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Abstract

Holst action containing Immirzi parameter for pure gravity is gen-
eralised to the supergravity theories. Supergravity equations of motion
are not modified by such generalisations, thus preserving supersymme-
try. Dependence on the Immirzi parameter does not emerge in the
classical equations of motion. This is in contrast with the recent ob-
servation of Perez and Rovelli for gravity action containing original
Holst term and a minimally coupled Dirac fermion where the classical
equations of motion do develop a dependence on Immirzi parameter.

1 Introduction

In the first order formalism, pure gravity is described through three coupling
constants; while two of them, the Newton’s gravitational and the cosmolog-
ical constants, are dimensionful; the third known as Immirzi parameter is
dimensionless. In the action these are associated with the Hilbert-Palatini,
cosmological and Holst terms respectively. Ignoring the cosmological term,
we present the Holst’s generalisation [1] of the Hilbert-Palatini action in the
natural system of fundamental units where Newton’s constant G = 1/(8π)
as1:

S =
1

2

∫

d4x e Σµνab

[

R ab
µν (ω) + iη R̃ ab

µν (ω)
]

(1)

1Our conventions are: Latin indices in the beginning of alphabet, a, b, c, ..., run over
1, 2, 3, 4 and eaµe

bµ = δab, eaµe
a
ν = gµν . The tetrad component e4µ is imaginary so are the

connection components ω4i
µ (i = 1, 2, 3) and the determinant e of tetrad eaµ, e∗ = −e

= −
1
4!
ǫµναβǫabcde

a
µe

b
νe

c
αe

d
β. The usual antisymmetric Levi-Civita density of weight one

ǫµναβ has values ± 1 or 0 and ǫµναβ takes values ± e2 or 0; and completely antisymmetric

ǫabcd = ǫabcd are ± 1 or 0.
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where Σabµν = 1
2 ea[µ eb

ν] and R ab
µν (ω) = ∂[µω

ab
ν] + ω ac

[µ ω cb
ν] . The

second term containing the parameter η is the Holst action with R̃ ab
µν =

1
2ǫ
abcdRµνcd and η

−1 is the Immirzi parameter [2]. For η = −i, the action (1)
leads to the self-dual Ashtekar canonical formalism for gravity in terms of
complex SU(2) connection [3]. For real η, this action allows a Hamiltonian
formulation [1, 4] in terms of real SU(2) connection which coincides with
that of Barbero [5] for η = 1.

In the first order formalism, equations of motion are obtained by varying
the Hilbert-Palatini-Holst action (1) with respect to the connection ω ab

µ and

tetrad eaµ fields independently. Variation with respect to ω ab
µ leads to the

standard no-torsion equation: D[µ(ω) e
a
ν] = 0, which can be solved for the

connection in terms of tetrad fields in the usual way: ω = ω(e) where the
standard spin connection is:

ω ab
µ (e) =

1

2

[

eνa∂[µe
b
ν] − eνb∂[µe

a
ν] − eρaeσb∂[ρe

c
σ]e

c
µ

]

(2)

Variation of action (1) with respect to the tetrad eaµ leads to the usual

Einstein equation: R µ
a − 1

2 eµa R = 0. Thus, adding the Holst ac-
tion to Hilbert-Palatini action as in Eqn.(1) does not change the equa-
tions of motion of the theory. Notice that for ω = ω(e), the Holst term
in the Lagrangian density is identically zero: e Σµνab R̃ ab

µν (ω(e)) =

= 1
2 ǫµναβRµναβ(ω(e)) = 0, due to the cyclicity property R[µνα]β(ω(e))

= 0.
While classical equations of motion do not depend on the Immirzi pa-

rameter, non-perturbative physical effects depending on this parameter are
expected to appear in quantum gravity.

Inclusion of spin 1/2 fermions into the Holst’s generalised Hilbert-Palatini
action (1) has been done recently by Perez and Rovelli and also by Freidel,
Minic and Takeuchi[6]. This has been achieved by minimal coupling of the
fermion through a term − (1/2) (λ̄ γµDµ(ω)λ − Dµ(ω)λ γµλ) into
the action (1) without changing the Holst term. This indeed does change
equations of motion leading to dependence on the Immirzi parameter even
at classical level. However, as shown by Mercuri [7], it is possible to modify
the Holst action in presence of Dirac fermions so that the classical equa-
tions motion stay independent of the Immirzi parameter. To do this, to the
Einstein-Cartan action2:

SGF =
1

2

∫

d4x e
[

ΣµνabR
ab

µν (ω)− λ̄γµDµ(ω)λ+Dµ(ω)λ γ
µλ

]

, (3)

2In our conventions all the Dirac gamma matrices are hermitian (γa)† = γa, γaγb +
γbγa = 2δab and γ5 = γ1γ2γ3γ4, (γ5)

2 = +1 and σab = 1
2
γ[aγb]. For Majorana fermions

ψ̄ = ψTC where C is the charge conjugation matrix with properties C†C = CC† = 1,
CT = −C, CγaC

−1 = −γT
a .
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we add a modified Holst term introducing a non-minimal coupling for the
fermion:

SHolstF =
iη

2

∫

d4x e
[

Σµνab R̃
ab

µν (ω)− λ̄γ5γ
µDµ(ω)λ−Dµ(ω)λ γ5γ

µλ
]

(4)
Variation of the total action SGF+SHolstF with respect to the connection

field ω ab
µ yields the standard torsion equation as an equation of motion:

D[µ(ω)e
a
ν] = 2 T a

µν (λ) ≡ 1

2e
eaα ǫµναβ λ̄γ5γ

βλ (5)

This can be solved as:

ωµab = ωµab(e, λ) ≡ ωµab(e) + κµab(λ) (6)

where ω(e) the spin connection of pure gravity (2) and the contorsion tensor
is given by (general relation between torsion and contorsion is 2 T λ

µν =

−κ λ
[µν] ):

κµab(λ) = − 1

4
ecµ ǫabcd λ̄γ5γ

dλ (7)

It is straight forward to check that the fermionic Holst Lagrangian den-
sity (4) above is a total derivative for connection ω(e, λ) = ω(e)+κ(λ) given
by (6) and (7). Mercuri has made an interesting observation[7] that the
modified Holst action SHolstF [ω(e, λ)] can be cast in a form involving the
Nieh-Yan invariant density and divergence of an axial current density in the
following manner:

SHolstF [ω(e, λ)] = − iη

2

∫

d4x
[

INY + ∂µJ
µ(λ)

]

(8)

where Jµ(λ) = e λ̄γ5γµλ and the Nieh-Yan invariant density in general is
[8]:

INY = ǫµναβ
[

T a
µν Tαβa − 1

2
Σabµν Rαβab(ω)

]

(9)

For the present case, notice that ǫµναβT a
µν (λ)Tαβa(λ) is identically zero

for the explicit torsion expression of Eqn.(5) and hence Nieh-Yan invariant
density is simply − (1/2) ǫµναβ Σabµν Rαβab(ω(e, λ)). In general the Nieh-
Yan topological invariant density is just the divergence of pseudo-trace axial
vector constructed from torsion:

INY = ǫµναβ ∂µTναβ (10)

This allows us to see that the modified Holst Lagrangian density is indeed a
total derivative when the connection equation of motion (6 and 7) is used:

SHolstF [ω(e, λ)] =
iη

4

∫

d4x ∂µJ
µ(λ) = − iη

6

∫

d4x ǫµναβ∂µTναβ(λ)

3



where we have used the fact that 2 ǫµναβ Tναβ(λ) = −3 Jµ(λ).
Next variations of the total action SGF + SHolstF with respect to tetrad

field eaµ and fermion λ lead to same equations of motion as those obtained
from the variations of gravity-fermion action SGF alone, making these clas-
sical equations of motion independent of Immirzi parameter.

Coupling of higher spin fermions to gravity also requires a special con-
sideration in presence of Holst term. For example, we could consider the
supergravity theories which contain spin 3/2 fermions. If we add the origi-
nal Holst term of Eqn.(1) without any modifications to the standard actions
of these theories in the manner done by Perez and Rovelli [6] for spin 1/2
fermions, the equations of motion obtained from the resulting actions will
indeed develop dependence on Immirzi parameter indicating violation of su-
persymmetry. It is worthwhile to ask if there are any possible modifications
of the Holst term which preserve the original supergravity equations of mo-
tion. In the following we shall discuss such modifications of Holst action
which when added to the standard N = 1, 2, 4 supergravity actions will
leave supergravity equations of motion unchanged and thereby preserve su-
persymmetry. In addition we shall also see that in each of these cases, for
the connection satisfying connection equation of motion the modified Holst
action can be written in an analogous form as written by Mercuri for spin
1/2 fermions (8).

