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Abstract

I present exact results matching Kerr-Newman Black Hole ther-

modynamics in the extremal limit to the two-dimensional Fermi Gas.

Two dimensions are consistent with the membrane paradigm of black

holes. Key in the analysis is the thermodynamic Riemannian cur-

vature scalar R, negative for most ordinary thermodynamic systems,

including those near the critical point, but mostly positive for the

Kerr-Newman Black Hole and the Fermi Gas.

The Kerr-Newman Black Hole (KNBH), with mass M , angular momen-

tum J , and charge Q, has a well-established thermodynamic structure origi-

nated by Bekenstein [1] and Hawking [2]. Logically, this should be supported
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by some underlying microscopic picture, a ”statistical mechanics” of black

holes. But, since matter is expected to rapidly collapse to the central singu-

larity, what entities could drive this statistics?

I argue that insight results from comparing known KNBH thermody-

namics to standard statistical mechanical models. A major element here

[3] is the thermodynamic Riemannian curvature scalar R, first evaluated for

the KNBH by Åman, Bengtsson, and Pidokrajt [4]. In the sign convention

of Weinberg [5], R is mostly positive for the KNBH, but mostly negative

for ordinary thermodynamic systems, including most critical point models.

An exception is the three-dimensional (3D) Fermi Gas, which Janyszek and

Mruga la [6] found to have positive R. These authors also emphasized the

general importance of the sign of R.

Here, I work out the 2D Fermi Gas and find some exact correspondences

with the KNBH in the extremal limit, where the temperature goes to zero.

The KNBH entropy is [7]

S(M,J,Q) =
1

8

(
2M2 −Q2 + 2

√
M4 − J2 −M2Q2

)
, (1)

in geometrized units [8], where S and J are in cm2, and M and Q are in cm.

The temperature T is given by

1

T
≡
(
∂S

∂M

)
J,Q

=
(K2 + 2K + L2)M

4K
, (2)

and the heat capacity

CJ,Q ≡ T

(
∂S

∂T

)
J,Q

=
M2K(K2 + L2 + 2K)

4(L2 − 2K)
. (3)

Here, the dimensionless simplifying variables

{K,L} ≡ {
√

1− α− β,
√

1 + α}, (4)
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with α ≡ J2/M4 and β ≡ Q2/M2.

To be in the physical regime with real, positive S and T requires

α + β < 1. (5)

Equality, α + β = 1, has K = T = 0 and constitutes the extremal limit,

unattainable by the third law of black hole thermodynamics [9]. In this

limit, Eqs. (2) and (3) yield

CJ,Q =
1

16
M3L2T. (6)

Imagine now the KNBH immersed in an infinite, extensive environment.

The thermodynamic fluctuation probability is given by Einstein’s formula

P ∝ exp (Stot/kB) . (7)

Here, Stot is the total entropy of the universe and kB is Boltzman’s constant.

If all three (M,J,Q) fluctuate, Stot has no local maxima, and there are no

stable states [10, 11]. But, if we formally restrict one of M , J , or Q as

constant, reasoning it slow to fluctuate compared with the other two, stability

is possible [11].

Consider (J,Q) fluctuating at constant M . This is stable for all thermo-

dynamic states in the physical regime. I argued [11] that with M on the

order of the Planck mass, such fluctuations might be physically relevant. A

straightforward exercise [11, 12] results in the usual Gaussian approximation

to Eq. (7):

P ∝ exp
{
−1

2

[
g22(∆J)2 + 2g23∆J∆Q+ g33(∆Q)2

]}
, (8)
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with

gαβ ≡ −
(

8π

L2
p

)
∂2S

∂Xα∂Xβ
, (9)

{X1, X2, X3} ≡ {M,J,Q}, ∆Xα the deviation of Xα from its value at maxi-

mum Stot, the Planck length Lp ≡
√
h̄G/c3, and h̄, c, and G the usual physical

constants. With an infinite, extensive environment, fluctuations depend only

on the black hole thermodynamics. The environment merely sets the state

about which fluctuations occur.

