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Abstract

Conservation of canonical angular momentum shows that charged particles are typically con-

strained to stay within a poloidal Larmor radius of a poloidal magnetic flux surface. However,

more detailed consideration shows that particles with a critical charge to mass ratio can have

zero canonical angular momentum and so be both immune from centrifugal force and not con-

strained to stay in the vicinity of a specific flux surface. Suitably charged dust grains can have

zero canonical angular momentum and in the presence of a gravitational field will spiral inwards

across poloidal magnetic surfaces toward the central object and accumulate. This accumulation

results in a gravitationally-driven dynamo, i.e., a mechanism for converting gravitational potential

energy into a battery-like electric power source.
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I. INTRODUCTION

To the best of the author’s knowledge, no plasma has ever been observed to make a Kepler

orbit around the Sun, a planet, or a moon. For example, the Earth’s magnetotail does not

make Kepler orbits around the Earth nor does the solar wind make a Kepler orbit around the

Sun. This is puzzling because in the astrophysical literature plasmas are routinely presumed

to make near-Kepler orbits in the presence of the gravitational field of a central object, e.g.,

accretion disks are modeled as MHD plasmas in a near-Kepler orbit around a central object.

The qualifier ‘near’ is used because it is conventionally presumed for gases and plasmas that

a radial gradient of an isotropic pressure exists and that this pressure gradient provides

a modest outward force which slightly reduces the amount of centrifugal force required to

balance the inward force of gravity and so achieve a stable circular orbit (e.g., see Ref. [1]

for a discussion of the implications of this effect in the context of a system consisting of gas

and solid particles).

If Kepler orbiting plasmas are so ubiquitous in astrophysics, then why is there not even

a single example in the great variety of plasma/gravitational situations in our own solar

system? A Kepler orbit is essentially a property of a single point particle – it is not a

property of a collection of independent point particles. For example, Earth and Mars are

individually in Kepler orbits around the Sun, but the center of mass of Earth and Mars is

not in a Kepler orbit around the Sun. If one replaced Earth and Mars by some statistically

large number of point particles, then each could be in its own Kepler orbit around the Sun,

but the center of mass of this configuration would not be in a Kepler orbit.

A collisional gas in a container could be in a Kepler orbit around the Sun because the

walls of the container bind the particles to stay within a fixed distance of the center of

mass so that the entire system can be considered as a point particle located at the center

of mass. The transition from single point particle behavior to the behavior of a group of

particles can be seen by considering a moon in close orbit around a massive planet. The

tidal forces resulting from the gradient of the planet’s gravitational force can be so strong

as to overcome the binding forces and fracture the moon. The fragments would then follow

distinct individual Kepler orbits and the center of mass of these orbits would not follow

a Kepler orbit. Similarly, in order for a gas (or plasma) to have its center of mass follow

a Kepler orbit there would have to be some binding force, such as would be provided by
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container walls, that would prevent the particle constituents of the gas (or plasma) from

separating onto distinct Kepler orbits. Collisions might provide binding at the interior of

a gas cloud, but not at the periphery because particles at the periphery moving away from

the center would not encounter other particles with which they could collide. The periphery

would simply expand into vacuum if there is no wall to prevent this expansion and the

particles constituting the periphery would make Kepler orbits substantially different from

the Kepler orbit calculated for the center of mass.

Accretion disks are composed of dust and gas and the dust to gas mass ratio is estimated

[2, 3] to range from ∼ 10−2 to ∼ 1. UV radiation photo-ionizes [4, 5, 6] the dust and gas so

the accretion disk can be considered as a dusty plasma [7] consisting of charged dust grains,

electrons, and ions. The magnetorotational instability (MRI) [8] and the unipolar induction

dynamo (UID) [9] assume accretion disks are axisymmetric ideal MHD plasmas and neglect

dusty plasma physics effects. The MRI and UID additionally assume that accretion disks

obey both Kepler dynamics and ideal MHD. Thus accretion disks are considered to be

ideal MHD plasmas in a circular Kepler orbit about a central object; they are supposed

to conserve angular momentum and have frozen-in magnetic flux. One can then ask what

does the trajectory of an individual particle in the accretion disk look like. Since MHD is

assumed and MHD is based on the assumption that all particles make cyclotron orbits, it

seems that the individual particle in question should be making a cyclotron orbit. On the

other hand since the whole plasma is supposed to be making a circular Kepler orbit around

the central object, then presumably this cyclotron-orbiting particle must also be making a