2 N = 1 supergravity with Holst action

The simplest supersymmetric generalisation of Einstein gravity is N = 1
supergravity [9] which is described by a spin 3

2 Majorana spinor, the gravitino
ψµ, and the tetrad field eaµ. Generalised supergravity action containing the
modified Holst term for this theory is given by:

S1 = SSG1 + SSHolst1 (11)

where the supergravity action is:

SSG1 =
1

2

∫

d4x
[

e Σµνab R
ab

µν (ω) − ǫµναβ ψ̄µγ5γνDα(ω)ψβ

]

(12)

and supersymmetric Holst action as introduced by Tsuda [10] is:

SSHolst1 =
iη

2

∫

d4x
[

e Σµνab R̃
ab

µν (ω) − ǫµναβ ψ̄µγνDα(ω)ψβ

]

(13)

Again for η = − i, action (11) is the N = 1 supersymmetric generalisation
of the Ashtekar chiral action.
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Variation of action S1 with respect to connection ω ab
µ leads to the stan-

dard torsion equation of N = 1 supergravity:

D[µ(ω) e
a
ν] = 2 T a

µν (ψ) ≡ 1

2
ψ̄µγ

aψν (14)

which in turn is solved by

ω ab
µ = ω ab

µ (e, ψ) ≡ ω ab
µ (e) + κ ab

µ (ψ) (15)

where ω(e) is the pure gravity spin-connection given by (2) and the contor-
sion tensor is

κµαβ(ψ) =
1

4

[

ψ̄αγµψβ + ψ̄µγαψβ − ψ̄µγβψα
]

(16)

Next, supersymmetric Holst Lagrangian density(13) is a total derivative
for ω = ω(e, ψ). It can also be cast in the form as in (8) involving Nieh-Yan
topological invariant density and divergence of an axial current density as:

SSHolst1 [ω(e, ψ)] = − iη

2

∫

d4x
[

INY + ∂µJ
µ(ψ)

]

(17)

where now we have the gravitino axial vector current density Jµ(ψ) =
1
2 ǫ

µναβψ̄νγαψβ . Here also, Fierz rearrangement implies ǫµναβTµνa(ψ)T
a

αβ (ψ)
= 0 for the torsion given by (14) and hence the Nieh-Yan density is sim-
ply − (1/2) ǫµναβ Σabαβ Rµνab(ω(e, ψ)). Using the general property of the
Nieh-Yan topological invariant density given in Eqn.(10), it follows that
the modified Holst Lagrangian density for the connection ω(e, ψ) is a total
derivative:

SSHolst1[ω(e, ψ)] = − iη

4

∫

d4x ∂µJ
µ(ψ) =

iη

2

∫

d4x ǫµναβ∂µTναβ(ψ)

This is to be contrasted with the pure gravity case above where Holst La-
grangian density is exactly zero for ω = ω(e).

When substitution ω = ω(e, ψ) is made into the variation of super-Holst
action (13) with respect to gravitino ψµ and tetrad eaµ fields, we obtain
integrals over total derivatives and hence these do not contribute to the
equations of motion which come entirely from the variations of supergravity
action SSG1 (12). Thus addition of super-Holst action (13) to supergravity
action (12) does not change the standard equations of motion of N = 1
supergravity.

3 N = 2 super-Holst action

Next level supersymmetric generalisation of Einstein gravity is the N = 2
supergravity [11]. Besides the tetrad fields eaµ and their two super-partner
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gravitinos whose chiral projections are ψIµ and ψIµ, I = 1, 2 (γ5ψ
I
µ = +ψIµ

and γ5ψIµ = −ψIµ), this theory also contains an Abelian gauge field Aµ.
The action for this theory is given by [11]:

SSG2 =

∫

d4x e [
1

2
Σµνab R

ab
µν (ω) − 1

4
Fµν F

µν

− 1

2e
ǫµναβ

(

ψ̄IµγνDα(ω)ψIβ − ψ̄IµγνDα(ω)ψ
I
β

)

+
1

2
√
2
ψ̄Iµψ

J
ν ǫIJ(F

+µν + F̂+µν)

+
1

2
√
2
ψ̄IµψJνǫ

IJ(F−µν + F̂−µν)

]