The constant multiplier in Eq. (9) converts S to S/kB in real units [11],

essential in Eq. (7). Discussion in the black hole literature tends to focus

on where R is relatively large or small, and for this an overall multiplier for

the metric is not particularly important. But, a fluctuation based metric

whose R gets related to that in ordinary thermodynamic systems requires

real units.

The quadratic form in Eq. (8):

(∆l)2 ≡ g22(∆J)2 + 2g23∆J∆Q+ g33(∆Q)2, (10)

is the line element for a Riemannian geometry of thermodynamics [3]. Its

physical significance is clear from Eq. (8): the less probable a fluctuation

between two states, the further apart they are.

Calculate R as follows [5]: the Christoffel symbols are

Γαβγ =
1

2
gµα (gµβ,γ + gµγ,β − gβγ,µ) , (11)

with gαβ the inverse of the metric, and the comma notation indicating dif-

ferentiation. The curvature tensor is

Rα
βγδ = Γαβγ,δ − Γαβδ,γ + ΓµβγΓ

α
µδ − ΓµβδΓ

α
µγ, (12)
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and the Riemannian curvature scalar is

R = gµνRξ
µξν . (13)

R is independent of the choice of coordinate system, suggesting it is a fun-

damental measure of thermodynamic properties.

For an ordinary thermodynamic system, |R| was interpreted [13] as pro-

portional to the correlation volume ξd, where d is the system’s spatial dimen-

sionality and ξ its correlation length; see [3, 14] for review. A thermodynamic

quantity, R, then reveals information normally thought to reside in the micro-

scopic regime, ξ. Thus, R is interesting also in black hole physics, which has

thermodynamic structures, but little microscopic information; see [15, 16, 17]

for review.

By analogy, I interpret |R| for black holes as the average number of cor-

related Planck areas on the event horizon [18]. This interpretation, putting

the statistical degrees of freedom on the event horizon, fits the membrane

paradigm for black holes [19].

For (J,Q) fluctuations, Eq. (13) yields

R =
(K5 + L2K3 − 2K3 − 2K2 + 3L2K − 3K + 2)

4πK (K3 + L2K −K + 1)2

(
Mp

M

)2

, (14)

with Planck mass Mp ≡
√
h̄c/G. (In geometrized units, Lp = Mp.) Figure 1

shows R in the physical regime. It is real and positive, with a minimum of

zero at J = Q = 0. R is regular except at the extremal limit, where, by Eqs.

(2) and (14), its limiting form is

R =
2M2

p

πM3L2T
. (15)
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The limiting product of curvature and heat capacity,

(R)

(
8π

L2
p

CJ,Q

)
=

(
2M2

p

πM3L2T

)(
8πM3L2T

16L2
p

)
= 1, (16)

is a unitless, scale free constant independent of where we are on the extremal

curve. The multiplier for CJ,Q converts S in CJ,Q to S/kB in real units.

For comparison, Table 1 reviews thermodynamic curvature in ordinary

systems. R is negative where attractive interactions dominate and positive

where repulsive interactions dominate. Cases with weak interactions have

|R| small. There are three somewhat quirky cases, with both positive and

negative R’s; however, these are not relevant here. (But, Cai and Cho [32]

connected phase transitions in BTZ black holes to the ”quirk” in R for the

Takahashi gas.) The only known simple situation with positive R diverging

at low temperature is the Fermi gas, and I will turn to it for insight below.

In ordinary thermodynamic systems, it is traditional to pull a constant

volume V out of the line element Eq. (10), giving R units of volume. (”Vol-

ume” depends on dimension; for 2D systems, it is area.) But, the KNBH has

no fixed scale to pull out, and so for it we work with the full dimensionless

line element Eq. (10). Its R is dimensionless, and is interpreted [18] as the

number, rather than the volume, of correlated volumes. For ordinary ther-

modynamic systems, whether or not the fixed V is left in the line element

makes no physical difference.

