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Abstract. I outline a method for estimating astrophysical parameters (APs)
from multidimensional data. It is a supervised method based on matching ob-
served data (e.g. a spectrum) to a grid of pre-labelled templates. However, unlike
standard machine learning methods such as ANNs, SVMs or k-nn, this algorithm
explicitly uses domain information to better weight each data dimension in the
estimation. Specifically, it uses the sensitivity of each measured variable to each
AP to perform a local, iterative interpolation of the grid. It avoids both the non-
uniqueness problem of global regression as well as the grid resolution limitation
of nearest neighbours.

1. Introduction

Consider the problem of estimating the astrophysical parameters (APs) of a star
from its spectrum using a grid of pre-labelled spectra. Let ~p = {pi}, i = 1 . . . I be

the data vector (spectrum or multiband photometry) and ~φ = {φj}, j = 1 . . . J
be the AP vector (e.g. Teff , log g, etc.). Standard approaches involve performing

a global regression on the grid to infer the mapping ~φ = g(~p), using, for example,
a artificial neural network (ANN) (e.g. Bailer-Jones et al. 1998) or a support
vector machine (SVM) (e.g. Tsalmantza et al. 2006).

Although these methods meet with reasonable success, they have problems
when it comes to estimating multiple APs, in particular if some APs have a
relatively weak signature (as is the case with log g and [Fe/H]: compare the
vertical scales in Fig. 1). To overcome this we should weight the variables ac-
cording to their sensitivity with respect to the APs of interest. In principle,
ANNs and SVMs implicitly learn this weighting from the data, but this is dif-
ficult with many noisy variables. Furthermore, a global regression approach is
strictly flawed, because while the photon counts in a band varies uniquely with
the APs, the converse is not true (Fig. 1). The global regression is trying to
solve an inverse problem and the lack of uniqueness could lead to a poor fit.
This degeneracy problem is exacerbated at low spectral resolution and by noise.

2. Basic idea

The new algorithm addresses these issues by explicit use of the sensitivities,

Sij(~φ) = ∂pi
∂φj

, of each band i to each AP j. These are estimated by fitting a

(smooth) function, p̂i = fi(~φ) to each band, which I refer to as the forward model
(Fig. 1). Sensitivities are estimated from these via first differences. These are
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Figure 1. Variation of photon counts with log (Teff) (top) and log g (bot-
tom) in three filters (bands). A J-dimensional fit to each band (indepen-
dently) is a forward model. This is a true function (unlike a fit to the inverse).

used to improve the commonly-employed nearest neighbour (or χ2 minimization)
technique. We locally interpolate the grid, defining “optimal” directions for
interpolation using the sensitivities, and predicting the photon counts at off-
grid points using the forward model.

3. The algorithm

Task: estimate APs of measured vector ~p0. The core algorithm (for I = 1, J = 1)
is as follows, where subscripts refer here to iterations (see Fig. 2)

1. Fit the forward model to the grid, p̂ = f(~φ)

2. Initialize: find nearest grid neighbour to ~p0. Call this (~p1, ~φ1)

3. Use the forward model to calculate the local sensitivities, ∂φ
∂p

4. Calculate the discrepancy (residual), δpn = pn − pn−1 (= p1 − p0 for the
first iteration)

5. Make a step in AP space, φn+1 = φn −
(

∂φ
∂p

)

φn

δpn. This is the new AP

prediction
6. Use the forward model to predict the corresponding (off-grid) flux, pn+1

7. Iterate steps 3–6

For the general case of I > 1, step 5 is simply an average over the update

calculate for each band, i.e. δφ = −
∑

i
∂φj

∂pi
δpi. For multiple APs (J > 1), we

can write this in matrix format as δ~φ = −Rδ~p, where R = [Rji] is the J × I

matrix of reciprocal sensitivities, i.e. Rji = S−1
ij (mathematical rigour being

sacrificed to some degree). The actual algorithm is a bit more complex (e.g.
modified step size).
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Figure 2. Sketch of the local iteration principle (described in the text) for
I = 1 and J = 1.

4. Application and results

I apply the algorithm to a set of synthetic optical photometry of stars showing
variation in Teff and log g. The I = 11 photometric bands are part of a system
originally designed for Gaia (Jordi et al. 2006). The data show a large variation
in APs (Fig. 4), and the grid is quite sparse, comprising just 233 objects. The
test set contains 234 objects, with no AP combinations in common between the
grid and test set. The signal-to-noise ratio of the test set has been reduced to
10 per band.

The algorithm applied is actually a simpler version of the general case de-
scribed above: the forward model in steps 3 and 6 is a local linear interpolation
(i.e. a plane) of the neighbours in AP space (not data space!) to the current
point under consideration.1 Thus the forward models are robust but subopti-
mal (as we are no longer taking advantage of the reasonable assumption that

pi = fi(~φ) is smooth).
The progress of the algorithm in terms of the AP estimates is demonstrated

in Fig. 3 for two of the 234 test cases. These have been selected to demonstrate
both good and poor convergence for the two APs.

The residuals of the estimates over all 234 objects are shown in Fig. 4,
plotted against the true APs. The RMS errors are 1.65 dex in log g and 0.042 dex
in log (Teff) (corresponding to 480K at 5000K). These compare to 0.99 dex for
log g and 0.028 dex for log (Teff) (320K at 5000 k) for an SVM model trained and
tested on the same data. The systematic error in log g is also seen with the SVM
and is characteristic of the weak AP problem (but not, I believe, unassailable).

1Neighbours are selected so as to “surround” the current point in AP space as well as possible,
providing a sort-of “bracketing” (a concept which is only properly defined in one dimension).
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Figure 3. AP estimate vs. iteration number for for two sources (left and
right), showing examples of correct and incorrect convergence. The horizontal
line shows the true parameters.

Figure 4. Parameter estimation residuals for log g (left) and log (Teff) (right).

5. Conclusions

The algorithm currently performs slightly worse than one of the best generic
regression algorithms available (an SVM), yet this is not bad considering that
(a) it is in an early stage of development, and (b) the results were obtained using
a (suboptimal) linear forward model. Unlike ANNs, the dimensionality of the
algorithm’s fitting depends on the number of APs (J), not the number of data
dimensions (I), so it should scale well to typical spectral problems (J is a few,
I is a few thousand). Moreover, the method has the ability to detect and report
multiple solutions which arise from degeneracies in the data (see Fig. 1).
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