak B magnitudes for strippedenvelope SNe that we have focused on have also turned out to be more frequently available in our primary data source (Asiago Supernova Catalogue, Barbon et al. 1999). For the absolute peak blue magnitude we can generally write:

$$M_B^0 = m_B - \mu - A_G - A_g = M_B - A_g,$$
 (1)

where m_B is apparent magnitude, $\mu = 5 \log(d/Mpc)$ is distance modulus, A_G and A_g are Galactic extinction and extinction in parent galaxy, respectively.

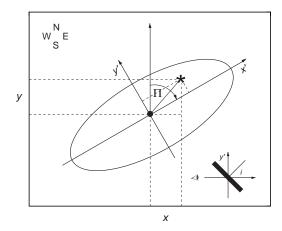


Fig. 1. The figure shows how radial position of a supernova in its parent galaxy was calculated.

Bearing in mind the short life of their progenitors, we may assume that the stripped-envelope SNe are practically in the galactic plane (Z=0). The radial position of supernova in a galaxy is then (see Figure 1):

$$r^{2} = d^{2}(x'^{2} + y'^{2} \sec^{2} i) =$$

$$d^{2}(x^{2} + y^{2})(\cos^{2}(\arctan(\frac{y}{x}) + \Pi - 90^{\circ}) +$$

$$+ \sin^{2}(\arctan(\frac{y}{x}) + \Pi - 90^{\circ}) \sec^{2} i), \qquad (2)$$

where x and y give SN offset from the center of the galaxy in radians, Π is the position angle of the major axis and d is the distance to the galaxy. If not given, offsets can be calculated from right ascension and declination; $x \approx (\alpha_{\rm SN} - \alpha_{\rm g}) \cos \delta_{\rm g}$ and $y \approx (\delta_{\rm SN} - \delta_{\rm g})$.

If we assume that

$$A_{g} = A_{0}e^{-ar/R}, \tag{3}$$

then

$$M_{\rm B} = M_{\rm B}^0 + A_0 e^{-ar/R}.$$
 (4)

R is the radius of a galaxy, and A_0 and a parameters which can be obtained from the fit.

Extinction has been already assumed to follow an exponential law by Hatano et al. (1997). It is known that dust density in our Galaxy and M31 actually does not peak at the center (nor in bulge) but well out in the disk, in a molecular ring where most of the current star formation is taking place (see Figure 9 in Sodroski et al. 1997, Hatano et al. 1998). This shortage of the model is not that important for two reasons: (i) there is a selection effect against seeing

 $^{^{1}}$ See Richardson et al. (2006) for a somewhat different analysis of SNe Ib/c peak magnitudes in the V band.

SNe in already bright bulge (Shaw 1979); (ii) we do not expect (many) stripped-envelope SNe in old population rich bulge anyway. We also did not include dependence of inclination in this preliminary model, which would produce large errors if we had edge-on galaxies with $i \to 90^{\circ}$. Finally, spiral galaxies are not azimuthally symmetric (there are spiral arms, of course) and local environment in which star explodes can be very different from one case to another, an effect that we can not account for.

3. DATA

3.1. Distances

When possible, the Cepheid-calibrated distance to the parent galaxy, or a galaxy in the same group of galaxies, was used. The distance modulus and its uncertainty were taken directly from the literature (Richardson et al. 2006, Macri et al. 2001, Thim et al. 2003). The second choice was the distance given in the Nearby Galaxy Catalogue (Tully 1988), rescaled from $H_0 = 75 \text{km s}^{-1} \text{Mpc}^{-1}$ to $H_0 = 65 \,\mathrm{km}\,\mathrm{s}^{-1}\,\mathrm{Mpc}^{-1}$ for consistency with Arbutina (2007a,b). Uncertainty of 0.2 mag in the distance modulus was adopted as in Richardson et al. (2006). The third choice was the distance calculated from the redshift of the parent galaxy (we have restricted our analysis to the local universe, z < 0.03) assuming $H_0 = 65 \text{km s}^{-1} \text{ Mpc}^{-1}$. The redshifts corrected to the Cosmic Microwave Background (CMB) Reference Frame were taken from the June 2007 version of the NED.² The uncertainties ware calculated assuming a peculiar velocity of $300 \mathrm{km \, s^{-1}}$ as in Richardson et al. (2006).

The distance modulus and its uncertainty for SN 1994I were taken from Richmond et al. (1996) (see the references therein) who adopted the surface brightness fluctuations method, while for SN 2002ap they were taken from Foley et al. (2003) (and references therein) who used photometry of the brightest red and blue stars in the system.

