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Abstract. The determination of the Earth gravity field from space geode-
tic techniques now allows us to obtain the temporal variations of the low
degree coefficients of the geopotential, combining the orbitography of sev-
eral satellites (e.g. Lageos1, Lageos2, Starlette). These temporal variations
of the Earth gravity field can be related to the Earth Orientation Parame-
ters (EOP) through the inertia tensor. This paper shows these relations and
discusses how such geodetic data can contribute to the understanding of the
variations in EOP.

1 Introduction

The Earth Orientation is generally considered as (i) Earth rotation axis movements
in space (precession-nutation), (ii) Earth rotation axis movements in the Earth
(polar motion), or (iii) Earth rotation speed variations (exces in the length of the
day). These movements come from Earth inside masses distributions.

The Earth gravity field can give us information about this distribution of
masses because nowadays we can determine the variations of the Earth gravity
field by space geodetic techniques.

Hence, there is a link between the variations of the Earth gravity field and
the variations of the Earth Orientation Parameters. And the high accuracy now
reached in the VLBI (Very Long Baseline Interferometry) Earth Orientation Pa-
rameters (EOP) determination requires looking further at the various geophysical
contributions to variations in EOP. So we investigate here if this variable gravity
field can be valuable for the improving the modelisation of the Earth rotation.

2 Theory

2.1 Link between Earth Orientation and Inertia

The fundamental equations for the rotation of the Earth in an inertial frame are
Euler’s dynamical equations, based on the conservation of the angular momentum
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~H of the Earth under an external torque ~L (Lambeck 1980):

~̇H = ~L (2.1)

For a non-rigid Earth, these equations in a rotating frame become:

d

dt

[

I(t) ~ω + ~h(t)
]

+ ~ω ∧

[

I(t) ~ω + ~h(t)
]

= ~L (2.2)

where the inertia tensor I is time dependent, as well as the relative angular mo-
mentum ~h ,and ~ω is the Earth instantaneous rotation vector which direction is the
one of the rotation axis and which norm is the rotation speed. It depends on the
Earth Orientation Parameters (EOP). The Inertia Tensor, which is symetric, can
be written as:

I =





I11 I12 I13
I12 I22 I23
I13 I23 I33



 =





A+ c11 c12 c13
c12 B + c22 c23
c13 c23 C + c33



 (2.3)

with (A,B,C) the constant part and cij (i = 1, 2, 3) the variable part of the Inertia
Tensor.

2.2 Link between Inertia and Earth Gravity Field

The Earth gravity field of the Earth devived from the external gravitational po-
tential U which is expressed in a spherical harmonic expansion as (Lambeck 1980):

U(r, φ, λ) =
GM

r

[

1+

∞
∑

n=2

n
∑

m=0

(

Re

r

)n

(Cnm cos(mλ)+Snm sin(mλ)) Pnm(sin φ)

]

(2.4)
where r is the geocentric distance, φ the latitude and λ the longitude of the point
at which U is detremined. G is the gravitational constant, M and Re are the mass
and the equatorial radius of the Earth, respectively. Cnm and Snm are the Stokes
coefficients of degree n and orderm, and Pnm(sinφ) are the Legendre polynomials.
Hence the second-degree Stokes coefficients can be directely related to the Inertia
tensor components (Lambeck, 1988):

C20 = −
I33 −

1

2
(I11 + I22)

M Re
2

C21 = −
I13

M Re
2

C22 =
I22 − I11

4 M Re
2

(2.5)

S21 = −
I23

M Re
2

S22 = −
I12

2 M Re
2

3 Practical links

We just have shown that the Earth rotation (with ~ω and the EOP) could be
related to the Earth gravity field (with the degree 2 Stokes coefficients). Then, we
investigate now how we can link each EOP with these coefficients.
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3.1 Earth Rotation speed

