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Future space astrometry missions are planned to measure positions and/or parallaxes of celestial
objects with an accuracy of the order of the microarcsecond. At such a level of accuracy, it will be
indispensable to take into account the influence of the mass multipole structure of the giant planets
on the bending of light rays. Within the parametrized post-Newtonian formalism, we present an
algorithmic procedure enabling to determine explicitly this influence on a light ray connecting two
points located at a finite distance. Then we specialize our formulae in the cases where 1) the light
source is located at space infinity, 2) both the light source and the observer are located at space
infinity. We examine in detail the cases where the unperturbed ray is in the equatorial plane or in
a meridian plane.

PACS numbers: 04.20.Cv, 04.25.Nx, 04.80.-y, 95.55.Br

I. INTRODUCTION

Highly precise astrometry and tests of general relativity in the Solar System will require in the foreseeable future
the measurements of apparent positions of light sources with an accuracy of the order of one microarcsecond (µas) or
better. The Global Astrometric Interferometer for Astrophysics (GAIA) Mission is planned to obtain accuracies in
the range 4-20 µas [3, 6] and the Space Interferometer Mission (SIM) is designed to reach a differential accuracy of
0.6 µas on bright stars [17].
This context has stimulated several studies devoted to the bending effects due to the mass multipole moments of

the bodies of the Solar System [2, 4, 8, 9, 10, 11, 12, 13]. Owing to the complexity of the calculations, only the
contribution due to the quadrupole moment J2 of the deflecting mass has been explicitly determined. For a light ray
grazing Jupiter, it has been shown that this effect amounts to 240 µas [10] and may be proposed as a new test of
general relativity which could be realized with GAIA [4, 13]. However, rough estimates show that the Jovian higher
multipole moments J4 and J6 could produce deflections of the order of 10 µas and 0.1 µas, respectively. For this
reason, we propose here a method enabling to determine the deflection effects of any mass multipole moment of a
static axisymmetric gravitational field within the parametrized post-Newtonian formalism. This method is based on
an algorithmic procedure found in [11] and [15]. The problem is treated in the general case where both the light source
and the observer are located at a finite distance. It is worthy of note that being a development of results derived
in [15], [14] and [16] by using the so-called Synge’s world function, our procedure avoids any integration of the null
geodesic equations.
The paper is organized as follows. In Sec. II we give the notations used in this article. In Sec. III we recall how in

a static axisymmetric space-time the vector tangent to a null geodesic can be derived from the time transfer function
T giving the travel time of a photon between two points. In Sec. IV we determine the contribution TJn

of each mass
multipole Jn to the time transfer function T . In Sec. V we carry out the calculation of the contribution of each mass
multipole to the direction of a light ray at its point of reception, both the light source and the observer being assumed
to be located at a finite distance. In Sec. VI we focus on the case where the source of the light ray is located at space
infinity. Indeed, this assumption is sufficient for the light emitted by stars or by extragalactic objects. In Sec. VII we
assume that both the source of light and the observer are situated at space infinity. We obtain explicit formulae for
the contribution of each mass multipole to the light deflection. We carry out a detailed calculation of the influence of
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J2, J3 and J4. We recover the results on the effects of J2 previously obtained in [9, 10, 11, 12, 13] and [4]. We give
some concluding remarks in Sec. VIII.

II. NOTATIONS AND CONVENTIONS

The Lorentzian metric of space-time is denoted by g. The signature adopted for g is (+ − − −). We suppose
that space-time is covered by a global quasi-Galilean coordinate system (xµ) = (x0,x), where x0 = ct, t being a time
coordinate, and x = (xi). Greek indices run from 0 to 3, and latin indices run from 1 to 3.
A bold letter denotes an ordered triple. In order to distinguish the triples built with contravariant components of a

vector from the ones built with covariant components, we systematically use the notation a = (a1, a2, a3) = (ai) and
b = (b1, b2, b3) = (bi), except for the gradient operator, denoted by ∇ as usual. Let us emphasize that these notations
are purely conventional and that we shall write for example l = N + λ in order to mean that li = N i + λi. Such a
mixing of “contravariant” and “covariant” quantities cannot be ambiguous, since these equalities must be understood
as equalities of functions, and not as equalities between true four dimensional vectors. Given a = (ai), b = (bi) and
c = (ci), we use a.b to denote aibi and a.c to denote aici (Einstein’s convention on repeated indices is used in both
cases). We put |a| = (δija

iaj)1/2 and |b| = (δijbibj)
1/2.