3.2. Peak Apparent Magnitudes

For most SNe, peak B magnitude was taken from the June 2007 version of the Asiago Supernova Catalogue (hereafter ASC, Barbon et al. 1999).³ Uncertainty of 0.3 in apparent magnitudes listed in the ASC, estimated by Richardson et al. (2002), was adopted. The apparent B magnitude at the time

of maximum and its uncertainty for SN 1994I were taken from Richmond et al. (1996), for SN 1999ex from Stritzinger et al. (2002) and for SN 2004aw from Taubenberger et al. (2006). The peak apparent B magnitude for SN 1990B was estimated from Clocchiatti et al. (2001) with the highest uncertainty associated.

The peak apparent V magnitude and its uncertainty were taken directly from Richardson et al. (2006) except for SN 1972R and SN 2004aw for which they were taken from Leibundgut et al. (1991) and Taubenberger et al. (2006), respectively.

3.3. Galactic extinction

Two different methods for calculation of Galactic extinction were used. We thought it would be useful to use values from both methods and see what effect this will have on the results (see Willick 1999).

The first choice were values taken from RC3 catalogue (de Vaucouleurs et al. 1991) who used the older Burstein and Heiles maps (hereafter BH), which are based on HI column density and faint galaxy counts (Burstein & Heiles 1982). On the basis of the results of the investigation, it is concluded that a reasonable estimate of the relative accuracy of the HI/galaxy counts method reported by BH is 0.01 mag in E(B - V) or 10% of the reddening, whichever is larger (Burstein & Heiles 1982). The second choice were values for Galactic extinction by the Schlegel, Finkbeiner, and Davis maps (hereafter SFD), based on IRAS/DIRBE measurements of diffuse IR emission (Schlegel et al. 1998), with values taken from the NED. The reddening estimates from Schlegel et al. (1998) have an accuracy of 16%.

Galactic extinction $A_G^{SFD}(V)$ and its uncertainty were taken directly from Richardson et al. (2006) except for SN 1972R and SN 2004aw for which they were taken from NED.

3.4. Other data

The position angle of the major axis of the parent galaxy (measured North Eastwards) was taken from ASC, except for SN 1983N, SN 1984I, SN 1991N and SN 1998bw for which it was taken from the July 2007 version of the SAI supernova catalogue.⁴ The SN type, the parent galaxy type, the inclination of the polar axis with respect to the line of sight in degrees (0° for face on systems), the SN offset from the galaxy nucleus in arcseconds, and decimal logarithm

²The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (available at http://nedwww.ipac.caltech.edu/).

³Available at http://web.pd.astro.it/supern/

⁴Sternberg Astronomical Institute Supernova Catalogue (SAI) by D.Yu. Tsvetkov, N.N. Pavlyuk, O.S. Bartunov and Yu.P. Pskovskii, Sternberg Astronomical Institute, Moscow University, Moscow, Russia (available at http://www.sai.msu.su/sn/sncat/).

of the apparent isophotal diameter in units of 0.1 arcminutes, were taken from ASC.

There is some discrepancy regarding the type of SN 1972R (Ib in ASC, Ia in Patat et al. 1997, Ib? in Leibundgut et al. 1991, Ipec in SAI supernova catalogue) and SN 1999ex (Ib/c in ASC, Ib in Richardson et al. 2006). We have marked these as Ib? and Ib/c, respectivley.

4. ANALYSIS AND RESULTS

Table 1 gives a sample of SNe Ib/c with the known peak apparent B magnitudes and the calculated SN radial positions. Table 2 gives redshift and distance modulus for each supernova in the sample. Table 3 and 4 give absolute B magnitudes at maximum light, uncorrected for the parent galaxy extinction, for the same sample of SNe, with BH and SFD model used for calculation of Galactic extinction, respectively. Table 5 gives peak V absolute magnitudes, uncorrected for the parent galaxy extinction, with only SFD method for calculation of Galactic extinction used.

We see in Figure 2 and 4 that there is a certain trend of dimmer SNe with decreasing distance from the center of a galaxy which can be attributed to extinction. It can also be seen in Figure 2 that SNe Ic show larger dispersion then SNe Ib.

