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Quintessence field is a widely-studied candidate of dark energy. There is “tracker solution” in

quintessence models, in which evolution of the field φ at present times is not sensitive to its initial

conditions. When the energy density of dark energy is neglectable (Ωφ ≪ 1), evolution of the tracker

solution can be well analysed from “tracker equation”. In this paper, we try to study evolution of

the quintessence field from “full tracker equation”, which is valid for all spans of Ωφ. We get stable

fixed points of wφ and Ωφ (noted as ŵφ and Ω̂φ) from the “full tracker equation”, i.e., wφ and Ωφ

will always approach ŵφ and Ω̂φ respectively. Since ŵφ and Ω̂φ are analytic functions of φ, analytic

relation of ŵφ ∼ Ω̂φ can be obtained, which is a good approximation for the wφ ∼ Ωφ relation and

can be obtained for the most type of quintessence potentials. By using this approximation, we find

that inequalities ŵφ < wφ and Ω̂φ < Ωφ are statisfied if the wφ (or ŵφ) is decreasing with time. In

this way, the potential U(φ) can be constrained directly from observations, by no need of solving

the equations of motion numerically.
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I. INTRODUCTION

Present astronomical observations require the exis-

tence of dark energy, a significant component of the uni-

verse with a negative pressure [5–9]. Though it has been

more than ten years since its discovery, one is yet to tell

what the dark energy is. We are still analyzing proper-

ties of dark energy from observational data and seeking

suitable candidates. Most properties of dark energy de-

pend on two parameters: the equation of state wde and

the fractional energy density Ωde. Once the wde ∼ Ωde

∗Electronic address: luo@zimp.zju.edu.cn
†Electronic address: sqp@itp.ac.cn

relation is obtained, we know almost all we need. At

present, it is still not possible to constrain the evolution

of dark energy from observations [10–12]. There are only

definite constraints of present values of wde and Ωde from

observations: w
(0)
de is rather close to −1 and Ω

(0)
de is dom-

inating (about 70%) [13–15]. More constraints on wde

and Ωde will be forthcoming from future observations,

to get the evolution of the wde ∼ Ωde relation from the

observations, more theoretical efforts should be made.

At present, the most economical candidate of dark en-

ergy is still the cosmological constant Λ, whose equa-

tion of state wΛ = −1. There is only a free parame-

ter ΩΛ in the flat ΛCDM model. But it suffers from
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several problems, such as the coincidence problem and

the fine tuning problem. Another well studied candi-

date is the quintessence φ, a slowly rolling scalar field,

analogous to the inflaton. Its equation of state is wφ =

(φ̇2/2 − U)/(φ̇2/2 + U) so one has −1 ≤ wφ ≤ 1. In

quintessence models, the coincidence problem and the

fine tuning problem can be alleviated [14]. For example,

there are tracker solutions for certain type of quintessence

models, in which the evolution of φ today is not sensitive

to its initial conditions at early times [1]. The coinci-

dence problem thus becomes less severe. But it is diffi-

cult to find quintessence models with analytic solutions of

equation-of-motion, due to the existence of background

matters (dark matter, baryon and radiations). To study

evolutions of quintessence models and to be compared

with observations, one usually has to solve the equations

numerically. There are efforts to find analytic approx-

imations for solutions of equations of motions, such as

[16] which gives a first order approximation solution for

inverse power law potentials.

In this paper, we will try to approximate the wφ ∼ Ωφ

relation at the recent Ωφ dominating period in a semi-

analytic way. To make sure that the evolution of φ

at present only depends on U(φ), we assume there was

tracking solution at early times. In [1], conditions for the

existence of tracker solution was given by the “tracker

equation”, which is a differential equation for wφ. But

this “tracker equation” are only valid as Ωφ ≪ 1. For

our purpose, we need a full tracker equation that is valid

for all Ωφ without conditions attached. Such an equation

has been obtained [2–4] and will be used here to study

evolutions of quintessence models.

