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The number of dimensional fundamental constants
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We revisit, qualify, and objectively resolve the seemingly controversial question about what is the
number of dimensional fundamental constants in Nature. For this purpose, we only assume that
all we can directly measure are space and time intervals, and that this is enough to evaluate any
physical observable. We conclude that the number of dimensional fundamental constants is two.
We emphasize that this is an objective result rather than a “philosophical opinion”, and we let it
clear how it could be refuted in order to prove us wrong. Our conclusion coincides with Veneziano’s
string-theoretical one but our arguments are not based on any particular theory. As a result, this
implies that one of the three usually considered fundamental constants G, c or h can be eliminated
and we show explicitly how this can be accomplished.
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I. INTRODUCTION

The problem of how many dimensional fundamental
constants are in Nature has been subject of debate for
a long time (see, e.g., [1]-[3] and references therein). In
the beginning of the XX century, Planck stated that four
dimensional constants were necessary and sufficient to
describe all physical phenomena [4]. He named these
constants a, b, c, and f , which turned out to be related
to the modern constants h, k and G by a = h/k, b = h
and f = G. The symbol c has been kept since then
to represent the speed of light. Planck showed, further-
more, that these constants could be combined in order
to get a “natural” system of three basic units: units of
length ℓP =

√
G~/c3, time tP =

√
G~/c5, and mass

mP =
√
~c/G. (Incidentally, their numerical values were

close to the set of units previously suggested by Stoney
in the context of electromagnetism [5] even before the
introduction of the Planck constant h.)

A closer analysis of the four Planck’s original dimen-
sional constants has revealed that the combination b/a,
namely k, turns out to be a conversion factor between
temperature and energy units, leading to the well ac-
cepted conclusion that the Boltzmann constant has its
origin in the historical fact that temperature was not
early recognized as a manifestation of kinetic energy. Had
temperature been defined, at early times, as twice the
mean energy stored in each degree of freedom of a sys-
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tem in thermal equilibrium (whenever the equipartition
energy principle is valid) and the Boltzmann constant
would have the dimensionless value 1 (i.e., it would not
have been introduced at all), in which case entropy would
be also dimensionless.

The view that G, c and h would be the three funda-
mental constants of Nature is often expressed by means
of the so called “cube of natural units” or “cube of the-
ories” first introduced by Gamov, Ivanenko and Landau
in the late twenties (see, e.g., [6] and references therein),
where the three dimensional constants involved in the
construction of the Planck basic units appear explicitly.
The vertices of the cube would correspond to certain
limiting regimes of the physical laws. For instance, the
origin (0, 0, 0) would correspond to non-relativistic me-
chanics, (c−1, 0, 0) to Special Relativity, (0, h, 0) to non-
relativistic quantum mechanics, (c−1, 0, G) to General
Relativity and so on [6] (see left-hand side of Fig. 1).

Such a conception has been recently challenged.
Veneziano has concluded through string-theoretical ar-
guments that the number of dimensional fundamental
constants would be two, while Duff has advocated for
none at all [7]. This is quite unacceptable that this ques-
tion is still controversial. The problem here does not
concern the fact of not having an answer to some ob-
jective question but having different answers to the same
question. Here we make a clear statement of the problem
and present what we believe to be a final solution: the
number of fundamental dimensional constants is two. We
emphasize that our conclusion can be objectively refuted
if it is shown that there exists some observable measured
in laboratory that cannot be expressed in a basis of two
independent observables as shown in Eq. (4). What we
present here is, thus, an objective conclusion rather than
a philosophical opinion.
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II. SPACE, TIME, AND NOTHING ELSE

Let us begin by clearly stating the points upon which
our line of reasoning is based:

1. Without going into the subtleties of precisely defin-
ing what a physical theory is, we only assume that
any “good” physical theory should fulfill the fol-
lowing minimum criteria: (i) list the observables it
deals with, (ii) prescribe how to measure these ob-
servables, and (iii) provide self-consistent relations
among them (the “physical laws”);

2. These relations are then tested against experimen-
tal data obtained through properly chosen pro-
cesses, which we assume to take place in the space-
time; eventually, all we can directly measure are
space and time intervals. In particular, this im-
plies that one only needs two units to express all
measurements.