Kepler orbit around the central object. A Kepler-orbiting cyclotron orbit is not an obvious

concept to visualize, at least to this author. This conceptual difficulty suggests that instead

of assuming that a particle is simultaneously Kepler-orbiting and cyclotron orbiting, one

should go back to first principles to investigate how Kepler and cyclotron orbits relate to

each other. Perhaps it will then become obvious how to visualize a Kepler-cyclotron orbiting

particle, or perhaps not.
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II. KEPLER EFFECTIVE POTENTIAL AND ORBITS

Let us begin with a brief review of Kepler orbits. A particle σ with conserved angular

momentum Lσ = mσr
2dφ/dt has radial motion in the Kepler “effective” potential [10]

χKepler(r) =
L2

σ

2mσr2
− mσMG

r
(1)

where M is the mass of a central object. Particles with energies at minχKepler(r) have

circular trajectories with r = L2

σ/m
2

σMG, velocity vK =
√

MG/r and constant angular

velocity Ω =
√

MG/r3 whereas particles with energy exceeding minχKepler(r) have elliptical

trajectories and variable angular velocity dφ/dt = Lσ/mσr
2 [10].

III. GUIDING CENTER ORBITS IN COMBINED MAGNETIC AND GRAVITA-

TIONAL FIELDS

In contrast to Kepler dynamics [10], basic plasma theory [11, 12, 13] shows that the

guiding center of a charged particle in combined magnetic and gravitational fields, but no

electric field, drifts at the velocity

vgσ =
mσ

qσB2
g×B (2)

where g is the gravitational acceleration. For a mass M central object, g =

MG∇ (r2 + z2)
−1/2

and so the guiding center drift in the z = 0 plane is

vgσ =
MG

r2ωcσ

φ̂ =
Ω

ωcσ

vKφ̂ (3)

where ωcσ = qσBz/mσ is the cyclotron frequency. It is seen that vg is smaller than the

Kepler velocity vK by Ω/ |ωcσ| , an enormous ratio for electrons and ions since |ωce| and |ωci|
are many orders of magnitude larger than Ω for typical field strengths. If all the particles

move at a much slower velocity than the Kepler velocity, then how could the center of mass

move at the Kepler velocity? Furthermore, the vgσ add up to give the azimuthal current

Jg =
∑

nσqσvgσ = ρg ×B/B2 where ρ =
∑

nσmσ. The gravitational drift current results

mainly from heavy particle motion [13] and gravity is balanced by the magnetic force

(i.e., Jg × B = − ρg [13]) rather than by centrifugal force which is insignificant for this

example. The ideal MHD Ohm’s law E+U×B = 0 actually fails here, because the Hall
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term J×B/ne in the zero-pressure, generalized [14] Ohm’s law E+U×B = J×B/ne

cannot be dropped since J/ne nearly equals the center of mass velocity U.

What sort of trajectory does an actual charged particle follow in an astrophysical sit-

uation? Is it the Kepler orbit assumed in Refs. [8, 9] or the much slower gravitational

drift derived in Ref. [13]? We show here that even though charged particles in a strong

magnetic field can rotate at vK as assumed in Refs. [8, 9], the motion is not governed by

Eq.1 so charged particles (and hence a plasma) do not in general obey Kepler dynamics.

This analysis leads to the realization that dust grains having a critical charge to mass ratio

spiral in towards the central object and so could provide a gravitationally powered dynamo

suitable for driving astrophysical jets.

IV. HAMILTONIAN DESCRIPTION OF ORBITS IN COMBINED ELECTRO-

MAGNETIC AND GRAVITATIONAL FIELDS

We consider the axisymmetric charged particle Hamiltonian [15, 16, 17, 18, 19]

H =
mσv

2

r

2
+
mσv

2

z

2
+

1

2mσr2

(

Pφ −
qσ
2π
ψ(r, z, t)

)2

+ qσV (r, z, t)−
mσMG√
r2 + z2

. (4)

Here ψ = 2πrAφ is the poloidal flux and is related to the magnetic field by

B = − 1

2πr

∂ψ

∂z
r̂ − ∂Az

∂r
φ̂+

1

2πr

∂ψ

∂r
ẑ, (5)

V is the electrostatic potential, and we note that ideal MHD ultimately comes from ap-

proximations based on Eq.4 and not Eq.1. Because of axisymmetry the particle’s canonical

angular momentum

Pφ = mσr
2
dφ

dt
+

qσ
2π
ψ(r, z, t) = Lσ +

qσ
2π
ψ(r, z, t) (6)

is invariant [16, 17]. Equation 4 is equivalent to the equation of motion

mσ
dv

dt
= qσ (E+ v ×B) +mσg (7)

with E = −∇V − ∂A/∂t.