G is the Newtonian gravitational constant and c is the speed of light in a vacuum.

III. TIME TRANSFER FUNCTION AND DIRECTION OF A LIGHT RAY

We assume that the metric does not depend on x0. Let xA = (ctA,xA) and xB = (ctB,xB) be two events of
space-time supposed to be connected by an unique light ray ΓAB. By convention xA and xB denote the emission
point and the reception point, respectively. The travel time tB − tA of a photon connecting xA and xB is a function
of xA and xB, so we put

tB − tA = T (xA,xB). (1)

We call T the time transfer function (relative to the chosen coordinate system). Following a theorem shown in [14],
the direction tangent to the light ray ΓAB at point xB is defined by the 4-vector having the covariant components

(l0)B = 1, (li)B = − c
∂T

∂xi
B

(xA,xB). (2)

We suppose that the gravitational field is generated by an isolated axisymmetric body. We are only interested in
calculating the contributions of the mass multipoles to the bending of light at the order 1/c2. So using a standard
post-Newtonian gauge [18] we may content ourselves with a metric given by

g00 = 1−
2W

c2
+O

(
1

c4

)
, (3)

g0i = O

(
1

c3

)
, (4)

gij = −

(
1 + γ

2W

c2

)
δij +O

(
1

c4

)
, (5)

where W is a potential defined by

W (x) = G

∫
ρ(x′)

|x− x′|
d3x′ +O

(
1

c2

)
, (6)

ρ being the rest mass density of the body and γ the well-known post-Newtonian parameter which describes the
three-space curvature. Putting

RAB =|xB − xA | , NAB =
xB − xA

RAB
, (7)

the time transfer function T (xA,xB) involved in Eq. (2) is then determined by (see, e.g., Ref. [15])

T (xA,xB) =
1

c
RAB +

1

c3
(γ + 1)RAB

∫ 1

0

W (x(0)(λ))dλ +O

(
1

c4

)
, (8)
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the integral being calculated along the segment of a line of ends xA and xB described by the parametric equations

x(0)(λ) = RABNABλ+ xA , 0 ≤ l ≤ 1. (9)

IV. MULTIPOLE STRUCTURE OF THE TIME TRANSFER FUNCTION

Throughout this work, the center of mass O of the body is taken as the origin of the quasi-Cartesian coordinates
xi and the axis of symmetry is chosen as the x3-axis. We put

r =|x | , rA =|xA | , rB =|xB | . (10)

We assume that the smallest sphere centered on O and containing the body has a radius equal to the equatorial
radius re of the body and that the segment joining xA and xB is outside this sphere. At any point x such that r ≥ re
W (x) is then given by the multipole expansion

W (x) =
GM

r

[
1−

∞∑

n=2

Jn

(re
r

)n

Pn

(
k.x

r

)]
, (11)

where k denotes the unit vector along the x3-axis, the Pn are the Legendre polynomials, M is the mass of the body
and the coefficients Jn are the mass multipole moments. As a consequence the integral involved in the right-hand
side (r.h.s.) of Eq. (8) may be written as (see Refs. [11] and [15])

∫ 1

0

W
(
x(0)(λ)

)
dλ = GM

[
1−

∞∑

n=2

1

n!
Jnr

n
e

∂n

(∂x3)n

]
F (x,xA,xB)

∣∣∣∣
x=0

, (12)

where F (x,xA,xB) is the Shapiro kernel function defined by

F (x,xA,xB) =
1

RAB
ln

(
|x− xA | + |x− xB | +RAB

|x− xA | + |x− xB | −RAB

)
. (13)

Substituting Eq. (12) into Eq. (8), and then using Eq. (13) yield the expansion

T (xA,xB) =
1

c
RAB + TM (xA,xB) +

∞∑

n=2

TJn
(xA,xB), (14)

where TM is the well-known Shapiro time delay

TM (xA,xB) = (γ + 1)
GM

c3
ln

(
rA + rB +RAB

rA + rB −RAB

)
(15)

and each TJn
is determined by

TJn
(xA,xB) = −(γ + 1)

GM

c3
1

n!
Jnr

n
e

∂n

(∂x3)n
ln

(
|x− xA | + |x− xB | +RAB

|x− xA | + |x− xB | −RAB

) ∣∣∣∣
x=0

. (16)

To carry out an explicit calculation of the r.h.s. of Eq. (16), let us apply Faà di Bruno’s formula [7] giving the nth
derivative of a composite function f(x) = h[u(x)], namely [19]

dn

dxn
f(x) =

n∑

m=1

dn−m+1h(u)

dun−m+1

∑′

i1,...,im

n!

i1!i2!...im!