The basic units of space and time, say σ and τ , respec-
tively, can be chosen in a quite arbitrary way, and once
this is done, any observable Oi can be expressed as

Oi = Ωi τ
αiσβi , (1)

with Ωi, αi, and βi being real (dimensionless) numbers,
and i belonging to some index set I. For the sake of
notation simplicity, the index i gives information not
only about the physical quantity being considered (en-
ergy, spin, . . . ) but also about the state of the system
(no matter how the theory chooses to describe it). As a
result, Ωi, for given i, is indeed a real number instead of
a real-valued function.
It is in order now to stress that one can select any pair

o1 and o2 of independent observables to express all the
other ones as follows. Since o1, o2 ∈ {Oi}i∈I , let us cast
them as

o1 = Ωo1τ
a1σb1 , (2)

o2 = Ωo2τ
a2σb2 , (3)

where by independent we mean that (a1, b1) and (a2, b2)
form a basis of R2. Then, we can solve Eqs. (2) and (3)
for τ and σ and rewrite Eq. (1) associated with all other
observables as

Oi = Ω̃io
µi

1 oνi2 , (4)

where Ω̃i, µi and νi are clearly real numbers, namely,

Ω̃i = Ωi Ω
(−b2αi+a2βi)/W
o1 Ω(b1αi−a1βi)/W

o2 ,

µi = (b2αi − a2βi)/W ,

νi = (−b1αi + a1βi)/W

and W ≡ a1b2 − b1a2. The fact that W 6= 0 is guar-
anteed by our requirement that o1 and o2 be indepen-
dent. Although the choice {o1, o2} ⊂ {Oi}i∈I is ar-
bitrary, there may be more convenient ways (possibly

theory-dependent) of selecting this basic set. Indeed,
the speed of light c and the transition time tCs between
certain energy states of the Cesium atom, which are
presently adopted to define the standard units of space
and time [8], could be naturally chosen to constitute the
basic set.
At this point, let us clearly distinguish what we are

saying from what we are not saying. Our conclusion that
all the observables Oi can be expressed in terms of only
two basic dimensional observables does not imply the ex-
istence of some “final” theory able to predict all dimen-

sionless real numbers Ω̃i appearing in Eq. (4) (no matter
how desirable it may be). For instance, in the Standard
Model the total number of dimensional and dimensionless
parameters which should be provided as input in order
to predict all the other observables is much larger than
two. However, one can choose any pair of independent
dimensional constants from this set and express all the
other ones (and, consequently, all observables) in terms
of this pair.

III. MEASURING MASS WITH CLOCKS AND

RULERS

A question which can be raised is how observables
which are usually written not only in terms of space and
time units, e.g. mass, fit into this scheme. We exhibit
next two protocols where the mass unit M (g, pounds,
. . . ) is solely expressed in terms of units of space and
time. For the sake of simplicity, in both protocols we
start assuming the CGS system, where all observable
quantities Di are expressed in terms of units of space
L (cm), time T (s), and mass M (g):

Di = ∆i T
αiLβiMγi , (5)

where ∆i, αi, βi, and γi are real numbers.

• G protocol : Multiply Eq. (5) by Gγi , where G is the
Newton’s constant, and identify DiG

γi as the ob-

servable O
(G)
i which appears in Eq. (1) (and fulfills

our conditions 1.–2.). [Here the superscript (G)
is introduced only to indicate the protocol used to
cast the observable in the form given by Eq. (1).]
By using the G protocol in all observables involving
the M unit and rewriting the physical laws in terms

of O
(G)
i rather than Di, we end up (i) vanishing the

unit M (g) from the observables, (ii) vanishing the
constant G from all physical laws, and (iii) with
masses being measured in units of cm3/s2. For in-
stance, by applying the G protocol to the original
Newton’s gravitational law g = −Gm/d2, we get

g = −m(G)/d2 , (6)

where the units of m(G) ≡ mG is L3/T 2. In
this sense, G plays the role of a conversion fac-
tor (from cm3/s2 to g) as much as does the Boltz-
mann constant k (from erg to Kelvin). Indeed, G
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could have never been introduced once the mass
unit were properly defined (see Sec. 11 of Ref. [9]
and Ref. [10]). We see from Eq. (6) that this proce-
dure of eliminating the unit of mass M leads m(G)

to be directly interpreted as (and not only related
to) active gravitational mass, and that it can be
obtained simply through space and time measure-
ments by determining the acceleration g induced on
test particles lying at a distance d. Moreover, we
note for further purposes that the G protocol ap-
plied to (the observable) Planck’s constant h leads
to

h(G) ≡ hG , (7)

whose dimension is L5/T 3.