The paper is organized as follows. In section II,

we introduce two new functions ŵφ and Ω̂φ which are

fixed points of the full tracker equation. Assuming that

Γ ≡ U ′′U/U ′2 and ǫ ≡ (U ′/U)2/2 are nearly constant,

we find that the fixed points are stable for wφ and Ωφ

if Γ ≥ 1. If Γ and ǫ do not evolve extremely fast,

the relation of wφ ∼ Ωφ will always approach to that

of ŵφ ∼ Ω̂φ. In section III we show comparisons be-

tween {ŵφ(φ), Ω̂φ(φ)} and {wφ(φ), Ωφ(φ)} numerically

for several typical quintessence models. The relation of

ŵφ ∼ Ω̂φ is shown to be a good approximation for the

wφ ∼ Ωφ relation. In section IV we show how to con-

strain U(φ) directly from observational conditions on wφ

and Ωφ through ŵφ and Ω̂φ. Observational conditions are

converted to simple inequalities for U(φ). We conclude

in section V with discussions.

II. GET THE APPROXIMATION OF wφ ∼ Ωφ

RELATIONS

The equations of motion for quintessence field are

φ̈+ 3Hφ̇+ U ′ = 0

H2 ≡ ( ȧa )
2 = 1

3 (ρm + ρr +
1
2 φ̇

2 + U) (1)

from which one gets the equations for wφ and Ωφ:

ǫ =
3(1 + ωφ)

2Ωφ
(1 +

ẋ

6
)2 (2)

Γ− 1 =
ωb − ωφ

2(1 + ωφ)
− 2

(1 + ωφ)

ẍ

(6 + ẋ)2
− 1 + ωb − 2ωφ

2(1 + ωφ)

ẋ

6 + ẋ

− 3(ωb − ωφ)

(1 + ωφ)(6 + ẋ)
Ωφ (3)
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where

x ≡ 1 + ωφ

1− ωφ
=

1

2

φ̇2

U
, ẋ ≡ d lnx

d ln a
, ẍ ≡ d2 lnx

d ln a2

and a is the expansion factor. We have assumed a flat

universe (Ωb + Ωφ = 1) and set Mpl ≡ 1/
√
8πG = 1.

The subscript b represents the dominating background

matter. As Ωφ ≪ 1 at early times, Eq.(3) reduces to the

“tracker equation” in [1]. At the recent acceleration era,

Ωφ is dominating and can not be neglected. One must

use the full tracker equation Eq.(3). Note also wb = 0

in this case. In this paper, we assume that there was a

long enough tracking period at early times, so that the

evolution of the field at present depends only on U(φ).

Eliminating Ωφ in Eq.(3) by using Eq.(2), one gets:

Γ− 1 = − ωφ

2(1 + ωφ)
− 2

(1 + ωφ)

ẍ

(6 + ẋ)2

− 1− 2ωφ

2(1 + ωφ)

ẋ

6 + ẋ
+

ωφ

8ǫ
(6 + ẋ) (4)

For constant ǫ and Γ, the fixed point (also called critical

point) of Eq.(4) (obtained by setting ẋ = 0 and ẍ = 0):

ω̂φ =
1

6

(
−3− 2ǫ+ 4ǫΓ−

√
(3− 2ǫ+ 4ǫΓ)2 − 24ǫ

)

(5)

is stable only if

Γ ≥ 5 + 3Ω̂φ

6 + 2Ω̂φ

(6)

where the Ω̂φ value of the fix point is obtained from

Eq.(5) and (2) (also setting ẋ = 0):

Ω̂φ =
1

4ǫ

(
3− 2ǫ+ 4ǫΓ−

√
(3 − 2ǫ+ 4ǫΓ)2 − 24ǫ

)
(7)

When Eq.(6) is satisfied, Ω̂φ is also stable. In this

case, ωφ and Ωφ will always approach ω̂φ and Ω̂φ re-

spectively. In this paper, we will only study the case of

Γ ≥ 1 (i.e., wφ ≤ wb), so Eq.(6) is guaranteed for all

spans of Ω̂φ.