The exces in the length of the day ∆(LOD) (with respect to a mean LOD) can
be related to (i) the third component c33 of the variable part of the Inertia tensor
and (ii) the third component h3 of the relative angular momentum of the Earth,
ignoring the external torques:

∆(LOD)

LODmean

=
c33

C
+

h3

C Ω
(3.1)

Moreover, with the help of Eq. (2.5), we can write:

c33(t) =
1

3
∆Tr(I)−

2

3
M Re

2 ∆C20(t) (3.2)

where ∆Tr(I) is the variation in time of the sum of the diagonal elements of the
Inertia tensor. We can consider that it is equal to zero (Rochester & Smylie 1974).
Then, we can obtain:

∆(LOD)

LODmean

= −0.7
2

3 Cm

M Re
2 ∆C20 +

h3

Cm Ω
(3.3)

where the coefficient 0.7 accounts for the loading effects and Cm is the third
moment of inertia of the Earth’s mantle (Barnes et al. 1983). Then we have
compared the ∆(LOD) obtained with Eq. (3.3) and the ∆C20 data in Fig. 2 with
the one usually used but corrected from zonal tides, atmopheric wind effects (h3)
and long terms (see Fig. 1).
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Fig. 1. Exces in the length of the day:

various components of this ∆(LOD) are

removed.
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Fig. 2. Exces in the length of the day

obtained with ∆C20 data and compared

with the classical one corrected from

other effects.

3.2 Precession-Nutation

The study of the Earth precession nutation angles variations influenced by the
temporal variations of the C20 coefficients of the geopotential is developped in the
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article of Bourda & Capitaine (2004). It is based on the works of Williams (1994)
and Capitaine et al. (2003) which considered secular terms for the C20 variations,
whereas we consider also annual and semi-annual ones.

3.3 Polar Motion

The polar motion p = xp−i yp, where xp and yp are the components of the rotation
axis in space can be theoretically related to the degree 2 and order 1 coefficients
of the Earth gravity field:

p+ i
ṗ

σr

=
1

Ω (C −A)
(Ω c+ h)

=
1

Ω (C −A)

(

−M Re
2 Ω (∆C21 + i ∆S21) + h

)

(3.4)

where c = c13+i c23 is related to ∆C21 and ∆S21 with Eq. (2.5), and h = h1+i h3.

4 Conclusions

The part of the length of the day obtained with the ∆C20 data corresponds to
gravitational terms. Then we have compared ∆(LOD) corrected from the move-
ments terms (as atmospheric ones), the zonal tides and the decadal terms (from
magnetic effects in the core-mantle boundary). But the residual term has an am-
plitude of the order of 50 µs, whereas the better precision on these LOD data is
of the order of 10 µs.

The effect of the variable gravity field on the polar motion can be investigated
now, using Eq. (3.4).

Finally, we find a 18.6-yr periodical effect on the precession angle development
in longitude with a sinus term of about 105 µas (Bourda & Capitaine 2004).

In the future, the static gravity field and its temporal variations coming from
the GRACE satellite will be very usefull for these kind of studies, because they
are very precise.

References

Barnes, R. T. H., Hide, R., White, A. A., & Wilson, C. A. 1983, Proc. R. Soc. Lond., A
387, 31

Bourda, G., & Capitaine, N. 2004, A&A, in press

Capitaine, N., Wallace, P. T., & Chapront, J. 2003, A& A, 412, 567

Lambeck, K. 1980, The Earth’s variable rotation (Cambridge: Cambridge Univ. Press)

Lambeck, K. 1988, Geophysical Geodesy : The Slow Deformations of the Earth (Oxford:
Oxford Science Publications)

Rochester, M. G., & Smylie, D. E. 1974, J. Geophys. Res., 79, 4948

Williams, J. G. 1994, Astron. J., 108(2), 711


	Introduction
	Theory
	Link between Earth Orientation and Inertia
	Link between Inertia and Earth Gravity Field

	Practical links
	Earth Rotation speed
	Precession-Nutation
	Polar Motion

	Conclusions