• h protocol : Divide Eq. (5) by hγi , where h is
Planck’s constant, and identify Di/h

γi as the ob-

servable O
(h)
i which satisfies Eq. (1). By rewriting

the physical laws in terms of O
(h)
i rather than Di,

we end up (i) vanishing the unit M (g) from the
observables as before, (ii) vanishing the constant
h from all physical laws, and (iii) with masses be-
ing measured in units of s/cm2. For instance, by
applying the h protocol to the original Compton
scattering formula ∆λ = [h/(mc)](1 − cos θ), we
get

∆λ = [m(h)c]−1(1− cos θ) , (8)

where the unit of m(h) ≡ m/h is T/L2. In this
sense, h plays the role of a conversion factor (from
s/cm2 to g). In this protocol the inverse of the
Compton length can be seen to be naturally asso-
ciated with inertia of elementary particles through
the Compton effect. Here m(h)c (and therefore
m(h)) can be directly measured using clocks and
rulers by determining the wavelength change ∆λ of
a photon scattered by an angle θ. We note that the
h protocol applied to Newton’s constant G leads to

G(h) ≡ Gh ; (9)

Note that G(h) = h(G). (A sort of implementation
of the h protocol can be found in Refs. [11]-[12].)

Some physical observables of interest in the different pro-
tocols are shown in Table I.
Rewriting the physical laws in terms of Eq. (4) rather

than Eq. (5) does not change any of their predictions.
Nevertheless, it can shed new light on some conceptual
issues. Next, we discuss and resolve in this context the
much-debated question about what is the number of di-
mensional fundamental constants in Nature.

IV. PHYSICAL INSIGHTS

In the previous section we presented two protocols in
which mass can be determined through space and time

G protocol h protocol

G G(G) = 1 G(h) = 4.42× 10−34 cm5/s3

h h(G) = 4.42× 10−34 cm5/s3 h(h) = 1

me m
(G)
e = 6.08 × 10−35 cm3/s2 m

(h)
e = 1.38 × 10−1 s/cm2

e e(G) = 1.24 × 10−13 cm3/s2 e(h) = 0.59 × 104 cm1/2/s1/2

TABLE I: The values of G, h, and the electron mass and
charge are presented in theG and h protocols. It is interesting
to note that h(G) = G(h).

measurements alone. In order to do so, each one of
those protocols made use of a specific law relating mass
with space and time intervals. However, since we claim
that our main conclusion (regarding the number of di-
mensional fundamental constants) is general and theory-
independent, one might wonder “what if Nature did not
comply with any such a law?” For the sake of concrete-
ness, let us imagine that Newtonian mechanics in the
absence of gravity were all that there was to the laws of
Nature. How would our arguments apply in this case?

Firstly, it is important (though obvious) to point out
that Nature would look completely different. In that
case, (inertial) mass would no longer be determined in
terms of space and time measurements and a standard
of mass, let us say the kilogram, might be introduced.
Any mass would then be determined as some multiple
of this standard mass through, e.g., colision experiments
(recall that gravity is not available). Our point, how-
ever, is that in this case mass is no longer an observable
as defined in Eq. (1), and, therefore, the laws of Nature
can be rewritten in such a way to completely avoid the
appearance of mass. This is certainly possible according
to our definition of “physical law” given in point 1. of
Sec. II, although they may look more complicated and
appear in a larger number in this rewritten form. Once
that is done, we are left again with only space and time
units.

