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Abstract

The quantum behavior of noncommutative eternal inflation is quite differ-

ent from the usual knowledge. Unlike the usual eternal inflation, the quantum

fluctuation of noncommutative eternal inflation is suppressed by the Hubble

parameter. Due to this, we need to reconsider many conceptions of eternal in-

flation. In this paper we study the Hawking-Moss tunneling in noncommutative

eternal inflation using the stochastic approach. We obtain a brand-new form

of the tunneling probability for this process and find that the Hawking-Moss

tunneling is more unlikely to take place in the noncommutative case than in the

usual one. We also conclude that the lifetime of a metastable de-Sitter (dS) vac-

uum in the noncommutative spacetime is longer than that in the commutative

case.

1 Introduction

Inflation has been widely considered as a remarkably successful theory in explaining

many problems in the very early universe, such as the flatness, horizon and monopole
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problems [1, 2, 3, 4, 5]. During inflation, quantum effects play a crucial role and may

bring the universe into a self-reproducing process which is dubbed “eternal inflation”

[6, 7, 8]. The string theory landscape indicates that there are a huge number of meta-

stable vacua surrounded by various kinds of effective potentials [9, 10, 11, 12]. The

realization of string landscape provides an important arena for eternal inflation.

In eternal inflation driven by the false vacuum, the false vacuum is a meta-stable

state and would decay through a mix of semiclassical tunneling and stochastic evolu-

tion. The probability of finding the inflaton at the top of the plateau in its potential

decreases exponentially with time [13]. However, the false vacuum is also expanding

exponentially while decaying. When the rate of exponential expansion is larger than

the decay rate during this process, the total volume of the false vacuum will grow

eternally although the false vacuum is decaying. In this case, bubbles form by random

nucleation and then start to expand. Every growing bubble can be viewed as an open

FRW universe [14], and we are living in one of such “pocket universes” [15]. Another

approach to eternal inflation is achieved in chaotic inflation when the quantum fluc-

tuation of the inflaton dominates over its classical motion. As the inflaton is rolling

down the potential classically, its change during one Hubble time (δt = 1

H
) can be

divided into δϕ = ∆ϕ+ δqϕ, where ∆ϕ denotes the classical value and δqϕ represents

the quantum one. For a Gaussian probability distribution, when δqϕ > 0.61∆ϕ, the

quantum behavior overwhelms the classical evolution and inflation becomes eternal.

When dealing with the decaying process of false vacua, one have to make the

inflaton tunnel from one false vacuum to another. One method was provided by

Coleman and De Luccia (CDL) [14]; another method was investigated by Hawking

and Moss [16]. During the Hawking-Moss tunneling, the potential between two vacua

is so flat that CDL instanton can not exist. It was shown that the probability of

tunneling from one false vacuum ϕ0 to another is given by

PC ∼ exp

(

− 24π2

V (ϕ0)
+

24π2

V (ϕtop)

)

∼ exp

(

−8π2 · H(ϕtop)
2 −H(ϕ0)

2

H(ϕ0)2H(ϕtop)2

)

, (1)

which is related to the value of the top barrier. A proper scenario of this tunneling

can be realized in the stochastic approach to inflation [17, 18, 19, 20, 21, 22]. Here

the potential of the scalar field is flat enough for slow rolling which requires V ′′ <
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V . In the stochastic description, the quantum fluctuations can be simulated by the

stochastic noise and the scalar field walks in random.

As is known, eternal inflation happens when the energy scale of the universe is

extremely high. Thus we would like to take into consideration more fundamental

theories in logic, namely, the string theory. Recently, we have considered the effects

of spacetime noncommutativity on slow-roll eternal inflation in Ref. [23]. In non-

commutative inflation, it is generally assumed that the background evolution of infla-

ton is not modified but the fluctuations are affected by noncommutativity (see Ref.

