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Fractal Threshold Behavior in Vacuum Gravitational Collapse
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We present the numerical evidence for fractal threshold behavior in the five dimensional vacuum
Einstein equations satisfying the cohomogeneity-two triaxial Bianchi type-IX ansatz. In other words,
we show that a flip of the wings of a butterfly may influence the process of the black hole formation.

Introduction.—Critical phenomena in gravitational
collapse are an interdisciplinary field that was initiated
by the remarkable work of Choptuik [1]. It concerns
the study of the basin boundary between two generic
states — space-times with and without black holes. This
bistable behavior shares many properties with the phase
transition in statistical mechanics. It is a well-known fact
that, in general, basin boundaries can be either smooth
or fractal, and there is no reason to believe that gravity
is special in this context. However, in more than one
hundred papers that were devoted to critical phenomena
in gravitational collapse so far [2, 3], the basin boundary
between dispersion and collapse to a black hole is always
smooth, and there is no indication of chaos [4]. The single
counterexample [6] is restricted to the solution with many
unstable modes and as such it does not give a chance to
observe fractal threshold behavior directly in the initial
value problem.

The theory of chaos in infinite dimensional systems is
not fully developed yet, but this field is of great interest
and growing rapidly. In this Letter we provide an exam-
ple of chaos in reduced Einstein equations that constitute
a system of partial differential equations. We clarify
the hypothesis of Bizoń et al. [7] and present fractal
threshold behavior that can be interpreted as a chaotic
scattering in a critical surface—the surface in the phase
space of initial data that separate collapse to a black hole
from dispersion. This surface is smooth, but it contains
three copies of the critical solution, and the basin sets
of these copies have fractal boundaries. In this sense,
the chaotic behavior presented here is double critical and
can be directly seen in the dynamical evolution. In our
Letter we estimate the fractal dimension of the basin
boundaries. The fractal dimension is a diffeomorphism
invariant indicator of chaos in general relativity [8].

Setting.—We consider vacuum gravitational collapse
in a very simple setting. Namely, in order to evade
Birkhoff’s theorem and save radial symmetry, we take
five dimensional vacuum Einstein equations and reduce
the number of degrees of freedom by the BCS ansatz [9],
[7]

ds2 = −Ae−2δdt2 +A−1dr2

+
1

4
r2

[

e2Bσ2
1+e2Cσ2

2+e−2(B+C)σ2
3

]

, (1)

where A, δ, B, and C are functions of time t and radius
r. One-forms σk are standard left-invariant one-forms on
SU(2),

σ1+i σ2 = eiψ(cos θ dφ+i dθ), σ3 = dψ−sin θ dφ, (2)

where 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, and 0 ≤ ψ ≤ 4π are Euler
angles. The angular part of the metric (1) corresponds
to the spatial part of the metric in Bianchi IX cosmology.
SU(2) is dipheomorphic to S3; therefore B and C func-
tions can be interpreted as squashing parameters of S3.
B = C = 0 correspond to the round S3 and B = C 6= 0
to the deformed S3 with one squashing parameter (the
so-called biaxial case). In this Letter we consider the
triaxial case where B, C are independent functions—
two dynamical degrees of freedom. The vacuum Einstein
equations derived for the metric (1) (see [7]) possess a
discrete Z3 symmetry. It corresponds to the freedom
of permutations of coefficients of one-forms σk in the
angular part of the metric (1). These permutations are
generated by the following transpositions:

T12 : (B,C) → (C,B), T23 : (B,C) → (B,−B − C),

T13 : (B,C) → (−B − C,C) , (3)

where the transposition Tij swaps the coefficients of σ2
i

and σ2
j in (1). Biaxial configurations correspond to the

fixed points of these transpositions: (B,B), (B,−B/2),
and (B,−2B). All biaxial solutions exist in three geo-
metrically equivalent copies.
Critical phenomena.—The study [9] of the critical