Peculiar SNe Ic, also known as hypernovae, show very large dispersion (see Figure 2), they may have very different properties and are thereby excluded from the fit. SN 2004aw appears to be a link between a normal Type Ic supernova like SN 1994I and the group of broad-lined SNe Ic like 1998bw and 2002ap (Taubenberger et al. 2006). NGC 3997, host of SN 2004aw, could be a merger system of two spiral galaxies showing tidally deformed spiral arms (Taubenberger et al. 2006), which may explain the SN position. Another supernova that was excluded from the fit is SN 1990B. It shows some kind of anomalous extinction. The reasons may lie in a specific environment. Unusually high value $M_{\rm B/V}$ could be due to the high value of the host galaxy extinction (as estimated in Richardson et al. 2006).⁵

In Figure 3 The SN V absolute magnitudes, uncorrected for the parent galaxy extinction, are plotted against relative radial position of a SN in the galaxy, with SFD method for calculation of Galactic extinction used. Contrary to the case of B magnitudes, a significant trend of dimmer SNe with de-

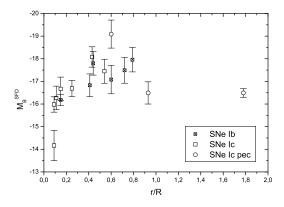


Fig. 2. The SN B absolute magnitudes, uncorrected for the parent galaxy extinction, are plotted against the relative radial positions of a SN in the galaxy. The SFD method for calculation of Galactic extinction is used.

creasing radius cannot be observed here. This is understandable because the extinction should have weaker influence on V magnitudes than B magnitudes.

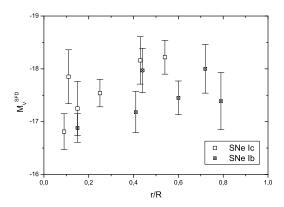


Fig. 3. The SN V absolute magnitudes, uncorrected for the parent galaxy extinction, are plotted against relative radial positions of a SN in the galaxy. The SFD method for the calculation of Galactic extinction is used. **SNe Ic pec** are excluded, as well as SN 1990B.

If we assume that extinction is negligible when $r/R \to \infty$ a fit to data can give us intrinsic absolute magnitude for SNe Ib/c (see Figure 4). These are: ${\rm M_B^0} = -17.86 \pm 0.46$, for BH method used and ${\rm M_B^0} = -17.74 \pm 0.40$, for SFD method used. Figure 5 shows the effect of BH/SFD method used in calculation of Galactic extinction on the assumed extinction trend and resulting peak absolute magnitude. As we can

 $^{^5{\}rm There}$ are few SN Ib/c from ASC excluded from this analysis; SN 1954A is located in an irregular galaxy, SN 1966J was shown to be SN Ia (Casebeer et al. 2000), SN 2001B was excluded because of the unknown peak B luminosity, SN 2006tq because of some other unknown properties.

see the effect is not large. We will thereby adopt the mean value:

$$M_{\rm B}^0 = -17.80 \pm 0.43. \tag{5}$$

Curves in Figures 4 and 5 have the form of equations (3) i.e. (4). In Table 6 we give all fit parameters.

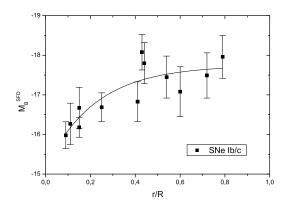


Fig. 4. The curve represents the best fit for the data sample of 12 SNe Ib/c. The SFD method for calculation of Galactic extinction is used. SN 1990B is excluded from the fit.

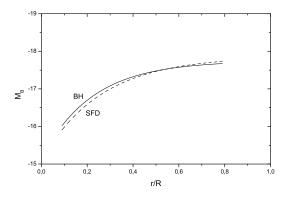


Fig. 5. The effect of BH/SFD method used in determining peak absolute magnitude on the results.

It is still possible that there is a substantial range of absolute magnitudes for Ib/c events. In that case we will have the Malmquist bias – only brighter SNe would be observed at large distances (high z) (see Richardson et al. 2006). Figure 6 shows ${\rm M_B^{SFD}}$ against distance modulus for analysed Ib/c supernovae. We do not see any distance dependance, which is quite understandable since we have limited our analysis to the local universe (z < 0.03).

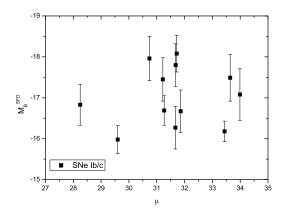


Fig. 6. The $M_{\rm B}^{\rm SFD}$ dependance on distance modulus.