For those (like some of the authors) who would rather
take the philosophical stand that even in the context
above (Newtonian mechanics with no gravity) mass
should be considered as “observable” (in some extended
sense) due to the simplification it brings to the form of
the physical laws, we point out that the need for an inde-
pendent standard in this case reflects the fact that mass
would be determined only up to a multiplicative constant:
no mass scale would be privileged (Nature would be com-
pletely different indeed). Therefore, this new standard
(introduced only to comply with someone’s prejudice)
would not appear in any “objective fundamental con-
stant” (i.e., those which determine “fundamental scales”,
as most people seem to interpret what a fundamental
constant is). Interestingly enough, in this same context
a similar argument can be applied to space and time
units to show that Newtonian mechanics in the absence
of gravity has no “objective fundamental constants” at
all (no fundamental space or time scales). The fact that
we experience space and time as distinct entities and that
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Nature does not present itself invariant under rescale of
these quantities seem to indicate that there should in-
deed exist fundamental scales of space and time. It is a
remarkable fact that we have already reached an under-
standing of the physical laws from which these scales can
be read out.
Since Nature does provide ways of measuring mass in

terms of space and time intervals (the G and h proto-
cols), the main relevance of the discussion above lies in
the fact that it can be applied to any “observable” (in
the extended sense) which may appear in some (still un-
known) physical law: the “observable” is either deter-
mined in terms of space and time measurements (a true
observable) or it cannot appear in determining funda-
mental constants which set scales in Nature.
Up to this point, our discussion was quite general and

our conclusions followed directly from assumptions 1.-2.
of Sec. II. Here, we raise accordingly some speculative
physical considerations, which may be of some relevance.
For this purpose, we choose the protocol G.
Firstly, we note that the protocol G frees classical me-

chanics from its only (so called) “fundamental parame-
ter”, namely, Newton’s gravitational constant. This is
very convenient since the value of G (like the value of k)
does not determine any scale for new physics, in contrast
to, e.g., c and h, which fix a velocity and an angular mo-
mentum scale, respectively, where relativistic and quan-
tum mechanical effects become important. In the G pro-
tocol it becomes clear that classical mechanics does not
have any prefered basis {o1, o2} of independent observ-
ables (see the origin of the plane of theories in Fig. 1).
Newton’s gravitational and second laws are written in
this context as

F (G)
g = m(G)M (G)/r2, and F

(G)
I = m(G)a, (10)

respectively. By comparing Eq. (10) with the Coulomb

law F
(G)
C = q(G)Q(G)/r2 we see that (gravitational) mass

and electric charge have the same status as coupling con-
stants of the respective interactions, as they should. The
fact that gravitational mass happens to give also a mea-
sure of inertia is a separate, more profound issue, only
partially addressed by General Relativity [14].
The actual bias driven by our present theories sug-

gests that a natural basis of independent observables
would be {c, h(G)}. The vertices (c−1 = 0, h(G)) and
(c−1, h(G) = 0) in the plane of theories (see Fig. 1) rep-
resent non-relativistic and classical physics, respectively.
It is interesting to note that in this scenario what we
usually denominate (a) quantum gravity (whatever it is)
and (b) quantum field theory would dwell at the same
vertex (c−1, h(G)) of Fig. 1. This would be reflecting the
expected feature that a complete theory (which we call
here quantum relativity) describing consistently all inter-
actions (including gravity) should contain (a) and (b).
We note that quantum relativity effects can appear at
quite low energies. The Hawking temperature

(kTH)(G) =
~
(G)c3

8πM (G)

associated with the evaporation of (static) black holes
with mass M (G) is a good example of it. If c were sub-
stantially larger, (kTH)(G) would be able to be trivially
tested in stellar-size black holes. A distinct point that
becomes obvious in the context of the G protocol is that
an electron has much more electric than “gravitational”

charge: e(G) = 2×1021m
(G)
e . On the other hand General

Relativity tells us that if a (classical) black hole is given
more charge than mass it becomes a naked singularity.
Naked singularities are expected to be understood only
in the context of quantum gravity. If quantum gravity
and quantum field theory are both different aspects of a
single quantum relativity theory, it is possible that naked
singularities and elementary particles be understood by
the same token. This is not odd if one notices that the
Planck scale for the angular momentum is precisely given
by h(G).