(
1

1!

du

dx

)i1 ( 1

2!

d2u

dx2

)i2

. . .

(
1

m!

dmu

dxm

)im

, (17)

where
∑′

i1,...,im
denotes the summation over the sets of non negative integers i1, i2, ..., im satisfying the pair of

equations

{
i1 + 2i2 + 3i3 + ...+mim = n,
i1 + i2 + ...+ im = n−m+ 1,

(18)
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with 1 ≤ m ≤ n. This calculation involves the lth derivatives of |x− xA| and |x− xB| with respect to x3 at x = 0.
It may be seen that

1

l!

∂ l|x− xA|

(∂x3)l

∣∣∣∣
x=0

=
1

rl−1
A

C
(−1/2)
l

(
k.xA

rA

)
(19)

by comparing the Taylor expansion of |x− xA − δx| about x at point x = 0 with the expansion

|x− xA − δx| = |x− xA|

∞∑

l=0

(
k.δx

|x− xA|

)l

C
(−1/2)
l

(
k.(x− xA)

|x− xA|

)
, (20)

where δx = δx3k and C
(−1/2)
l denotes the Gegenbauer polynomial of degree l and of parameter −1/2 (see, e.g., Ref.

[1]). Using Eq. (19) and the similar expression which would be obtained for the lth derivatives of |x − xB|, Faà di
Bruno’s formula leads to

TJn
(xA,xB) = (γ + 1)

GM

c3
Jn rne

n∑

m=1

[
1

(rA + rB −RAB)n−m+1
−

1

(rA + rB + RAB)n−m+1

]
Θnm(xA,xB), (21)

where Θnm(xA,xB) is defined by

Θnm(xA,xB) = (−1)n−m
∑′

i1,...,im

(n−m)!

i1!i2!...im!

m∏

l=1

[Sl(xA,xB)]
il , (22)

with

Sl(xA,xB) =
1

rl−1
A

C
(−1/2)
l

(
k.xA

rA

)
+

1

rl−1
B

C
(−1/2)
l

(
k.xB

rB

)
. (23)

An explicit calculation of each TJn
is easy. Consider, e.g., the case where n = 2. The only sets of non negative

integers solutions to Eqs. (18) are {i1 = 2} for m = 1 and {i1 = 0, i2 = 1} for m = 2. Then Eqs. (21)-(23) give

TJ2
(xA,xB) =

γ + 1

2

GM

c3
J2 r

2
e

rArB

RAB

1 + nA.nB

[
1− (k.nA)

2

rA
+

1− (k.nB)
2

rB
−

(
1

rA
+

1

rB

)
[k.(nA + nB)]

2

1 + nA.nB

]
. (24)

We thus recover by a straightforward calculation a formula that we have previously derived from the multipole
expansion of Synge’s world function (see Refs. [15] and [16]).

V. DIRECTION OF A LIGHT RAY AT THE RECEPTION POINT

For the sake of brevity, let us use the notation lB = {(li)B} and put

nA =
xA

rA
, nB =

xB

rB
. (25)

Taking into account Eqs. (14), (15) and (21, Eq. (2) yields

lB = −NAB + λ(xA,xB), (26)

where λ(xA,xB) is given by the multipole expansion

λ(xA,xB) = λM (xA,xB) +

∞∑

n=2

λJn
(xA,xB), (27)

with

λM (xA,xB) = (γ + 1)
GM

c2rB

1

1 + nA.nB

[
RAB

rA
nB −

(
1 +

rB
rA

)
NAB

]
(28)
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and

λJn
(xA,xB) = (γ + 1)

GM

c2
Jnr

n
e

n∑

m=1

{
(n−m+ 1)

[
nB −NAB

(rA + rB −RAB)n−m+2

−
nB +NAB

(rA + rB +RAB)n−m+2

]
Θnm(xA,xB)