[24, 25, 26, 27], for a review in [28] and references therein). In order to introduce the

noncommutativity [29, 30] into the 4-dimensional flat Friedmann-Robertson-Walker

universe, we would like to define another time coordinate τ ,

ds2 = dt2 − a2(t)d~x2 = a−2(τ)dτ 2 − a2(τ)d~x2 , (2)

where a is the scale factor. Then the spacetime uncertainty relation can be realized

by the commutation relation:

[τ, x]∗ = iM−2
N , (3)

where MN is the energy scale of noncommutativity and the ∗-product is defined as

(f ∗ g)(x, τ) = exp

(

− i

2
M−2

N (∂x∂τ ′ − ∂τ∂y)

)

× f(x, τ)g(y, τ ′) |y=x,τ ′=τ . (4)

From the result of the paper [23], we can see that the quantum fluctuation still satisfies

the Gaussian distribution, but the form of its amplitude in IR region is changed to

δqϕ ≃ 1

2π

M2

N

H
. Therefore, when the Hubble parameter is lifted highly enough, eternal

inflation would cease. This is strongly different from the normal scenario of eternal

inflation. In this paper, we shall use the analysis of noncommutativity mentioned

above (especially the IR region) and the stochastic approach to study Hawking-Moss

tunneling of eternal inflation.

This paper is organized as follows. In Section 2, we study the Hawking-Moss

tunneling in noncommutative eternal inflation using the stochastic approach. In Sec-

tion 3, we make conclusions that Hawking-Moss tunneling is more unlikely to happen

in the noncommutative case than in the usual one and the lifetime of a metastable

de-Sitter vacuum in the noncommutative spacetime is longer than that in the com-

mutative case.
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2 Stochastic Approach to Noncommutative Infla-

tion

One can describe inflation by analyzing the stochastic probability distribution P (ϕ, t),

which represents the probability to find the inflaton field ϕ at the time t. In our note

we consider the probability distribution averaged in a Hubble volume observed by a

comoving observer. The inflaton evolves as a Brownian particle. Consequently, the

probability distribution P (ϕ, t) satisfies the Fokker-Planck (FP) equation(see detailed

introduction in Ref. [20, 31]):

∂P

∂t
=

∂

∂ϕ

(

∂(DP )

∂ϕ
+ γ

dV

dϕ
P

)

, (5)

where D is the diffusion coefficient and γ is the mobility coefficient1. Using slow roll

approximation ϕ̇ ≃ −V ′/(3H), we can establish that γ = 1

3H
. In the following we

need to derive the form of the coefficient D.

Following the usual knowledge of inflation, the background evolution of noncom-

mutative inflation can be described by

3H2 ≃ V (ϕ) , (6)

where we take the normalization M2
p = 1/8πG = 1. According to the calculation in

Ref. [23], the IR quantum fluctuation in the momentum space δqϕk is linked to the

canonical perturbation uk by uk ≃ aδqϕk, and when the perturbation begins to be

generated the initial conditions require uk to be canonically normalized as uk ≃ 1√
2k

with a ≃ Hk/M2
N. Therefore, the IR quantum fluctuation in momentum space can

be generally given by,

δqϕk ≃ 1√
2k

M2
N

Hk
. (7)

After that, the fluctuations outside the horizon are nearly frozen. It can be shown

that the initial wave length for the k mode is λk = H/M2
N [23], so it is appropriate

1A general form of FP equation is given by

∂P

∂t
=

∂

∂ϕ

(

D1−d
∂(DdP )

∂ϕ
+ γ

dV

dϕ
P

)

.

However, the choice of the parameter d does not affect the calculation of probability distribution a

lot. Therefore we do not plan to discuss it in our note but only focus on the case d = 1.
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to do the spacial average at a length scale H/M2
N. During one Hubble time, we can

calculate the IR quantum fluctuation in coordinate space δqϕ as follows,

δqϕ|H ≡
√

〈δqϕ2〉|H =

(

∫ k=e×aM2

N
/H

k=aM2

N
/H

dk

k

k3

2π2
δqϕkδqϕ−k

)
1

2

≃ 1

2π

M2
N

H
. (8)

Note that due to the nearly scale invariance of the spectrum, the result of (8) is

not sensitive to the length scale H/M2
N where we do the spacial average. We might

have chosen the Hubble length H−1 or the noncommutativity scale M−1
N , and the

result of the integration in leading order does not change.