5. CONCLUSIONS

Measuring the radial dependence of controlled samples of SNe in galaxies appears to be a promising way to constrain the amount and the distribution of dust in galaxies (Hatano et al. 1998). As pointed out by Hatano et al. (1998) the extinction by dust in parent galaxies can also affect the observed SNe properties.

In this paper we analysed a sample of SNe Ib/c in neighboring spiral galaxies. We have chosen to work with SNe Ib/c since we expect them to be relatively homogenous class, at least in comparison to SNe II. B magnitudes were considered because the extinction has stronger influence on them, as well as because of the larger quantity of data available (in ASC). A certain trend of dimmer SNe with decreasing distance from the center of a galaxy was observed. Such an effect can be attributed to extinction. We have adopted the mean value for SNe Ib/c intrinsic absolute magnitude:

$$M_{\rm B}^0 = -17.80 \pm 0.43,\tag{6}$$

obtained from the fit.

We made comparison of the results obtained by using values for $A_{\rm G}$ from different methods for Galactic extinction calculation. The effect is not significant. Both methods give similar results.

To conclude, analysing the dependence of SN observational properties on radial position in their parent galaxies may hold some promise. Nevertheless, more data are needed to reach stronger conclusions.

The authors would like to thank the referee Prof. David Branch for useful comments. This paper is

 $\begin{array}{c} \text{TABLE 6} \\ \text{FIT PARAMETERS} \end{array}$

Method	$ m M_B^0$	A_0	a
BH	-17.86 ± 0.46	2.77 ± 0.51	3.89 ± 2.55
SFD	-17.74 ± 0.40	2.60 ± 0.71	4.55 ± 3.38

a part of the projects "Gaseous and Stellar Components of Galaxies: Interaction and Evolutions" (No. 146012) and "Physics of Sun and Stars" (No. 146003) supported by the Ministry of Science of Serbia.

REFERENCES

Arbutina, B. 2007a, IJMPD, 16, 1219

Arbutina, B. 2007b, AIP Conf. Proc., 938, 202

Barbon, R., Boundi, V., Cappellaro, E., & Turatto, M. 1999, A&A, 139, 531

Burstein D. & Heiles, C. 1982, AJ, 87, 1165

Cappellaro, E., Turatto, M., Tsvetkov, D. Yu., Bartunov, O. S., Pollas, C., Evans R., & Humuy, M. 1997, A&A, 322, 431

Casebeer, G. et al. 2000, PASP, 112, 1433

Clocchiatti, A. et al 2001, ApJ, 553, 886

Foley, R. J. et al. 2003, PASP, 115, 1220

Hatano, K., Branch, D., Fisher, A. & Starrfield, S. 1997, MNRAS, 290, 113

Hatano, K., Branch, D., & Deaton, J. 1998, ApJ, 502, 177

Leibundgut, B. et al. 1991, AA, 89, 537

Macri, L. M. et al. 2001, ApJ, 559, 243

Patat, F. et al. 1997, A&A, 317, 423

Richardson, D., Branch, D., & Baron, E. 2006, AJ, 131, 2233

Richardson, D., Branch, D., & Baron, E. 2002, AJ, 123, 745

Richmond, M. W. et al. 1996, AJ, 111, 327

Schlegel, D. et al. 1998, ApJ, 500, 525

Shaw, R. L. 1979, A&A, 76, 188

Sodroski T. J., Odegard, N., Arendt, R. G., Dwek, E., Weiland, J. L., Hauser, M. G., & Kelsall, T. 1997, ApJ, 480, 173

Stritzinger, M. et al. 2002, AJ, 124, 2100

Taubenberger, S. et al. 2006, MNRAS, 371, 1459

Thim, F. et al. 2003, ApJ, 590, 256

Tully, R. B. 1988, Nearby Galaxy Catalogue (Cambridge University Press)

de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H.G., Buta, R.J., Paturel G. & Foque, P. 1991, Third Reference Catalogue of Bright Galaxies (Springer-Verlag, New York)

Willick, J. A. 1999, ApJ, 522, 647

D. Onić, B. Arbutina and D. Urošević: Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia (donic, arbo, dejanu@matf.bg.ac.yu)