+

[
1

(rA + rB −RAB)n−m+1
−

1

(rA + rB +RAB)n−m+1

]
Υnm(xA,xB

}
, (29)

where

Υnm(xA,xB) = (−1)n−m
∑′

i1,...,im

(n−m)!

i1!i2!...im!

m∑

l=1

il [Sl(xA,xB)]
il−1

m∏

q=1,

q 6=l

[Sq(xA,xB)]
iq

×
[Pl−1 (k.nB)k − Pl (k.nB)nB ]

rlB
. (30)

By convention,
∏m

q=1,

q 6=l
[Sq(xA,xB)]

iq = 1 when m = 1.

Using the solutions to Eqs. (18) found at the end of Sec. IV in the case where n = 2 it may be seen that Eqs. (29)
and (30) lead to

λJ2
(xA,xB) = (γ + 1)

GM

c2
J2r

2
e

{
− [k.(nA + nB)]

2

[
nB −NAB

(rA + rB −RAB)3
−

nB +NAB

(rA + rB +RAB)3

]

+
1

2

[
1− (k.nA)

2

rA
+

1− (k.nB)
2

rB

] [
nB −NAB

(rA + rB −RAB)2
−

nB +NAB

(rA + rB +RAB)2

]

+
1

r3B

(rA + rB)RAB

r2A

k.(nA + nB)

(1 + nA.nB)2
[k − (k.nB)nB ] +

1

2r3B

RAB

rA

2(k.nB)k +
[
1− 3(k.nB)

2
]
nB

1 + nA.nB

}
. (31)

A tedious but straightforward calculation shows that this formula is equivalent to the r.h.s. of Eq. (100) in Ref.
[16].

VI. SOURCE LOCATED AT INFINITY

Given a unit vector N , let D be the straight line parallel to N passing through xB. Suppose that point xA is
moved away from xB along D so that limrA→∞ nA = N . This limit corresponds to a source at infinity observed at
xB in the direction N within the zeroth-order approximation. Then λ(xA,xB) becomes a function of N and xB. So
we put

λ(N ,xB) = lim
rA→∞,nA→N

λ(xA,xB). (32)

Let

cosα = −nB.N , 0 ≤ α < π (33)

and denote by rc the quantity

rc = rB sinα, (34)

that is the impact parameter of the light ray at the zeroth-order approximation. Moreover, define the unit vector pB

as

pB =
(
2 sin

α

2

)−1

(nB +N). (35)
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Taking the limit of Eqs. (28) and (29), and noting that limrA→∞(rA+rB−RAB) = rc tanα/2 and thatNAB = −N ,
we get

λ(N ,xB)(γ + 1)
2GM

c2rc

[
cos

α

2
pB +

∞∑

n=2

Jn

(
re
rc

)n

cosn+1 α

2
Λn(N ,xB)

]
, (36)

where

Λ2(N ,xB) =
[
1− (k.nB)

2 − 4(k.pB)
2
]
pB + 2(k.pB) [k − (k.nB)nB ]

+ sin
α

2

{
2(k.nB)k +

[
1− 3(k.nB)

2
]
nB

}
(37)

and

Λn(N ,xB) = 2n−2(k.pB)
n−2

{
(n− 1)[1− (k.nB)

2]− 4(k.pB)
2
}
pB

−2n−3(k.pB)
n−3

{
(n− 2)[1− (k.nB)

2]− 4(k.pB)
2
}
[k − (k.nB)nB]

+2n−2 sin
α

2
(k.pB)

n−2
{
2(k.nB)k +

[
1− 3(k.nB)

2
]
nB

}

+

n∑

m=3

∑′

i1,...,im

Φnm(i1, ..., im)

[
m∏

l=2

[
C

(−1/2)
l (k.nB)

]il {
(n−m+ 1)(k.pB)

i1pB −
i1
2
(k.pB)

i1−1 [k − (k.nB)nB ]

}

+sin
α

2
(k.pB)

i1

m∑

l=2

il

[
C

(−1/2)
l (k.nB)

]il−1 m∏

q=2,

q 6=l

[
C(−1/2)

q (k.nB)
]iq

[Pl−1(k.nB)k − Pl(k.nB)nB ]