V. CONCLUSIONS

As a result of our conclusion that all observables can
be expressed as in Eq. (4), any physical theory fulfilling
conditions 1.–2. will not require more than a pair of in-
dependent dimensional constants to be expressed. This
pair of observables is what one usually denominates fun-
damental (dimensional) constants. Both protocols that
we have presented favor c and h(G) (= G(h)) to consti-
tute this pair but other protocols could be easily devised
(e.g., replacing h by e2 in the h protocol). From a theory-
independent perspective, no protocol can be privileged.
However, some distinction can be made if we allow for
biases coming from the present theories. In this sense,
both the G and h protocols exhibit the nice feature of
selecting as fundamental constants c and h(G), which de-
fine the regimes where relativistic and quantum effects
become important, respectively. Our conclusion that two
(c, h(G)) rather than three (c, h, G) dimensional funda-
mental constants suffice can be nicely represented as in
Fig. 1 by the squashing of the cube of theories. Clearly,
other choices of fundamental constants may become more
convenient depending on future developments of our the-
ories. Eventually, for a full quantum gravity (or “quan-
tum relativity”) theory, the following pair may be more
convenient: tP = (h(G)/c5)1/2 and ℓP = (h(G)/c3)1/2

(see Fig. 2).
In order to avoid any misunderstanding, let us clar-

ify one point which might cause some confusion. After
adopting the G (or h) protocol to eliminate the mass unit
M from all quantities in Eq. (5), one could easily envis-
age an extra protocol to carry out the elimination of one
of the remaining units T or L, e.g., a “c protocol”, in
which case all quantities would be expressed accordingly
as multiples of some power of L or T alone. In fact, one
could proceed even further and use the other fundamen-
tal constant h(G) (after properly redefined through the
hypothetical c protocol) and vanish the sole unit left. In
this case, all quantities would be dimensionless numbers.
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Although this is true, it does not imply that the num-
ber of dimensional fundamental constants would be one
or zero [13]. We must recall that our line of reasoning
is based on points 1.–2. of Sec. II, and not on the exis-
tence of some protocol to lower the number of units in
physical equations. The latter only eliminates unneces-
sary structures once the number of dimensional funda-
mental constants is established. After all, our conclusion
that the number of dimensional fundamental constants
is two comes from the following facts: (i) space and time
are distinct entities (a fact which should be accounted
for in any “complete theory”) and (ii) combined mea-
surements of space and time suffice to characterize any
physical system. Points (i) and (ii) above set the lower
and upper bounds, respectively, for the number of dimen-
sional fundamental constants to be two. Our conclusions
are in agreement with Veneziano (see Ref. [7]) but our
arguments are model independent.
We emphasize once again that our conclusion above

can be objectively refuted if it is shown that there ex-

ists some observable measured in laboratory that cannot
be expressed in a basis of two independent observables
as shown in Eq. (4). This is, thus, an objective con-
clusion rather than a philosophical opinion. A number of
valuable papers reformulating physical theories in a more
transparent or elegant way can be found in the literature.
We hope that our paper is appreciated in the same lines
with the difference that it deals with the whole set of
physical theories.
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FIG. 1: The cube of theories is shown in the left-hand
side. The origin (0, 0, 0) corresponds to non-relativistic me-
chanics, (c−1, 0, 0) to Special Relativity, (0, h, 0) to non-
relativistic Quantum Mechanics, (0, 0, G) to Newtonian grav-
ity, (c−1, 0, G) to General Relativity, (0, h,G) to “non-
relativistic Quantum Gravity”, (c−1, h, 0) to usual Quantum
Field Theory, and (c−1, h,G) to “Quantum Gravity”. Af-

ter using the G or h protocols we end up with h(G)(= G(h))
rather than with G and h. This leads the cube of theories to
be squashed into a “plane of theories” as shown in the right-
hand side of the figure. In the light of the G protocol, for
instance, the origin (0, 0) corresponds to non-relativistic me-

chanics, (c−1, 0) to Relativity, (0, h(G)) to (non-relativistic)

Quantum Mechanics and (c−1, h(G)) to “relativistic Quan-
tum Mechanics” (which includes Quantum Field Theory and
Quantum Gravity).
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FIG. 2: The plane of theories can be covered by the lines of constant h(G) and c−1 (horizontal and vertical dashed lines,
respectively) or, equivalently, by the lines of constant ℓP and tP .
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