(18)

where super-covariant field strength is

F̂µν = ∂[µAν] − 1√
2

(

ψ̄Iµψ
J
ν ǫIJ + ψ̄IµψJνǫ

IJ
)

and self-(antiself-)dual field strengths are F±
µν = 1

2(Fµν±
∗Fµν) and star dual

∗ is given by ∗Fµν = 1
2e ǫµναβ F

αβ .
We generalise the N = 2 supergravity action (18) by adding a modified

Holst term to obtain the new action as:

S2 = SSG2 + SSHolst2 (19)

where the super-Holst action is

SSHolst2 = iη

∫

d4x e

[

1

2
Σµνab R̃

ab
µν (ω) − 1

4e
ǫµναβψ̄Iµψ

J
ν ψ̄IαψJβ

− 1

2e
eµναβ

(

ψ̄IµγνDα(ω)ψIβ + ψ̄IµγνDα(ω)ψ
I
β

)

]

(20)

Notice that thisN = 2 super-Holst action has an additional four-gravitino
term as compared to similar N = 1 super-Holst action (13). This term plays
an important role as shall be seen in what follows. Also, in this modified
Holst action, there are only fields that couple to the connection field ω in
the original supergravity action; no terms involving the gauge field Aµ are
included. This modified Holst action as it is does have the desired property
of leaving the original supergravity equations unaltered. To see this, we vary
the generalised total action S2 (19) with respect to the connection ω ab

µ to
obtain:

−1

2

∫

d4x ǫµναβ
[

Dµ(ω)Σ
ab
αβ + eaµψ̄

I
αγ

bψIβ

]

(

1

2
ǫabcd + iηδacδbd

)

δω cd
ν = 0

6



which implies:

ǫµναβ Dµ(ω)Σ
ab
αβ = − 1

2
ǫµναβe[aµ ψ̄

I
αγ

b]ψIβ

which in turn leads to the standard torsion equation of N = 2 supergravity:

D[µ(ω)e
a
ν] = 2 T a

µν (ψ) ≡ 1

2

(

ψ̄Iµγ
aψIν + ψ̄Iµγ

aψIν
)

whose solution is given by:

ω ab
µ = ω ab

µ (e, ψ) ≡ ω ab
µ (e) + κ ab

µ (ψ) (21)

Here ω ab
µ (e) is the usual torsion-free spin-connection (2) and contorsion

tensor of N = 2 supergravity is:

κµαβ(ψ) =
1

4

[

ψ̄IαγµψIβ + ψ̄IµγαψIβ − ψ̄IµγβψIα + c.c.
]

(22)

Thus, despite the additional super-Holst term SSHolst2 in the total action S2
above, the connection equations (21, 22) obtained are the standard N = 2
supergravity equations.

Next for this connection ω(e, ψ), the super-Holst Lagrangian density (20)
is a total derivative. To see this, notice that:

− 1

2
ǫµναβ

[

ψ̄IµγνDα(ω(e, ψ))ψIβ + ψ̄IµγνDα(ω(e, ψ))ψ
I
β +

1

2
ψ̄Iµψ

J
ν ψ̄IαψJβ

]

= − 1

2

[

∂µJ
µ(ψ) + ǫµναβTµνaT

a
αβ

]

(23)

where the axial current density Jµ(ψ) = ǫµναβψ̄IνγαψIβ. To obtain this

relation we have made use of 2 T λ
µν = − κ λ

[µν] = 1
2 ψ̄

I
[µγ

λψ
ν]I and the

identity:

− 1

2
ǫµναβ Tµνa(ψ)T

a
αβ (ψ) =

1

4
ǫµναβ ψ̄Iµψ

J
ν ψ̄IαψJβ

which can be checked easily using the explicit expression for the torsion and
a simple Fierz rearrangement. Clearly the four-gravitino term in the left
hand side of Eqn.(23) which has its origin the the four-gravitino term in
the super-Holst action (20) is important to obtain the desired form of this
equation.