]}
(38)

for n ≥ 3, the coefficients Φnm(i1, ..., im) being defined by

Φnm(i1, ..., im) =
1

2
(−1)n−m+i12m+i1 (n−m)!

i1!...im!
sini3+...+(m−2)im α

2
. (39)

The contributions of the multipole moments to the deflection of light will be completely negligible in missions
like GAIA or SIM except for light rays passing quite nearly the deflecting body. This implies that one can put
cosα/2 = 1 and neglect the terms involving sinα/2 in the range where the multipole expansion yielded by Eqs. (36),
(37) and (38) is relevant. To justify this approximation, we may content ourselves with discussing Eq. (37) since
the quadrupole moment of the giant planets prevails over the higher multipole moments. Considering the case of
Jupiter, we have re = 7.149× 104 km and J2 = 0.014736 [5], which implies 4GM/c2reJ2 = 240 µas. As a consequence
4GM/c2rcJ2(re/rc)

2 > 1 µas if and only if (iff) rc < 6.2re. This last inequality implies that the influence of J2 may be
taken into account iff sinα/2 < 5× 10−4 since the distance rB between Jupiter and GAIA or SIM is always > 6× 108

km. Then |1 − cosα/2| < 2.5 × 10−7 and the contribution of the term containing sinα/2 in the r.h.s. of Eq. (37)
is markedly less than one µas. A similar conclusion can be drawn for n ≥ 3. As a consequence, in GAIA or SIM
missions, the formulae obtained in this section yield results which do not significantly differ from the approximation
obtained by assuming that the observer is at infinity, as we shall see below.

VII. SOURCE AND OBSERVER LOCATED AT INFINITY

Let P be the foot of the perpendicular drawn to D from O. Since rc = |xP |, we may define the unit vector p as

p =
xP

rc
. (40)

It is easily seen that pB is given by

pB = cos
α

2
p+ sin

α

2
N . (41)

It follows from Eq. (34) that the case where point B is at infinity on (D) corresponds to α = 0. So, we have
limrB→∞ pB = p and we can put

λ(N ,p, rc) = lim
rB→∞

λ(N ,xB). (42)
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The corresponding limit of each term Λn(N ,xB) is obtained by replacing α by 0, nB by −N and pB by p in Eqs.
(37) and (38). It follows from (39) that only the solutions to Eqs. (18) such that i3 + 2i4 + ...+ (m− 2)im = 0 have

to be retained in the sum
∑′

i1,...,im
. A simple calculation leads to the multipole expansion

λ(N ,p, rc) = (γ + 1)
2GM

c2rc

[
p+

∞∑

n=2

Jn

(
re
rc

)n

Λn(N ,p, rc)

]
, (43)

where

Λn(N ,p, rc) =

pn∑

m=1

(−1)m
2n−2m+1(n−m)!

(n− 2m+ 2)!(m− 1)!

[
1− (k.N)2

]m−1
{
2(n−m+ 1)(k.p)n−2m+2p

−(n− 2m+ 2)(k.p)n−2m+1 [k − (k.N)N ]
}

(44)

for any n ≥ 2, pn being the integer defined by

pn =
n

2
+ 1 if n is even, pn =

n+ 1

2
if n is odd. (45)

In order to discuss the bending of light rays, it is convenient to introduce the orthonormal triad formed by p,N
and

q = p×N . (46)

Noting that k − (k.N)N = (k.p)p + (k.q)q and that 1 − (k.N)2 = (k.p)2 + (k.q)2, we find that Eq. (44) may be
written as

Λn(N ,p, rc) =

pn∑

m=1

(−1)m
2n−2m+1(n−m)!

(n− 2m+ 2)!(m− 1)!

[
(k.p)2 + (k.q)2

]m−1 [
n(k.p)n−2m+2p

−(n− 2m+ 2)(k.p)n−2m+1(k.q)q
]
. (47)

Equation (47) yields for n = 2, 3, 4:

Λ2(N ,p, rc) =
[
(k.q)2 − (k.p)2

]
p+ 2(k.p)(k.q)q, (48)

Λ3(N ,p, rc) = (k.p)
[
3(k.q)2 − (k.p)2

]
p+ (k.q)

[
3(k.p)2 − (k.q)2

]
q, (49)

Λ4(N ,p, rc) =
[
6(k.p)2(k.q)2 − (k.p)