phenomena in the model restricted to biaxial symmetry
revealed type-II gravitational collapse with the critical
solution being discretely self-similar (DSS). It was also
shown [7] that in triaxial symmetry the phenomenology
of critical behavior remains the same. The Z3 symmetry
implies that in the triaxial case the critical solution
(hereafter denoted as DSS1—because it is discretely self-
similar and has one unstable mode) takes one of three

equivalent forms. Let us denote them as X
(1)
1 , X

(1)
2

and X
(1)
3 . Each of these copies acts as a codimension-

one attractor in the phase space of solutions. Hence,
the codimension-one critical surface Mcrit contains three
basin sets Mi (i = 1, 2, 3). It was shown by Bizoń
et al. [7] that the basin boundaries of these sets are
given by the stable manifolds of the discretely self-similar
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codimension-two attractor DSS2. Moreover, the authors
suggested that the basin boundaries could be fractal.

In this Letter we continue the work that was initi-
ated in [7] and investigate the structure of the basin

boundaries of codimension-one attractors X
(1)
i . In other

words, we study numerically the Cauchy problem for
two-parameter families of initial data. We fine-tune one
of the parameters to the critical surface Mcrit and the
remaining parameter to the basin boundary (this means
fine-tuning to the codimension-two attractor DSS2).

One of the problems in carrying on such studies
numerically comes from the fact that in order to cancel
two growing modes of DSS2 in general two-parameter
initial data, one is forced to use very high numerical
precision. It leads, on the software level, to the necessity
of multiprecision packages. These packages slow down
the numerical evolution, and the calculations become
computationally infeasible. The possible solution is to
find special two-parameter initial data that are conve-
nient in the study of the basin boundaries in Mcrit. We
propose the following procedure for finding such initial
data.

Let us consider general initial data that are fine-tuned
to DSS2. The solution generated by such initial data
approach DSS2 and, since it is always fine-tuned with
a finite precision, repels from DSS2. However, one
can freeze the evolution at the moment the solution is
“nearly” DSS2. Using this snapshot one can generate
another two-parameter family of initial data.

In particular, we consider time-symmetric initial data
that were studied in [7]:

B(0, r) = p f(r), C(0, r) = aB(0, r), (4)

where f(r) = 100 r2 exp[−20(r− 0.1)2] is the generalized
Gaussian (for details, see [7]). In order to fine-tune to
DSS2 we set parameters

a = 0.1411036683285,
p = 0.09524484187150217214296769,

(5)

and evolve the solution up to t̃ = 1.038. Next, we
introduce two new parameters κ, ι and rescale Ĉ(t̃, r) =
κC(t̃, r), B̂(t̃, r) = ιB(t̃, r). In this way we create a new,
two-parameter (κ, ι) family of initial data.

Hereafter we restrict our analysis only to this partic-
ular family. The critical surface Mcrit corresponds to
a curve ι∗(κ) in the parameter space. We present this
curve in Fig. 1.

In order to characterize evolution of initial data given
by ι∗(κ) we define below a map h : κ ∈ R → a ∈
{1,− 1

2 ,−2, 0}. Generic solutions starting from ι∗(κ)

approach one of the codimension-one attractors X
(1)
1 ,

X
(1)
2 , X

(1)
3 and recover biaxial symmetry C = aB in one

of three equivalent forms: a = 1, a = − 1
2 , a = −2,

respectively. Moreover, there are points that separate
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FIG. 1: The critical surface Mcrit presented in the phase
space of parameters κ and ι. All initial conditions defined by
ι∗(κ) lead to the solutions that approach the critical solution
DSS1 or attractors of higher codimension (DSS2 or possibly
others). ι ' ι∗ leads to supercritical solutions (with a black
hole) and ι / ι∗ gives subcritical solutions (dispersion). The
error bars are lower than 10−5.