Here also for the connection ω(e, ψ) given by (21) and (22), the super-
Holst Lagrangian density can be written in a special form in terms of the
Nieh-Yan invariant density and divergence of an axial current density as:

SSHolst2 [ω(e, ψ)] = − iη

2

∫

d4x
[

INY + ∂µJ
µ(ψ)

]

(24)
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Again using the general property of the Nieh-Yan invariant density relating
it to a derivative of torsion (10), we find that super-Holst Lagrangian density
is a total derivative for connection ω(e, ψ):

SSHolst2 [ω(e, ψ)] = − iη
4

∫

d4x ∂µJ
µ(ψ) =

iη

2

∫

d4x ǫµναβ ∂µTναβ(ψ) (25)

where we have used the fact that 2ǫµναβTναβ(ψ) = −Jµ(ψ).
Not only the connection equation of N = 2 supergravity is unchanged by

adding the super-Holst action (20), other equations of motion are also not
modified. For example, to check this explicitly, substituting ω = ω(e, ψ) =
ω(e) + κ(ψ) into the variation of super-Holst Lagrangian density LSHolst2
(20) with respect to gravitino field ψIµ leads to:

[

δψIµ
δLSHolst2
δψIµ

]

ω=ω(e,ψ)

= − iη

2
ǫµναβ [ δψ̄IµγνDα(ω(e))ψIβ + ψ̄IµγνDα(ω(e))δψ

I
β

+ δψ̄Iµγ
bψIβ κανb + δψ̄Iµψ

J
ν ψ̄IαψJβ ]

where the last two terms can be checked to cancel against each other by
using the explicit expression for the N = 2 contorsion tensor (22) and a
Fierz rearrangement. Again we notice that the presence of the four-gravitino
term in the N = 2 super-Holst action (20) is important for this cancellation
to happen. Now the first two terms in the right hand side of above equation
combine into a total derivative:

[

δψIµ
δLSHolst2
δψIµ

]

ω=ω(e,ψ)

= − iη

2
ǫµναβ ∂µ

(

δψ̄IνγαψIβ
)

Hence this variation does not contribute to the gravitino equation of mo-
tion; only contributions to the variation of total action S2 of Eqn.(19) come
from the supergravity action SSG2 (18) yielding the standard supergravity
equations.

Similar conclusion holds for the other equation of motion obtained by
varying the tetrad field eaµ. This can be seen explicitly from

[

δeaµ
δ

δeaµ

(

e Σµνab R̃
ab
µν(ω)

)

]

ω=ω(e,ψ)

= 2 ǫµναβ
[

∇µκαβλ + κ σ
µβ κασλ

]

eλb δe
b
ν

and

−
[

δeaµ
δ

δeaµ

(

eµναβ
(

ψ̄IµγνDα(ω)ψIβ + ψ̄IµγνDα(ω)ψ
I
β

)

)

]

ω=ω(e,ψ)

= ǫµναβ
[

∇µ

(

ψ̄IαγλψIβ
)

− ψ̄Iµγ
σψIβ καλσ

]

eλb δe
b
ν

8



From the expression for contorsion tensor (22) notice that ǫµναβ
(

ψ̄IαγλψIβ

)

= − 2 ǫµναβ καβλ and eµναβψ̄Iµγ
σψIβ καλσ = 2 ǫµναβκ σ

µβ κασλ, so that
adding above two equations yields:

[

δeaµ
δLSHolst2
δeaµ

]

ω=ω(e,ψ)

= 0

Again the δeaµ variation of total action S2 obtains contributions only from
the supergravity action (18) leading to the standard supergravity equation
of motion. Also, since the super-Holst action SSHolst2 (20) does not depend
on the gauge field, the last equation of motion obtained by varying Aµ comes
from the supergravity action SSG2 (18).

4 N = 4 supergravity

Now we shall consider the generalisation of Holst action to the case of N = 4
supergravity [12]. This theory, in its SU(4) version, describes four spin 3/2
Majorana gravitinos whose chiral projections ψIµ and ψIµ (I = 1, 2, 3, 4)

with γ5ψ
I
µ = +ψIµ and γ5ψIµ = −ψIµ transform as 4 and 4̄ representations

of SU(4) and four Majorana spin 1/2 fermions whose chiral projections
ΛI and ΛI with γ5Λ

I = −ΛI and γ5ΛI = +ΛI also transform as 4 and 4̄
respectively. Bosonic fields of the theory include the tetrad fields eaµ and
six complex vector fields AµIJ (antisymmetric in IJ) and their SU(4) dual

Ā IJ
µ =

(

AµIJ

)∗

= 1
2 ǫIJKL AµKL. In addition, there are scalar fields

that parametrise the coset manifold SU(1, 1)/U(1). These are represented
as a doublet of SU(1, 1) complex scalar fields φA = (φ1, φ2) and their
SU(1, 1) dual φA = ηAB φ∗B = (φ∗1, − φ∗2) subject to the condition φA φA
≡ φ∗1 φ1 − φ∗2 φ2 = 1. The equations of motion of this theory exhibit an
SU(1, 1) invariance, though its action does not. The action is given by [12]:

SSG4 =

∫

d4x e

[

1

4
R(ω, e)− 1

2e
ǫµναβψ̄IµγνDα(ω)ψIβ −

1

2
Λ̄IγµDµ(ω)ΛI

− 1

2
cµc̄

µ − 1

8

(

φ1 − φ2

Φ

)

F+
IJµν F̄

+IJµν

+
1

2
√
2Φ

ψ̄Iµψ
J
ν

(

F+µν
IJ + F̂+µν

IJ

)

− 1

2Φ∗
Λ̄Iγµψ

J
ν

(

F−µν
IJ + F̂−µν

IJ

)

− 1√
2
Λ̄Iγµγν

(

cν +
1

2
√
2
ψ̄JνΛJ

)

ψIµ + c. c.

]

(26)

where Φ ≡ (φ1 + φ2) and Φ∗ ≡ (φ1 − φ2) and covariant derivatives D are:

Dµ(ω)ΛI = (Dµ(ω) + (3i/2)aµ)ΛI , Dµ(ω)Λ
I = (Dµ(ω)− (3i/2)aµ)Λ

I

Dα(ω)ψ
I
β = (Dα(ω) + (i/2)aα)ψ

I
β , Dα(ω)ψIβ = (Dα(ω)− (i/2)aα)ψIβ

9



and the SU(1, 1) invariant vectors aµ, cµ and c̄µ are:

aµ = iφA∂µφ
A, cµ = ǫAB φA∂µφ

B , c̄µ = ǫAB φA∂µφB

The field strengths FµνIJ = ∂[µAν]IJ and F̄ IJµν = ∂[µA
IJ
ν] are super-

covariantized as:

F̂µνIJ = FµνIJ − 1

2
√
2
Φ
(

ψ̄
[µ
[I ψ

ν]
J ] +

√
2 ǫIJKLψ̄

K[µγν]ΛL
)

− 1

2
√
2
Φ∗

(

ǫIJKLψ̄
K[µψν]L +

√
2 ψ̄

[µ
[I γ

ν]ΛJ ]

)

ˆ̄F
IJ

µν = F̄ IJµν − 1

2
√
2
Φ∗

(

ψ̄
[I
[µψ

J ]
ν] +

√
2 ǫIJKL ψ̄K[µγν]ΛL

)

− 1

2
√
2
Φ
(

ǫIJKL ψ̄K[µψν]L +
√
2 ψ̄

[I
[µγν]Λ

J ]
)

To the N = 4 supergravity action (26) we add a appropriately modified
Holst term:

S4 = SSG4 + SSHolst4 (27)

where the N = 4 super-Holst action is given by:

SSHolst4 = iη

∫

d4x e

[

1

2
Σµνab R̃

ab
µν (ω)

− 1

2e
ǫµναβ

(

ψ̄IµγνDα(ω)ψIβ + ψ̄IµγνDα(ω)ψ
I
β

)

− 1

2

(

Λ̄Iγ
µDµ(ω)Λ

I − Λ̄IγµDµ(ω)ΛI
)

− 1

4e
ǫµναβ ψ̄Iµψ

J
ν ψ̄IαψJβ

− 1

4e
ǫµναβ Λ̄Iγµψ

J
ν Λ̄IγαψJβ

]

(28)

Here only those fields which are coupled to connection ω in the supergravity
action are involved and not others like the gauge fields AµIJ , Ā IJ

µ and

scalar fields φA which do not have any coupling to ω. Also in addition
to the four-gravitino term, which is also present in the super-Holst action
for N = 2 supergravity, we have an additional four-fermion term involving
two gravitinos and two Λ’s. Both these terms are important to achieve the
desired result that equations of motion of N = 4 supergravity theory are
not modified in presence of this super-Holst term.