4
− (k.q)4

]
p+ 4(k.p)(k.q)

[
(k.p)2 − (k.q)2

]
q. (50)

Suppose that the observer is at rest at space infinity. This observer sees the light source in the direction N +∆

determined by the opposite of the space-like contravariant components of the vector tangent to the light ray. It follows
from Eq. (26) and NAB = −N that ∆ = λ(N ,p, rc). So the effectively observed deflection vector is given by the
multipole expansion

∆ = ∆M (N ,p, rc) +

∞∑

n=2

∆Jn
(N ,p, rc), (51)

where

∆M (N ,p, rc) = (γ + 1)
2GM

c2rc
p, (52)

∆Jn
(N ,p, rc) = (γ + 1)

2GM

c2rc
Jn

(
re
rc

)n

Λn(N ,p, rc). (53)

It follows from Eqs. (52)-(53) and (47) that ∆ is orthogonal to N .
Substituting for Λ2 from Eq. (48) into Eq. (53) yields the expression of the deflection vector ∆J2

obtained in
previous works (see, e.g., Refs. [4] and [13]).
If line D lies in the equatorial plane, then k.p = 0 and q = ±k. As a consequence Eq. (47) gives

∆J2k
(N ,p, rc) = (−1)k+1(γ + 1)

2GM

c2rc
J2k

(
re
rc

)2k

p (54)
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for the mass multipole of even order 2k and

∆J2l+1
(N ,p, rc) = (−1)l(γ + 1)

2GM

c2rc
J2l+1

(
re
rc

)2l+1

k (55)

for the mass multipole of odd order 2l + 1. We note that ∆J2k
and ∆J2l+1

are orthogonal whatever k and l.
If D is in a meridian plane, then k.q = 0. Pointing out that the relation

pn∑

m=1

(−1)m
2n−2m+1(n−m)!

(n− 2m+ 2)!(m− 1)!
n = −1

is valid whatever n ≥ 1 [20], it may be seen that Eq. (47) reduces to

∆Jn
(N ,p, rc) = −(γ + 1)

2GM

c2rc
Jn

(
re
rc

)n

(k.p)np. (56)

It follows from Eq. (56) that for a ray propagating in a meridian plane the greatest deflecting effect due to the Jn
occurs when p = ±k, i.e. when D is parallel to the equatorial plane. Equation (56) shows also that the mass multipole
moments have no deflection effect when the direction of emission at infinity is parallel to the axis of symmetry, since
k.p = 0 in this case.

The deflection angle δ̂(N ,p, rc) is defined as the angle between N and N +∆(N ,p, rc). Since N is a unit vector
and N .∆ = 0, we have

|δ̂(N ,p, rc)| = |∆(N ,p, rc)|+O

(
1

c4

)
. (57)

Let us briefly examine the contributions of δ̂(N ,p, rc) due to J2, J3 and J4. It follows from Eqs. (48)-(50) that

|∆Jn
(N ,p, rc)| = (γ + 1)

2GM

c2rc
Jn

(
re
rc

)n

[1− (k.N)2]n/2 (58)

for n = 2, 3, 4 [21]. In each of these cases, the highest possible value for |∆Jn
(N ,p, rc)| is reached when N is

orthogonal to k. As a consequence we have

|∆Jn
(N ,p, rc)|max = (γ + 1)

2GM

c2rc
Jn

(
re
rc

)n

. (59)

For Jupiter, J2 = 0.014736 (see Sec. VI), J3 = 0.000001 and J4 = −0.000587 [5]. With γ = 1, the predicted
deflexions of a grazing ray specifically due to J2, J3 and J4 are then in the range

|δ̂J2
| ≤ 240µas, |δ̂J3

| ≤ 0.016µas, |δ̂J4
| ≤ 9.6µas. (60)

So our formulae yield a rigorous confirmation of previous estimates given in Ref. [10]. The lowest possible value
for |∆Jn

(N ,p, rc)| is 0 and corresponds to the case where N = ±k.

VIII. CONCLUSION

This work yields a complete determination at the order 1/c2 of the bending of light in a static gravitational field
generated by an isolated axisymmetric body. The method developed here could be extended to the contributions of
the spin multipole moments. The explicit formula (21) giving the multipole expansion of the time transfer function
may also be of interest for the analysis of the frequency transfers between two atomic clocks.
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