Besides, since M−1
N arises as another important time scale rather than H−1, it is

worthy to calculate the quantum fluctuations during the time M−1
N . We have

δqϕ|MN
≡

√

〈δqϕ2〉|MN
=

(

∫ k=eH/MN×aM2

N
/H

k=aM2

N
/H

dk

k

k3

2π2
δqϕkδqϕ−k

)
1

2

≃ 1

2π

M
3

2

N

H
1

2

, (9)

which is a bit different from Eq. (8). We will show later, however, this is also

insensitive to the simulation of Langevin equation.

We can simulate the quantum fluctuation in IR region by the Langevin equation

which is expressed as

ϕ̇ ≃ − V ′

3H
− M2

N

3H
1

2

η . (10)

Here η is a stochastic noise term added to simulate the quantum fluctuation of the

inflaton and we make its form to be Gaussian satisfying

< η(t) >= 0 , < η(t)η(t′) >=
9

4π2
δ(t− t′) . (11)

This simulation is quite general and very efficient in the IR region of noncommu-

tative inflation no matter what time scale we use. When we consider the quantum

fluctuations in one Hubble scale, we can recover < δqϕ
2 >≃ M4

N/(4π
2H2) with the

fluctuation of ϕ integrated in one Hubble time,

δqϕ = −H

∫ 1

H M2
Nη

3H
3

2

dt ; (12)
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moreover, when we consider the quantum fluctuations in one noncommutative scale,

then we can recover < δqϕ
2 >≃ M3

N/(4π
2H) with the fluctuation of ϕ integrated

during the time scale 1/MN,

δqϕ = −MN

∫ 1

MN MNη

3H
1

2

dt . (13)

Therefore, we have the expression d
dt

< ϕ2 >≃ M4
N/(4π

2H) both in the Hubble

scale and the noncommutative scale. According to the property of Brownian motion,

the diffusion coefficient D is approximately equal to half of d
dt

< ϕ2 >, and thus we

have D = M4
N/(8π

2H).

For simplicity, we study the stationary ansatz of Eq. (5): ∂tPN = 0. Consequently

the FP equation (5) in IR region of noncommutative case can be solved as

PN(ϕ, t) ∼ exp

{

− 8π2

3M4
N

(V − V0)

}

∼ exp

{

−8π2 · H
2 −H2

0

M4
N

}

, (14)

where V0 (and H0) appears from a proper normalization.

Keeping in mind that H > MN in the IR region of noncommutative eternal in-

flation, and comparing the denominator on the exponential of the noncommutative

result (14) with the commutative result (1), we conclude that the tunneling proba-

bility is more suppressed by the spacetime noncommutativity. This suppression has

clear physical interpretation. Since the spacetime noncommutativity generally sup-

presses the quantum fluctuation of the inflaton, it should make quantum behaviors

of the inflaton, such as the Hawking-Moss tunneling, more unlikely to happen.

We also note that the equation (1) and (14) can be linked smoothly describing

the energy density crossing the noncommutative UV/IR boundary. It is known that

when H < MN, the noncommutative inflation is in the UV region, and it is in the IR

region when H > MN. The probability distribution of inflaton in the UV region is

described by Eq. (1) in which the maximal value of the potential is V ≃ 3H2 = 3M2
N.

This is just the minimal value of the potential in the IR region. Consequently the

distribution function of noncommutative eternal inflation in the whole parameter

space is continuous, and hence, there is no pathology when the field ϕ tunnels through

the UV/IR boundary(See Fig. 1).