Variation of total action S4 (27) with respect to the connection ω ab
µ leads

to:
∫

d4x

[

ǫµναβ
(

Dβ(ω)Σ
cd
µν −

1

2
ψ̄Iµe

[c
ν γ

d]ψIβ

)

− e Λ̄Ie
α[cγd]ΛI

]

(

1

2
ǫabcd + iηδacδbd

)

δω ab
α = 0

10



This implies the standard torsion equation of N = 4 supergravity:

D[µ(ω)e
a
ν] = 2T a

µν = 2[T a
µν (ψ)+T a

µν (Λ)] ≡ 1

2
ψ̄I[µγ

aψν]I+
1

2e
eaαǫµναβΛ̄Iγ

βΛI

(29)
which is solved by

ωµab = ωµab(e, ψ,Λ) ≡ ωµab(e) + κµab (30)

where ωµab(e) is the standard pure gravitational spin-connection given by (2)
and N = 4 contorsion tensor κ has contributions from both the gravitinos
ψ and fermions Λ:

κµαβ = κµαβ(ψ) + κµαβ(Λ)

κµαβ(ψ) =
1

4

[

ψ̄IαγµψIβ + ψ̄IµγαψIβ − ψ̄IµγβψIα + c.c.
]

κµαβ(Λ) = − 1

4e
ǫµαβσ Λ̄Iγ

σΛI (31)

Like in the earlier cases of N = 1 and N = 2 supergravity, for the
connection ω = ω(e, ψ,Λ) = ω(e) + κ(ψ,Λ) super-Holst Lagrangian density
LSHolst4 (28) is a total derivative. To demonstrate that this is so, notice
that:

−1

2

[

ǫµναβ
(

ψ̄IµγνDα(ω)ψIβ + ψ̄IµγνDα(ω)ψ
I
β

)

+ e
(

Λ̄Iγ
µDµ(ω)Λ

I − Λ̄IγµDµ(ω)ΛI
)

]

ω=ω(e,ψ,Λ)

− 1

4
ǫµναβ

[

ψ̄Iµψ
J
ν ψ̄IαψJβ + Λ̄Iγµψ

J
ν Λ̄IγαψJβ

]

= − 1

2

[

∂µ (J
µ(ψ) + Jµ(Λ)) + ǫµναβTµνaT

a
αβ

]

(32)

where Jµ(ψ) = ǫµναβ ψ̄IνγαψIβ and Jµ(Λ) = eΛ̄Iγ
µΛI . Here we have used

2T λ
µν (ψ) = −κ λ

[µν] (ψ), Tµνα(Λ) = −κµνα(Λ) and identities eΛ̄Iγ
αΛI κ µ

µ α(ψ)

= 2 ǫµναβT a
µν (ψ)Tαβa(Λ), ǫµναβ Tµνa(Λ)T

a
αβ (Λ) = 0 and the following

relation obtained by Fierz rearrangements:

−1

2
ǫµναβ TµνaT

a
αβ = −1

2
ǫµναβ

[

Tµνa(ψ)T
a

αβ (ψ) + 2 Tµνa(ψ)T
a

αβ (Λ)
]

=
1

4
ǫµναβ

[

ψ̄Iµψ
J
ν ψ̄IαψJβ + Λ̄Iγµψ

J
ν Λ̄IγαψJβ

]

(33)

Notice that the two four-fermion terms of the super-Holst action (28) have
played an important role in allowing us to write the equation (32). Now
substituting this equation into the super-Holst action (28), we find that
super-Holst action for ω = ω(e, ψ,Λ) takes the same special form as in the
earlier cases:

SSHolst4 [ω(e, ψ,Λ)] = − iη

2

∫

d4x
[

INY + ∂µJ
µ(ψ,Λ)

]

(34)

11



where Jµ(ψ,Λ) ≡ Jµ(ψ) + Jµ(Λ). It is important to note that this axial
vector density Jµ(ψ,Λ) is not the conserved axial current of the N = 4
theory; in fact the conserved current density associated with the axial U(1)
invariance of the theory is Jµ = Jµ(ψ) + 3 Jµ(Λ).

Now for the Nieh-Yan invariant density we use

INY = ǫµναβ∂µTναβ = ǫµναβ∂µ[Tναβ(ψ) + Tναβ(Λ)]

= −1

2
∂µ[J

µ(ψ) + 3Jµ(Λ)]

where we have used the facts: 2ǫµναβTναβ(ψ) = −Jµ(ψ), 2ǫµναβTναβ(Λ) =
−3Jµ(Λ). This thus leads us to:

SSHolst4 [ω(e, ψ,Λ)] = − iη

4

∫

d4x ∂µ [J
µ(ψ) − Jµ(Λ)]

=
iη

2

∫

d4x ǫµναβ ∂µ

[

Tναβ(ψ)−
1

3
Tναβ(Λ)

]

(35)

Next to check explicitly that the other equations of motion are not
changed in this case too, consider for example, the ΛI -variation of the super-
Holst Lagrangian density LSHolst4 from Eqn.(28):