Γ and ǫ generally are not constants, as they are func-

tions of U(φ). The above results are still valid if the

evolution of ŵφ is not extremely fast, which can be sat-

isfied in the most quintessence models. In this case, wφ

and Ωφ will keep on chasing the dynamic ŵφ and Ω̂φ.

Giving the form of U(φ) of a quintessence model, one

gets parametric functions ŵφ(φ) and Ω̂φ(φ) from Eq.(5)

and (7), and thus the analytic relation of ŵφ ∼ Ω̂φ. For

certain models, there are simple and explicit relations of

ŵφ ∼ Ω̂φ. For example, for power law potentials U =

U0/φ
n (n > 0) one has:

ŵφ = − 1

1 + n(1− Ω̂φ)/2
(8)

The ŵφ ∼ Ω̂φ relation is a good approximation for that

of wφ ∼ Ωφ, as the evolution of wφ ∼ Ωφ will approach

that of ŵφ ∼ Ω̂φ. We will show this in the next section.

In this way, evolutions of quintessence models can be

studied directly from U(φ).

III. COMPARED WITH NUMERICAL RESULTS

In this section we will show that ŵφ and Ω̂φ are good

approximations for wφ and Ωφ, and so is the ŵφ ∼ Ω̂φ

relation for that of wφ ∼ Ωφ. We have checked it for a

variety type of quintessence potentials, and typical exam-

ples are shown in Fig. 1 and Fig. 2. The accuracy of this

approximation is precise enough to study the evolution

properties of quintessence models, especially the models

that are favored by present observations. As wφ must
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decrease from its tracking value (close to wb) to present

value (close to −1), we will only study models in which

wφ decreases monotonously (ẋ < 0).

At first we estimate differences between ŵφ and wφ and

between Ω̂φ and Ωφ. The Eq.(2) can be rewritten as:

1 + ŵφ

Ω̂φ

=
1 + ωφ

Ωφ
(1 +

ẋ

6
)2

⇒ (
1 + ŵφ

1 + wφ
) · ( Ω̂φ

Ωφ
)−1 = (1 +

ẋ

6
)2 (9)

For a variety of quintessence models, we have seen nu-

merically that (1 + ŵφ)/(1 + wφ) and Ω̂φ/Ωφ have the

similar evolving forms as that of (1 + ẋ/6)2 and 1 >

Ω̂φ/Ωφ & (1 + ẋ/6)2 > (1 + ŵφ)/(1 + wφ). Typical ex-

amples are shown in Fig. 1. If the evolution of ŵφ (and

wφ) is slower, the value of ẋ will be closer to 0, and the

differences between wφ, Ωφ and their fixed points will be

smaller.

There is a lower bound ẋ > 6wφ/(1 − 2wφ) given in

[2, 3]. As Ω̂φ/Ωφ is much closer to 1 compared with (1+

ŵφ)/(1 + wφ), one gets a upper bound for the deviation

∆ of ŵφ from wφ by setting Ω̂φ/Ωφ ≃ 1 in Eq.(9):

∆ ≡ ŵφ − wφ

wφ
. ∆m =

(2− 3wφ)(1 + wφ)

(1 − 2wφ)2
(10)

which is rather small when wφ is close to −1, as shown

in Fig. 1. Present observations indicate that wφ is rather

close to −1 at low redshift. For most models ∆ is much

smaller than this bound as wφ is not so close to −1, as

shown in Fig. 1. The deviation of Ω̂φ from Ωφ is also

small.

The ŵφ ∼ Ω̂φ relation thus is a good approximation for

the wφ ∼ Ωφ relation. Several examples are shown in Fig.

2. At the early tracking era, Ω̂φ << 1 and the relation of

wφ ∼ Ωφ is almost the same as that of ŵφ ∼ Ω̂φ. When

Ω̂φ becomes unnegligible, the curve of ŵφ ∼ Ω̂φ will begin

to get away from that of wφ ∼ Ωφ in the w − Ω space.

The curve of wφ ∼ Ωφ will chase after that of ŵφ ∼ Ω̂φ.

Normally ŵφ will tend to −1 and Ω̂φ will tend to 1 at

last, and the two curves will be close to each other once

again.