 ${\it TABLE~1}$ DATA AND RADIAL POSITIONS FOR SUPERNOVAE FROM THE SAMPLE

Supernova	SN	Galaxy	Galaxy	Inclination	Position	Diameter	SN radial	Apparent
	type		type		angle	D [kpc]	position	magnitude
				$i [^{\circ}]$	$\Pi[^{\circ}]$		$r[\mathrm{kpc}]$	$m_{ m B}$
SN 1972R	Ib?	NGC 2841	Sb	65	147	32	12.6	12.85 ± 0.30
SN 1983N	Ib	NGC 5236	SBc	21	45	17	3.5	11.70 ± 0.30
SN 1984I	Ib	E323-G99	SBcd	25	10	32	11.7	16.60 ± 0.30
SN 1984L	Ib	NGC 991	SBc	28	60	19	4.1	14.00 ± 0.30
SN 2000H	Ib	IC 454	SBab	58	140	32	9.5	17.90 ± 0.30
SN~1999ex	Ib/c	IC 5179	Sbc	61	57	33	2.5	17.35 ± 0.02
SN 1962L	Ic	NGC 1073	SBc	25	15	24	6.6	13.94 ± 0.30
SN 1983I	Ic	NGC 4051	SBbc	35	135	34	7.2	13.70 ± 0.30
SN 1983V	Ic	NGC 1365	SBb	58	32	57	7.2	14.67 ± 0.30
$\rm SN~1987M$	Ic	NGC 2715	SBc	74	22	33	2.4	15.30 ± 0.30
SN 1991N	Ic	NGC 3310	SBbc	19	139	17	0.9	15.50 ± 0.30
SN 1994I	Ic	NGC 5194	Sbc	48	163	24	1.1	13.77 ± 0.02
$\rm SN~1990B$	Ic	NGC 4568	Sbc	65	23	20	0.9	16.89 ± 0.60
SN 2004aw	Ic pec	NGC 3997	SBb pec	68	130	38	33.4	18.06 ± 0.04
$\rm SN~1998bw$	Ic pec	E184-G82	$_{ m SB}$	33	150	9	2.7	14.09 ± 0.30
$\rm SN~2002ap$	Ic pec	NGC 628	Sc	24	25	22	10.3	13.11 ± 0.30

 ${\it TABLE~2}$ SN REDSHIFT AND DISTANCE MODULUS

Supernova	Redshift	Distance	Ref.
		modulus	
	z	μ	
SN 1972R	0.002128	30.74 ± 0.23	1
SN 1983N	0.001711	28.25 ± 0.15	2
SN 1984I	0.010737	33.64 ± 0.20	3
SN 1984L	0.005110	31.68 ± 0.20	4
SN 2000H	0.013159	33.99 ± 0.17	3
SN~1999ex	0.011415	33.44 ± 0.22	3
SN 1962L	0.004030	31.22 ± 0.20	4
SN 1983I	0.002336	31.72 ± 0.14	5
SN 1983V	0.005457	31.27 ± 0.05	5
$\rm SN~1987M$	0.004466	31.86 ± 0.20	4
SN 1991N	0.003312	31.67 ± 0.20	4
SN 1994I	0.001544	29.60 ± 0.30	6
SN 1990B	0.007522	30.92 ± 0.05	5
SN 2004aw	0.015914	34.46 ± 0.14	3
SN 1998bw	0.008670	32.93 ± 0.28	3
$\rm SN~2002ap$	0.002192	29.30 ± 0.14	7

REFERENCES. - (1) Macri et al. 2001; (2) Thim et al. 2003; (3) NED (References are for redshifts); (4) Tully 1988; (5) Richardson et al. 2006; (6) Richardson et al. 1996; (7) Foley et al. 2003.

TABLE 3 ${\rm ABSOLUTE~MAGNITUDE~M_B^{BH}}$

Supernova	Galactic	Absolute
	absorption	$\mathrm{magnitude^{a}}$
	$A_{G}^{BH}(B)$	$ m M_{B}^{BH}$
SN 1972R	0.00 ± 0.04	-17.89 ± 0.57
SN 1983N	0.15 ± 0.04	-16.70 ± 0.49
SN 1984I	0.45 ± 0.04	-17.49 ± 0.54
SN 1984L	0.00 ± 0.04	-17.68 ± 0.54
SN~2000H	1.44 ± 0.04	-17.53 ± 0.51
SN~1999ex	0.00 ± 0.04	-16.09 ± 0.28
SN 1962L	0.07 ± 0.04	-17.35 ± 0.54
SN 1983I	0.00 ± 0.04	-18.02 ± 0.48
SN 1983V	0.00 ± 0.04	-16.60 ± 0.39
$\rm SN~1987M$	0.02 ± 0.04	-16.58 ± 0.54
SN 1991N	0.00 ± 0.04	-16.17 ± 0.54
SN 1994I	0.00 ± 0.04	-15.83 ± 0.36
SN 1990B	0.01 ± 0.04	-14.04 ± 0.69
SN 2004aw	0.00 ± 0.04	-16.40 ± 0.22
SN 1998bw	0.00 ± 0.04	-18.84 ± 0.62
SN~2002ap	0.13 ± 0.04	-16.32 ± 0.48

 $^{^{\}rm a}$ $\rm M_B^{BH}$ is absolute magnitude uncorrected for extinction in the parent galaxy.