We examine solutions to Eq.7 in the z = 0 plane for various charge to mass ratios, a

uniform magnetic field B = Bz ẑ, and two representative V (r) profiles. In order to see
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the connection between the sense of particle injection and the magnetic field direction, the

coordinate system definition we use here is such that positive φ is determined by the direction

of injection of the particle, i.e., the particle always has initial positive dφ/dt by assumption.

This definition means that Bz could be positive or negative since the direction of the z axis

is determined by the sense of particle injection (i.e., we are defining the z axis so that the

particle is always injected in the counterclockwise direction) and not by the direction of B.

Because Bz can be positive or negative, ωcσ will have the usual signage for Bz > 0 but will

have opposite polarity from convention if Bz < 0. To see whether or not particles make

Kepler orbits we track particles starting with the same kinetic energy and Lσ as a neutral

particle undergoing an elliptical Kepler orbit. a is defined to be the radius of the initial

location and the x axis lies in the direction from the central object to this location.

Lσ is conserved if qσ = 0, but if qσ 6= 0 then Pφ rather than Lσ is the conserved

quantity [16, 17]. Bφ = 0 will be assumed (to be justified later). Time is normalized to

the Kepler frequency of a neutral particle undergoing circular motion at r = a, i.e., to

Ω0 =
√

MG/a3 and distances are normalized to a. The dimensionless variables are then

r̄ = r/a, τ = Ω0t, v̄ = v/Ω0a, L̄ = Lσ/mσa
2Ω0, H̄ = H/mΩ2

0
a2, V̄ (r̄) = qσV (r)/mσΩ

2

0
a2,

and using ψ = Bzπr
2,

P̄φ =
Pφ

mσa2Ω
=

(

dφ

dτ
+

ωcσ

2Ω0

)

r̄2. (8)

The dimensionless z̄ = 0 plane Hamiltonian is thus

H̄ =
1

2
v̄2r +

1

2

(

P̄φ

r̄
− ωcσ

2Ω0

r̄

)2

+ V̄ (r̄)− 1

r̄
. (9)

Rotation of a plasma in a magnetic field polarizes the plasma radially and the resulting

V̄ (r̄) corresponds to the voltage to which the plasma capacitor is charged [17]. There is

thus no natural V̄ (r̄) profile and hence no natural rotational velocity (e.g., see Refs.[17, 20]).

We consider two representative cases, namely (i) V̄ (r) = 0 and (ii) V̄ (r) = 2r̄1/2ωcσ/Ω0.

Case (i) corresponds to Eq.2 while case (ii) corresponds to the ‘Kepler’ equilibria assumed

in Refs. [8, 9]. A third possibility, not discussed here (see Ref.[21] instead), sets V̄ (r̄) to give

a rotation velocity equal to that of the central object (so-called “co-rotational velocity”).

We consider all possible values of ωcσ/Ω0, namely |ωcσ/Ω0| << 1, |ωcσ/Ω0| >> 1, and

|ωcσ/Ω0| = O(1) with ωcσ/Ω0 either positive or negative. |ωcσ/Ω0| >> 1 is typical for elec-

trons, ions, and large charge to mass ratio dust grains, whereas |ωcσ/Ω0| << 1 corresponds

to dust grains with very small charge to mass ratios or macroscopic charged particles such as
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spacecraft [22]. The voltage Vd to which a dust grain becomes charged depends on the charg-

ing mechanism and the dust grain size; Vd typically lies in the range 1 volt < |Vd| < 100 volts.

Since the dust grain charge is Qd = 4πε0rdVd, the charge to mass ratio Qd/md = 3ε0Vd/r
2

dρd

lies in the range 10−4 − 102 C/kg for typical dust grain radii 0.1 µm < rd < 10 µm and

typical dust grain intrinsic mass density ρd = 103 kg m−3. The dust grain ωcd/Ω ratio is

thus 9-15 orders of magnitude smaller than that of an electron and 6-12 orders of magnitude

smaller than that of an ion.

The last two terms in Eq.9 can be written as a normalized effective potential

χ̄(r̄) =
1

2

(

P̄φ

r̄
− ωcσ

2Ω0

r̄

)2

+ V̄ (r̄)− 1

r̄
. (10)

If qσ = 0 then ωcσ = 0, V̄ = 0 and χ̄ → χ̄Kepler in which case Kepler dynamics [10] is

retrieved.