Empirically, we have also found a better approximation

for the relation of wφ ∼ Ωφ on the basis of ŵφ and Ω̂φ:

w̃φ = ŵφ +
(2 + ŵφ)Ω̂φ − 2ŵφ − 1

5− 3Ω̂φ

(1 + ŵφ), Ω̃φ = Ω̂φ

(11)

The curve of w̃φ ∼ Ω̃φ is much closer to that of wφ ∼ Ωφ,

as shown in Fig. 2.

IV. CONSTRAIN QUINTESSENCE

POTENTIALS

In the above, we have obtained approximations ŵφ

and Ω̂φ for wφ and Ωφ which are analytic functions of

U(φ). We will show how to constrain U(φ) directly from

observational results on wde and Ωde through ŵφ and

Ω̂φ. Present data seems to indicate that w
(0)
de < −0.8

and 0.7 . Ω
(0)
de < 0.8 [13, 15]. As more conditions on

dark energy to be obtained in future observations, more

quintessence models can be checked with directly by us-

ing our method.

At the early tracking era wφ was close to wr = 1/3

[17, 18], and present w
(0)
de is very close to −1. Taking this

for guidance, here we consider only quintessence models

in which wφ (and ŵφ) keeps on decreasing monotonously
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(ẋ < 0). This is guaranteed if U(φ) satisfies the equation:

d ln (Γ− 1)

d lnU
<

3

2ǫ
(1− 1

2Γ− 1
) (12)

In this case, one finds the following inequalities

ŵφ < wφ, Ω̂φ < Ωφ (13)

if the evolution of wφ is not extremely fast. Intuitively,

the curve of ŵφ ∼ Ω̂φ is always on the up side of that of

wφ ∼ Ωφ in the w − Ω space, as shown in Fig. 2.

With the help of inequalities (13), U(φ) can be con-

strained directly from conditions on (wde,Ωde). Take

(w
(0)
de < −0.8,Ω

(0)
de < 0.8) (14)

for illustration [19]. Since ŵφ decreases monotonously as

Ω̂φ increases, we thus have ŵφ(Ω̂φ = 0.8) < −0.8. This

inequality can be converted to:

Γ(ǫ = 3/8) > 7/5 (15)

which is a necessary condition for inequalities (14).

If wφ is too close to −1, it will be difficult to distinguish

quintessence models from the cosmological constant [19].

Take wφ > −0.95 for illustration. It is then easy to see

that ŵφ(Ω̂φ = 0.7) > −0.95 is a sufficient condition for

(w
(0)
φ > −0.95, Ω

(0)
de > 0.7). Equivalently,

Γ(ǫ = 3/28) < 77/20 (16)

Listed in Table I are the constraints on parameters of

typical potentials by Eq.(15) and (16).

We note that for certain potentials Ω̂φ will tend to a

maximum Ω̂max smaller than 1 at last, such as U(φ) =

U0e
φ2/2/φn (n > 0, φ > 0) [20]. These potentials always

have a positive minimum Umin at a finite φ. According

to Eq.(7), as the potential rolls to Umin, η = ǫΓ will tend

to a nonzero minimum ηmin with Γ → ∞ and ǫ → 0. In

this case, Eq.(15) and (16) are still valid though Ω̂φmax

may be smaller than 0.7.

V. DISCUSSIONS

We have gotten stable fixed points ŵφ and Ω̂φ from

the full tracker equation, and shown that they are good

approximations for wφ and Ωφ even in the Ωφ dominat-

ing period. ŵφ and Ω̂φ are analytic functions of U(φ).

The relation of ŵφ ∼ Ω̂φ thus is gotten from the para-

metric functions ŵφ(φ) and Ω̂φ(φ), which is also a good

approximation to the relation of wφ ∼ Ωφ.