For the cold 3D Fermi Gas, R seems to diverge [6] as T−3/2, and not as

T−1 in Eq. (15) for the KNBH. This motivates me to work out the 2D Fermi

Gas. By the reasoning leading to Eq. (8.1.3) of [12], the 2D Fermi gas has
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thermodynamic potential

φ(1/T,−µ/T ) = p/T = kBgλ
−2f2(η), (17)

with pressure p, η ≡ exp(µ/kBT ), chemical potential µ, thermal wavelength

λ ≡ h/
√

2πmkBT , particle mass m, weight factor g ≡ (2s+ 1), particle spin

s, and

fl(η) ≡ 1

Γ(l)

∫ ∞
0

xl−1dx

η−1ex + 1
. (18)

I use obvious fluid units for all quantities, including S and T . The integral in

Eq. (18) converges for f2(η), and yields f1(η) = ln(1 + η). f0(η) and f−1(η)

follow from f1(η) using the recurrence relation fl−1(η) = ηf ′l (η) [12].

Define the heat capacity at constant particle number N and constant area

A by

CN,A ≡ T

(
∂S

∂T

)
N,A

= NkB [2f2(η)/f1(η)− f1(η)/f0(η)] . (19)

The second equality is by Problem 8.10.ii of [12]. The methods of [12] now

yield the limiting low T expression

CN,A
AkB

=
2π3gmkBT

3h2
. (20)

Evaluating R with Eq. (6.31) of [3] yields

R = −g−1λ2

{
−2f2(η)f0(η)2 + f1(η)2f0(η) + f−1(η)f1(η)f2(η)

[f1(η)2 − 2f0(η)f2(η)]2

}
. (21)

Numerical evaluation over the physical range −∞ < µ < +∞ and 0 < T <

∞ indicates R is always positive. The methods of [12] yield the limiting low

T expression:

R =
3h2

2π3gmkBT
. (22)
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The limiting T dependences of CN,A and R match the corresponding

KNBH quantities Eqs. (6) and (15). This connection to a 2D model is

consistent with the membrane paradigm of black holes [19]. Furthermore,

the limiting product of curvature and heat capacity,(
R

A

)(
CN,A
kB

)
=

(
3h2

2π3gmkBTA

)(
2π3gmkBTA

3h2

)
= 1, (23)

is a unitless, scale free constant independent of density. The factor A below

R undoes the traditional pulling out of A in the ordinary thermodynamic line

element. R/A here is analogous to R for the KNBH. The constant products

Eqs. (16) and (23) are equal, remarkable for systems apparently so different.

Note a key difference. The KNBH entropy Eq. (1) does not go to zero in

the extremal limit, as it does for the 2D Fermi Gas with its unique ground

state. Resolution probably requires a more sophisticated Fermi gas model.

Results above are for (J,Q) fluctuations. Repeating the exercise for the

quite different (M,Q) and (M,J) fluctuations [18], leads, remarkably, to the

same limiting form for R as Eq. (15), and the same match to the 2D Fermi

gas.

References

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); 9, 3292 (1974).

[2] S. W. Hawking, Phys. Rev. D 13, 191 (1976).

[3] G. Ruppeiner, Rev. Mod. Phys. 67, 605 (1995); 68, 313(E) (1996).
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System R sign Divergence
1D Ising ferromagnet [20, 21] − T → 0
critical region [3, 13, 22] − critical point
mean-field theory [21] − critical point
van der Waals [3, 22] − critical point
Ising on Bethe lattice [23] − critical point
Ising on 2D random graph [14, 24] − critical point
spherical model [14, 25] − critical point
3D Bose gas [6] − T → 0
self-gravitating gas [26] − unclear
1D Ising antiferromagnet [20, 21] − |R| small
Tonks gas [27] − |R| small
pure ideal gas [13] 0 |R| small
ideal paramagnet [20, 21] 0 |R| small
multicomponent ideal gas [28] + |R| small
Takahashi gas [27] +/- T → 0
finite 1D Ising ferromagnet [29] +/- T → 0
1D Potts model [14, 30] +/- critical point
3D Fermi gas [6] + T → 0
3D Fermi paramagnet [31] + T → 0

Table 1. Signs of R and where it diverges for ordinary thermodynamic

systems. All signs are put into the sign convention of Weinberg [5]. A

designation ”|R| small” means a value on the order of the volume of an

intermolecular spacing or less.

FIGURE CAPTION

Figure 1. R(M/Mp)
2 as a function of J/M2 and Q/M for (J,Q) fluctua-

tions. R is real, positive, and regular in the physical regime, and diverges as

T−1 at the extremal limit.
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