However, when ωcσ 6= 0 and V̄ (r̄) is arbitrary, the dynamics is non-Keplerian and Eq.

10 has minima when
(

P̄φ

r̄2

)2

−
(

ωcσ

2Ω0

)2

− 1

r̄

∂V̄

∂r̄
− 1

r̄3
= 0 . (11)

By using Eq.8, Eq.11 can be recast as

(

dφ

dτ

)2

+
ωcσ

Ω0

dφ

dτ
− 1

r̄

∂V̄

∂r̄
− 1

r̄3
= 0 (12)

so a particle with H̄ equal to the effective potential minimum has an angular velocity

dφ

dτ
= − ωcσ

2Ω0

±

√

(

ωcσ

2 Ω0

)2

+
1

r̄

∂V̄

∂r̄
+

1

r̄3
. (13)

Figure 1 plots χ(r̄) and numerically calculated x-y plane trajectories for a range of ωcσ/Ω0

values and for the two V̄ (r̄) cases. In all trajectory calculations the particle initial position

is x̄ = 1, ȳ = 0 and the initial velocity is v̄x = 0.4, v̄y = 1 (i.e., particles start at the same

position with the same initial velocity and the same initial mechanical angular momentum

Lσ). The trajectories are calculated from τ = 0 to 4π (i.e., two circular Kepler orbit periods)

and the energy H̄ is shown as a dashed line in the effective potential plots. An r̄ = 1 reference

circle (dashed) is shown in the trajectory plots.

Figure 1 shows that the trajectory depends strongly on both the V̄ (r̄) profile and on

ωcσ/Ω0. The ωcσ/Ω0 = 0 situation (fifth row of Fig. 1) is a classic elliptical Kepler orbit

7



as prescribed by Eq.1 and is independent of V̄ (r̄) because a neutral particle is insensitive

to electromagnetic fields. However, when ωcσ/Ω0 is finite, Fig. 1 shows that the effective

potential and trajectories differ qualitatively from the classic neutral particle effective poten-

tial and elliptical Kepler orbit. It is therefore incorrect to characterize a plasma composed

of particles with |ωcσ/Ω0| >> 1 as being in a Kepler orbit (as done in the MRI and UID

models) because particles in such a plasma are not governed by Eq.1 and, for example, do

not make elliptical orbits with the central object at one focus of the ellipse (such orbits are

the “hallmark” of Kepler dynamics).

Insight into the orbits shown in Fig. 1 can be obtained by examining solutions to Eq.13.

For |ωcσ/2Ω0| << 1 and V̄ (r̄) = 0, Eq.13 has the roots

dφ

dτ
= ± 1

r̄3/2
− ωcσ

2Ω0

(14)

so heavy charged dust grains with H̄ equal to the minimum of the effective potential make

circular orbits with a small ωcσ/2Ω0 correction to the Kepler frequency. Heavy charged

dust grains with H̄ slightly above this minimum will make precessing elliptical Kepler orbits

having small ωcσ/2Ω0 corrections (see ωcσ/Ω0 = ±0.1 cases in Fig. 1) and these corrections

will increase with the charge to mass ratio.

For |ωcσ/2Ω0| >> 1 and V̄ (r̄) = 0 the two roots of Eq.13 are

dφ

dτ
= − ωcσ

Ω0

,
dφ

dτ
=

1

r̄3
Ω0

ωcσ
. (15)

The first root corresponds to a so-called axis-encircling cyclotron orbit [16]; this root is not

likely to be physically realizable in astrophysical situations since its corresponding azimuthal

velocity exceeds the Kepler velocity by the large ratio |ωcσ/Ω0|. Normal cyclotron orbits

correspond to a particle oscillating [16, 17] in r about a local minimum of χ(r) and are

associated with the second root in Eq.15. The second root is just vg prescribed by Eq.2

[11, 12, 13] and, as discussed above, is smaller than vK by the factor |Ω0/ωcσ|. In reality

|Ω0/ωcσ| would be so enormous that electrons and ions would have negligible azimuthal

displacement during one Kepler period of a neutral particle. These slow drift orbits are

shown in the top and bottom rows of case (i) in Fig.1. In accordance with Eq.2 heavy

particles drift faster, negative and positive particles drift in opposite directions, and the

drift velocity decreases as Bz increases.