TABLE 4 ${\it ABSOLUTE~MAGNITUDE~M_B^{SFD}}$

Supernova	Galactic	Absolute
	absorption	$magnitude^{a}$
	$A_{G}^{SFD}(B)$	$ m M_B^{SFD}$
SN 1972R	0.067 ± 0.011	-17.96 ± 0.54
SN 1983N	0.284 ± 0.045	-16.83 ± 0.50
SN 1984I	0.452 ± 0.072	-17.49 ± 0.57
SN 1984L	0.119 ± 0.019	-17.80 ± 0.52
SN 2000H	0.991 ± 0.159	-17.08 ± 0.63
SN~1999ex	0.087 ± 0.014	-16.18 ± 0.25
SN 1962L	0.169 ± 0.027	-17.45 ± 0.53
SN 1983I	0.056 ± 0.009	-18.08 ± 0.45
SN 1983V	0.088 ± 0.014	-16.69 ± 0.36
$\rm SN~1987M$	0.110 ± 0.018	-16.67 ± 0.52
SN 1991N	0.097 ± 0.016	-16.27 ± 0.52
SN 1994I	0.150 ± 0.024	-15.98 ± 0.34
SN 1990B	0.141 ± 0.023	-14.17 ± 0.67
SN 2004aw	0.089 ± 0.014	-16.49 ± 0.19
SN 1998bw	0.253 ± 0.040	-19.09 ± 0.62
SN 2002ap	0.301 ± 0.048	-16.49 ± 0.49
	•	

 $^{^{\}rm a}$ $\rm M_{\rm B}^{\rm SFD}$ is absolute magnitude uncorrected for extinction in the parent galaxy.

TABLE 5 ${\rm ABSOLUTE~MAGNITUDE~M_{V}^{SFD}}$

Supernova	$m_{ m V}$	$A_{G}^{SFD}(V)$	$ m M_{ m V}^{ m SFDa}$
SN 1972R	13.4 ± 0.3	0.052 ± 0.008	-17.39 ± 0.54
SN 1983N	11.3 ± 0.2	0.228 ± 0.037	-17.18 ± 0.39
SN 1984I	15.98 ± 0.20	0.344 ± 0.055	-18.00 ± 0.46
SN 1984L	13.8 ± 0.2	0.091 ± 0.015	-17.97 ± 0.42
SN 2000H	17.30 ± 0.03	0.760 ± 0.122	-17.45 ± 0.32
$\mathrm{SN}\ 1999\mathrm{ex}$	16.63 ± 0.04	0.067 ± 0.011	-16.88 ± 0.27
SN 1962L	13.13 ± 0.10	0.130 ± 0.021	-18.22 ± 0.32
SN 1983I	13.6 ± 0.3	0.043 ± 0.007	-18.16 ± 0.45
$\mathrm{SN}\ 1983\mathrm{V}$	13.80 ± 0.20	0.068 ± 0.011	-17.54 ± 0.26
SN~1987M	14.7 ± 0.3	0.085 ± 0.014	-17.25 ± 0.51
SN 1991N	13.9 ± 0.3	0.075 ± 0.012	-17.85 ± 0.51
SN 1994I	12.91 ± 0.02	0.115 ± 0.018	-16.81 ± 0.34
SN 1990B	15.75 ± 0.20	0.108 ± 0.017	-15.28 ± 0.27
SN 2004aw	17.30 ± 0.03	0.069 ± 0.011	-17.23 ± 0.18
$\rm SN~1998bw$	13.75 ± 0.10	0.194 ± 0.031	-19.37 ± 0.41
SN 2002ap	12.37 ± 0.04	0.161 ± 0.026	-17.09 ± 0.21

 $^{^{\}rm a}$ $\rm M_{\rm V}^{\rm SFD}$ is absolute magnitude uncorrected for extinction in the parent galaxy.