basins of attraction Mi. For a practical convenience
we denote them as a = 0, but we stress that this is
not related to the scaling C = aB. The set of all such
points forms the basin boundary Q. It was shown in [7]
that solutions defined by Q approach the DSS2 solution
or possibly higher codimension attractors. The map
h : κ → a describes asymptotic behavior of solutions,
but in finite precision numerical calculations it describes
intermediate dynamics. Such calculations show that if
κA < κB and h(κA) 6= h(κB), and h(κA)h(κB) 6= 0, then
there exists κQ such that κA < κQ < κB and h(κQ) = 0.
Again, in practical calculations we mark by h(κ) = 0
all points with an undetermined basin set. For these
points the double precision of the parameter ι∗ is not
sufficient to cancel by a bisection the Mcrit-transversal
growing mode of DSS2. This mode dominates over the
Mcrit-tangential growing mode of DSS2 and the DSS1

behavior is not observed. In contrast to this, for h(κ) 6= 0
the Mcrit-tangential growing mode of DSS2 takes over
and “pushes” solutions along Mcrit. Such solutions
approach one of the copies of DSS1. Finally, since the
bisection has a finite precision, they are also repelled from
Mcrit along the unstable mode of DSS1. This behavior
was described in detail in [7].

To study the geometry of Mcrit, especially the ge-
ometry of basin sets Mi, we determined the map h
in the numerical experiment. We have collected two
samples corresponding to two scales in the basin bound-
ary. Sample 1 contains 15001 points and corresponds to
κ ∈ S1 = [−0.5, 1]. Sample 2 contains 3201 points and
corresponds to κ ∈ S2 = [0.07, 0.078]. All test points
were uniformly distributed in respective intervals.

It is clearly seen in Fig. 2 that the basin boundaries
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FIG. 2: Sample 1. The type of theDSS1 solution as a function
of κ (plotted as a histogram). h(κ) = 1, h(κ) = −1/2, h(κ) =

−2 correspond to X
(1)
1 , X

(1)
2 , X

(1)
3 , respectively, and h(κ) = 0

corresponds to points with an undetermined basin.

have a complex structure [10]. Magnifying a part of the
boundary reveals a new structure presented in Fig. 3.
Therefore, one should expect that an intersection of the
basin boundary Q with tested sets S1, S2 has nontrivial
fractal dimension 0 < dim(Si∩Q) < 1, where i = 1, 2. In
order to estimate the fractal dimension we follow [11, 12]
and calculate the uncertainty dimension [13] (from now
on dim denotes the uncertainty dimension).

Let S be a one-dimensional set in one-dimensional
parameter phase space (we have one free parameter κ).
The probability that any two random points κA, κB
separated by a distance ǫ belong to different basins
h(κA) 6= h(κB) scales as P (ǫ) ∼ ǫ1−dim(S∩Q). Testing
many pairs of points for several values of ǫ one can fit
P (ǫ) to the power law and estimate dim(S ∩ Q). The
wider the range of ǫ we consider (assuming ǫ is small
enough), the higher precision we obtain.

The fit to the power law for Sample 1 presented in Fig.
4 reveals that dim(S1∩Q) = 0.722± 0.006, therefore the
basin boundary is fractal. However, the quantity esti-
mated above is an “averaged” fractal dimension. In order
to see this, let us consider a set S(κ) = [κ− 0.2, κ+ 0.2]
and dim(S(κ)∩Q) for κ such that S(κ) ⊂ S1. It follows
from Fig. 5 that the uncertainty dimension dim(S(κ)∩Q)
varies with κ, so the investigated structure seems to be a
multifractal rather than a monofractal. Such hypothesis
is supported by the fractal dimension of Sample 2, namely
dim(S2∩Q) = 0.680±0.006 (see the linear fit in Fig. 6). It
follows from the definition of the uncertainty dimension

FIG. 3: Sample 2. Part of Fig. 2 magnified. The complex
structure is seen at a different scale.