8



For case (ii), V̄ (r̄) = 2r̄1/2ωcσ/Ω, and so Eq.12 becomes
(

dφ

dτ
− 1

r̄3/2

)(

dφ

dτ
+

1

r̄3/2
+
ωcσ

Ω0

)

= 0 (16)

where one root is the circular Kepler-like orbit dφ/dτ = 1 with r̄ = 1. Although the dφ/dτ =

1 root looks superficially like a neutral particle Kepler orbit, the orbits are not elliptical, but

nearly circular and, as in tokamaks and spheromaks, stay within a poloidal Larmor orbit of

a constant ψ surface [17, 23]. The effective potential minimum has the same radial location

as Eq.1 but the profile is an extremely narrow trough with a large vertical offset (positive

or negative, depending on the charge polarity), not a shallow broad well as for Eq.1.

V. ORBITS OF PARTICLES WITH ZERO CANONICAL ANGULAR MOMEN-

TUM: DYNAMO FOR DRIVING ASTROPHYSICAL JETS

A strange behavior is evident in the ωcσ/Ω0 = −2.0 row of Fig. 1: the effective potential

goes to minus infinity on the left and the particle spirals inwards toward the origin in the

x-y trajectory plots. This corresponds to Pφ = 0 and is unlikely for electrons or ions because

they typically have |ωcσ/Ω0| >> 1. However, Pφ = 0 could occur for dust grains because,

being heavy, dust grains have |ωcσ/2Ω0| many orders of magnitude smaller than electrons

or ions. As seen from Eq.8, P̄φ = 0 occurs if dφ/dτ = −ωcσ/2Ω0 or, in un-normalized

quantities Pφ = 0 occurs when dφ/dt = −ωcσ/2 in which case dφ/dt also becomes invariant.

In this situation the normalized effective potential, Eq.10, reduces to

χ̄(r̄) =
1

8

(

ωcσ

Ω0

)2

r̄2 + V̄ (r̄)− 1

r̄
(17)

which has the remarkable feature that no centrifugal repulsion exists so the particle always

falls towards r̄ = 0 with constant dφ/dτ (i.e., it spirals in). This differs qualitatively from

P̄φ 6= 0 particles which are constrained to orbit at a fixed average radius. The normalized

radial force acting on a P̄φ = 0 particle is

F̄ = −∂χ̄
∂r̄

= − 1

4

(

ωcσ

Ω0

)2

r̄ − ∂V̄

∂r̄
− 1

r̄2
(18)

which is negative for any potential having ∂V̄ /∂r̄ ≥ 0. Thus F̄ is negative for both the

V̄ = 0 and the ‘Kepler’ potential V̄ (r̄) = 2r̄1/2ωcσ/Ω. If there is a distribution of dust grain

sizes, then a corresponding distribution of ωcσ/Ω0 values will develop and some subset will
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have ωcσ/Ω0 = −2. The situation ωcσ/Ω0 = −2 could occur for negatively charged dust

grains injected with Bz > 0 or for positively charged dust grains with Bz < 0. This latter

case is the likely one and if one were to adopt the common convention that the z axis is

defined by the direction of B , this would correspond to retrograde injection.

Dust grains accreting to a circumstellar disk will typically absorb stellar UV photons [4]

and become positively charged by emitting photo-electrons [6, 7]. Some of these dust grains

will satisfy dφ/dt = −ωcσ/2 if Bz < 0 and so have P̄φ = Pφ = 0. These dust grains have

mechanical angular momentum Lσ = mσr
2dφ/dt at the instant before becoming charged

by photo-emitting electrons, i.e., they have mechanical angular momentum Lσ = −qσψ/2π
at the instant before they become charged. Since neither r nor dφ/dt is changed at the

instant of charging, their canonical angular momentum Pφ = Lσ + qψ/2π becomes zero at

the instant after charging.

The infalling P̄φ = 0 dust grains will accumulate at small r̄ and create a positive space

charge there. The photo-emitted electrons, stranded at large r̄ (since electrons have Pφ 6= 0),

will create a corresponding negative space charge at large r̄. The positive and negative space

charges will tend to cancel any polarization charge, e.g., the polarization charge associated

with an initial V̄ (r̄) = 2r̄1/2ωcσ/Ω potential. Accumulation of infalling P̄φ = 0 positive dust

grains will eventually create an outward radial electric field E∗

r (i.e., opposite direction to that

associated with the V̄ (r̄) = 2r̄1/2ωcσ/Ω potential). This accumulation will cease when E∗

r

becomes sufficiently large to create a force qσE
∗

r which cancels F. In un-normalized variables

this cancellation occurs when E∗

r = ∂Vother/∂r+ (rω2

cσ/4 +MG/r2 )mσ/qσ where Vother is

the potential profile that would exist due to particles other than the accumulating Pφ = 0