δΛI
δLSHolst4
δΛI

= − iη

2
e
[(

δΛ̄Iγ
µDµ(ω)Λ

I − Λ̄IγµDµ(ω)δΛI

)

− 1

2

(

ψ̄Iµγ
µψIν + ψ̄Iµγ

µψIν
)

δΛ̄Jγ
νΛJ

]

where, in writing the second term on the right hand side, we have used the
Fierz rearrangement

e
(

ψ̄Iµγ
µψIν + ψ̄Iµγ

µψIν
)

Λ̄Jγ
νΛJ = − ǫµναβ Λ̄Iγµψ

J
ν Λ̄IγαψJβ

Now substituting ω = ω(e, ψ,Λ) from (30) we obtain:
[

δΛI
δLSHolst4
δΛI

]

ω=ω(e,ψ,Λ)

= − iη
2
e
[

δΛ̄Iγ
µDµ(ω(e))Λ

I − Λ̄IγµDµ(ω(e))δΛI

+ δΛ̄Iγ
νΛI

(

κ µ
µ ν −

1

2

(

ψ̄Iµγ
µψIν + ψ̄Iµγ

µψIν
)

)]

Using (31) for N = 4 contorsion tensor, last two terms cancel leaving the
first two terms which combine into a total derivative:

[

δΛI
δLSHolst4
δΛI

]

ω=ω(e,ψ,Λ)

= − iη

2
∂µ

(

eδΛ̄Iγ
µΛI

)

Similarly, variation of super-Holst Lagrangian density (28) with respect
to the gravitino ψIµ and tetrad eaµ fields are:

[

δψIµ
δLSHolst4
δψIµ

]

ω=ω(e,ψ,Λ)

= − iη

2
ǫµναβ ∂µ

(

δψ̄IνγαψIβ
)
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[

δeaµ
δLSHolst4
δeaµ

]

ω=ω(e,ψ,Λ)

= 0

Thus clearly all the equations of motion obtained by varying the modi-
fied supergravity action S4 (27) are the same as those obtained by varying
the supergravity action SSG4 (26) alone; addition of the super-Holst action
SSHolst4 (28) does not change these classical equations of motion. These are
indeed independent of the Immirzi parameter.

5 Concluding remarks

We have extended the Holst action for pure gravity with Immirzi parameter
as its associated coupling constant to the case of supergravity theories. This
has been done in a manner that the equations of motion of supergravity
theories are not changed by such modifications of the original Holst action.
This ensures that supersymmetry is preserved and Immirzi parameter does
not play any role in the classical equations of motion. This is unlike the
case studied by Perez and Rovelli and also by Freidel, Minic and Takeuchi
[6] where a spin 1/2 fermion is minimally coupled to gravity in presence
of original Holst action without any modification. In such a situation, the
equations of motion do develop dependence on Immirzi parameter.

For each of N = 1, 2, 4 supergravity theories we find that the modi-
fied Holst Lagrangian density becomes a total derivative when we use the
connection equation of motion ω = ω(e, ...) = ω(e) + κ(...) where ellipsis
indicates the various fermions which introduce torsion in the theory. This
total derivative takes a special form analogous to the one described by Mer-
curi for the case of spin 1/2 fermions (8). It is given in terms of Nieh-Yan
invariant density and divergence of an axial fermion current density:

SHolst[ω = ω(e, ...)] = − iη

2

∫

d4x
[

INY + ∂µJ
µ(...)

]

(36)

The Nieh-Yan topological density is the divergence of pseudo-trace axial
vector associated with torsion: INY = ∂µ [ǫµναβ Tναβ ].

It is important to emphasise that the modified Holst action on its own
does not have this special form (36) and reduces to this form only for the
connection that satisfies the connection equation of motion.

For arbitrary real values of Immirzi parameter η−1, the Holst action al-
lows a canonical formulation of pure gravity [1, 4] in terms of a real Ashtekar-
Barbero SU(2) connection. For modified Holst action for the gravity cou-
pled to a spin 1/2 fermion, this has also been done [7]. Extension of such a
canonical formulation to N = 1 supergravity has been presented by Tsuda
in [10]. In the same spirit, for the modified Holst actions (20) and (28) for
N = 2 and N = 4 supergravity theories, a similar generalised Hamiltonian

13



formulation can be developed. Care needs to taken in this analysis to fix
the gauge after the proper constraint analysis is performed [13].
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