-2.7

-2.6

-2.5

-2.4

-2.3

-2.2

-2.1

-2

-1.9

-1.8

-1.7

-9.5 -9 -8.5 -8 -7.5 -7 -6.5

ln
(P

)

ln(ε)

FIG. 4: Sample 1. P is a probability that any two random
points κA, κB separated by a distance ǫ belong to different
basins h(κA) 6= h(κB). The uncertainty dimension was
estimated to be dim(S1 ∩Q) = 1−w = 0.722± 0.006, where
w is a slope of the linear fit above.

that S2 ⊂ S1 ⇒ dim(S1 ∩ Q) ≥ dim(S2 ∩ Q). The
estimated values satisfy this inequality as expected. The
smaller ǫ we take, the more precise bisection we need
and more quickly the numerical double precision of ι∗

is exhausted. Therefore, Sample 2 contains ca. 18% of
points with an undetermined basin in contrast to only
ca. 7% in case of Sample 1. Clearly, the finite precision
of the bisection makes the number of points with an
undetermined basin scale dependent and may have a
greater effect on the fractal dimension of Sample 2. The
error bars shown in Figs. 4 and 6 indicate statistical
errors [11].

The multifractal objects can be more completely char-

FIG. 5: The uncertainty dimension dim(S(κ)∩Q) varies with
κ. The set S(κ) = [κ − 0.2, κ + 0.2] contains 4001 points for
each value of κ. The horizontal dotted line indicates averaged
uncertainty dimension dim(S1∩Q). The gray area represents
errors.
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FIG. 6: Sample 2. The uncertainty dimension was estimated
to be dim(S2∩Q) = 1−w = 0.680±0.006, where w is a slope
of the linear fit above.

acterized by the singularity spectrum, but such analysis
of our system would involve more precise data and an
enormous computational power. Let us mention that
the computer resources needed to collect Sample 1 and
Sample 2 involved over six dozens of processors with the
integration time measured in weeks.

The direct analogy to finite dimensional dynamical
systems suggests that the DSS2 solution plays a role
of a strange repeller [15], but we do not have sufficient
dynamical evidence to support such claim. To the best
of our knowledge, the nature of solutions that drive the
dynamics in a fractal basin boundary remains unknown
in the context of partial differential equations [16]. A
construction of the DSS2 solution in [7] is a first example
that may give some insight into this problem.
Conclusions.—In summary, we have presented the nu-

merical results that indicate the presence of fractal basin
boundaries in the critical surface in five dimensional vac-
uum gravitational collapse. Moreover, the data support
the hypothesis that basin boundaries are multifractals.

We note that all three copies of the critical solution (X
(1)
1 ,

X
(1)
2 and X

(1)
3 ) are geometrically equivalent. Therefore,

one should not expect to see chaos in the black hole mass
scaling of supercritical solutions. The solutions behave
chaotically in the nearly double-critical regime, and then
settle down to the Minkowski space-time or the black
hole. This final state is not sensitive to initial conditions,
but the way in which it is approached is, indeed, chaotic.
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[9] P. Bizoń, T. Chmaj, and B. G. Schmidt, Phys. Rev. Lett.

95, 71102 (2005), gr-qc/0506074.
[10] All three possible types of behavior are present in the

neighborhood of the boundary. It would be interesting
to verify if the basin boundary has the so-called Wada
property—any point which is on the boundary of one
basin set is also simultaneously on the boundary of all
other basin sets.

[11] C. Grebogi, S. W. McDonald, E. Ott, and J. A. Yorke,
Phys. Lett. A 99, 415 (1983).

[12] S. W. McDonald, C. Grebogi, E. Ott, and J. A. Yorke,
Physica (Amsterdam) 17D, 125 (1985).

[13] The uncertainty dimension, the box-counting dimension,
and Hausdorff dimension are equal for one and two
dimensional systems that are uniformly hyperbolic on
their basin boundary [14].

[14] H. E. Nusse and J. A. Yorke, Commun. Math. Phys. 150,
1 (1992).

[15] S. Bleher, C. Grebogi, and E. Ott, Physica (Amsterdam)
46D, 87 (1990).

[16] S. R. Taylor and S. A. Campbell, Phys. Rev. E 75, 046215
(2007).

http://arXiv.org/abs/gr-qc/0210101
http://www.livingreviews.org/lrr-2007-5
http://arXiv.org/abs/gr-qc/9910040
http://arXiv.org/abs/gr-qc/0310050
http://arXiv.org/abs/gr-qc/0608102
http://arXiv.org/abs/gr-qc/9605029
http://arXiv.org/abs/gr-qc/0506074