6



V

false vacuum: 0

Top barrier: top

True vacuum: v

IR

UV

UV/IR boundary

Figure 1: A sketch map of Hawking-Moss tunneling from a false vacuum ϕ0 to the true

one ϕv. When the inflaton ϕ lies above the green dot line, its distribution function

satisfies Eq. (14) and the probability of tunneling is suppressed exponentially with

respect to V ; meanwhile, if ϕ is placed below the green line, the form of distribution

function returns the usual one (1).

7



In order to make this result more explicitly and to investigate the details of physics,

we consider the example V (ϕ) = λϕ4 when ϕ is near one minimal of the potential.

To solve the equations (6) and (10), we define for simplicity σ ≡ ϕ2, then we have

σ̇ + ασ + βη = 0 , α ≡ 8

√

λ

3
, β ≡ 2

3
M2

N

4

√

3

λ
. (15)

The solution of (15) can be written as

σ(t) = σ0e
−αt + βe−αt

∫ t

0

eαt1η(t1)dt1 . (16)

where σ0 ≡ σ(0) sets the initial condition at t = 0.

Following [32], the distribution function for σ can also be given by

PN(σm) ∼
∫

[dη]dt exp

(

−2

9
π2

∫ ∞

0

dt1η
2(t1)

)

× δ (σ(t)− σm) , (17)

which denotes the number of times the universe arrives at the σ(t) = σm surface

during infinite time. By using δ(y) =
∫

dx
2π
eixy, and doing Gaussian integration twice,

we obtain the integral

PN(σm) ∼
∫

dt

√

8πλ

3M4
N(1− e−2αt)

× exp






−8π2λ

3M4
N

σ2
m

(

eαt − σ0

σm

)2

e2αt − 1






. (18)

This integral seems problematic because there is a divergence when t → ∞. How-

ever, note that the energy scale of eternal inflation along a comoving world line will

eventually drop. As t becomes larger, inflation enters the UV region, and the behav-

ior of evolution returns to the commutative case. Consequently, the full integral does

not suffer from the divergence, so this measure is well defined.

Further, what we care about is the tunneling probability which corresponds to

the case: σm > σ0. By using the saddle point approximation on the exponential as

in [32], we obtain

PN(σ0) ∼ exp
(

−8π2M−4
N (H2

m −H2
0 )
)

≃ exp

{

− 8π2

3M4
N

(Vm − V0)

}

, (19)

which is consistent with Eq. (14).
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3 Conclusion and Discussions

To take a further discussion, we would like to compare the difference of dS decaying

processes whether or not the spacetime noncommutativity is present. According to

the work of Coleman and De Luccia[14], the decay time of a metastable dS vacuum has

an approximate expression T ∼ P−1. By neglecting all the sub-exponential factors,

we have

TC = exp

{

24π2M4
p (

1

V0

− 1

Vtop

)

}

; (20)

TN = exp

{

8π2

3M4
N

(Vtop − V0)

}

, (21)

which represent the dS decay times without the spacetime noncommutativity, and

the IR region with noncommutativity respectively. To be clear, we have written Mp

explicitly here. It is clear that TN > TC , which is a very general result indicating that

the lifetime of a metastable dS vacuum with noncommutativity is longer than that

without noncommutativity.

To summarize, from the results obtained in this note we learn that the Hawking-

Moss tunneling effect of noncommutative eternal inflation in the IR region is greatly

different from the usual one. Its probability distribution is exponentially suppressed

by the top barrier value of the potential and make Hawking-Moss tunneling more

difficult to happen than in the usual case. This is because the quantum fluctuation

is suppressed by spacetime noncommutativity. Consequently, we may expect the

application of noncommutativity would bring a closer sight into high energy physics

of eternal inflation. Based on the new form of the probability distribution, we find

that the lifetime of a metastable dS vacuum in the noncommutative case is longer

than in the usual one. This may leave more clues for investigating the new physics of

noncommutativity which is worthy for further studies.
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