dust grains. The inward falling Pφ = 0 dust grains constitute a radially inward conduction

current so J ·E is negative and the system converts gravitational potential energy into

available electrical power; i.e., it is a dynamo. The positive voltage near r = 0 will drive

bipolar axial electric currents I outwards from the z = 0 plane. These currents will deplete

the positive space charge which will result in a net force F − qdE
∗

r that will drive additional

P̄φ = 0 dust grains towards r = 0 where they will replenish the positive space charge. Thus,

the system continuously converts the gravitational potential energy of the Pφ = 0 accreting

dust grains into a battery-like electrostatic potential which drives the poloidal current of an

astrophysical jet. The jet itself is accelerated by the ∂B2

φ/∂z force [24, 25, 26] associated with

the axial non-uniformity of the jet poloidal current I(r, z) since Bφ(r, z) = µ0I(r, z)/2πr.
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The anti-symmetry of I with respect to z means that Bφ = 0 at z = 0 consistent with the

assumption made earlier.

We note that the ability of Pφ = 0 particles to cross magnetic flux surfaces has recently

been observed in a laboratory experiment [27].

The assumption used in this paper thatBz is spatially uniform is a simplifying idealization

that enables the analysis to be both brief and focussed on the distinction between Kepler

and charged particle orbits. However, an actual accretion disk will almost certainly have

Bz depend on both r and on z so in order to satisfy ∇ ·B = 0 there will also have to be a

Br(r, z). This indicates that the axisymmetric magnetic field would be best described using

a poloidal flux function ψ(r, z) i.e., B(r, z) = (2π)−1 (∇ψ ×∇φ+ µ0I(r, z)∇φ) . This more

general description of the magnetic field has been used in Ref.[28], a much lengthier analysis,

where three dimensional particle orbits in an approximately self-consistent magnetic field are

considered using a generalization of the Hamiltonian method presented here. Specifically,

the poloidal flux function ψ(r, z) in Ref.[28] results from a toroidal current due to toroidal

motion of charged particles and particles are not restricted to the z = 0 plane as in the

present paper.

The dust grains might be so densely packed as to be optically thick in which case photons

from the central object would not reach the dust and the dust would not become charged;

this would constitute a so-called ‘dead-zone’. The condition for a dust cloud to be optically

thick is nσL > 1 where n is the dust density, σ is the dust cross-section, and L is the

characteristic length scale of the dust cloud. However, the condition for a dust cloud to

be collisional is also nσL > 1 and so dust grains in an optically thick cloud would be

collisional. This collisional, optically thick state would likely be transient, because collisions

are expected to cause coagulation of the dust grains [1] in which case their radius rd will

increase. Since the mass of an individual dust grain is md = 4πρdr
3

d/3 and since coagulation

does not change the total mass M of all the dust grains, the number N = M/m of dust

grains and hence the density n ∼ N/L3 of dust grains scales as r−3

d . Because the dust grain

cross-section σ scales as r2d, the product nσ scales as r−1

d and so nσ decreases as a result of

coagulation. Coagulation of dust grains will thus reduce nσ until nσL becomes less than

unity in which case the dust cloud will become collisionless and optically thin. At this point

dust would become charged (ionized) via photo emission and commence the collisionless

trajectories discussed here. The dead zones would thus disappear as a result of coagulation.
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This issue is discussed in more detail in Ref.[28].

Ref.[28] discusses several other issues including: the charging rate of dust grains (i.e.,

effective ionization rate of dust grains), collisions of dust grains with gas and other dust

grains, and the topological properties of astrophysical jets. These various issues are used to

define a parameter space for astrophysical jets powered by the gravitational energy released

by accreting Pφ = 0 dust grains. A self-consistent set of parameters is given for the example

of the circumstellar accretion disk of a young stellar object (YSO).
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FIG. 1: Effective potentials and x̄-ȳ plane trajectories for particles starting at x̄ = 1, ȳ = 0 with

initial velocity v̄x = 0.4, v̄y = 1 with range of ωcσ/Ω0 values and two V̄ (r̄) cases. Elliptical Kepler

orbits (i.e., Eq.1 effective potential) occur only when ωcσ/Ω = 0. Particles with ωcσ/Ω0 = −2 fall

towards r̄ = 0 and have P̄φ = 0. No particles make Kepler-like elliptical orbits when |ωcσ/Ω0| >> 1.14
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