Formally, functions of ŵφ and Ω̂φ with respect to ex-

pansion factor a can also be obtained. Substituting

Eq.(5),(7) into the equation

dΩφ

d ln a
= −3wφΩφ(1 − Ωφ) (17)

one gets the function of the field φ with respect to a upon

integration. For example, for U = U0/φ
2 (φ > 0) one

has:

φ(a) =

√
14

3
√
5
(120a3 + 49a6)1/4 (18)

where we have set present Ω̂
(0)
φ = 0.7 and a0 = 1. Sub-

stituting φ(a) into Eq.(5) and Eq.(7) one gets:

Ω̂φ =
7

60
(
√
120a3 + 49a6 − 7a3)

ŵφ = −1

2
− 7

2
√
120a−3 + 49

(19)

For most potentials, it is not easy to get explicit functions

of φ(a), ŵφ(a) and Ω̂φ(a).



6

TABLE I: Constraints of typical potentials of quintessence

U(φ) (n > 0, φ > 0) ǫ ≡ 1
2
(U

′

U
)2 Γ ≡ U′′U

U′2 Γ(ǫ = 3
8
) > 7

5
Γ(ǫ = 3

28
) < 77

20
U0

φn

n2

2φ2 1 + 1
n

n < 5
2

n > 20
57

U0e
n/φ n2

2φ4 1 + 2φ
n

n < 50√
3

n > 1
U0

φn
eφ

2/2 (n−φ2)2

2φ2 1 + (n+φ2)

(n−φ2)2
n > 0 ∅

The critical points ŵφ and Ω̂φ can also be used to con-

strain the potential of quintessence directly from obser-

vational conditions on (wde,Ωde). We have adopted two

conditions on present (w
(0)
de ,Ω

(0)
de ) for illustration. Fur-

ther astronomical observations will yield more properties

of dark energy. It may give conditions on (wde,Ωde) at

other redshifts, or even the exact shape of the wde ∼ Ωde

relation. In that case, our method can be still usable

to constrain the potential and study the properties of

the quintessence models that are fit with observations

directly.

In this paper, we have only studied the case that

wφ (and ŵφ) keeps on decreasing monotonously, from

which the inequality (13) is obtained. In fact, there are

quintessence models in which wφ is increasing at present.

One example is the case with U(φ) = U0(e
−φ/2 + e−20φ)

[21]. In this type of models, wφ will decrease to a min-

imum close to −1 and then begin to increase. So the

boundary for thawing and freezing fields in [19] will be

crossed, as shown in Fig. 3. It can be shown that when

d ln (Γ− 1)

d lnU
>

3

2ǫ

ŵφ will be increasing, so will be wφ. It requires a rapid

decrease of Γ. As Γ at early times must be close to 1

to get enough tracking, usually there is a rapid increase

of Γ at recent times. In this case the lower bound w′ >

−(1 − w)(1 + w) for quintessence models [2, 3] may be

crossed too. It is because w = (wb − 2Γ + 2)/(2Γ − 1)

will no longer be larger than wφ if the increase of Γ is

too fast. It can be seen in Fig. 3 that the line of w′ ∼ w

with the double exponential potential is very close to the

strict lower bound w′ > 3w(1+w) given in [19]. For this

type of potential, as wφ and ŵφ are increasing, there is

an inequality similar to (13):

ŵφ > wφ, Ω̂φ > Ωφ (20)

This inequality can be used to constrain U(φ) from con-

ditions on (wde,Ωde). The methods used in this paper

can also be extended to Phantom and K-essence models.
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FIG. 1: Evolution of (1 + ẋ/6)2 (solid lines), (1 + ŵφ)/(1 + wφ) (dashed lines) and Ω̂φ/Ωφ (dotted lines) with respect to Ωφ.

The potentials: I. U = U0e
1/φ; II. U = U0/φ

2; III. U = U0/φ
0.5. The last figure shows the deviation ∆ of ŵφ from wφ for these

models.
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FIG. 2: The wφ ∼ Ωφ relation (solid lines), the ŵφ ∼ Ω̂φ relation (dashed lines) and the w̃φ ∼ Ω̃φ relation (dotted lines) in the

w − Ω space. The potentials: I. U = U0e
1/φ; II. U = U0/φ

2; III. U = U0/φ
0.5. The last figure shows the differences between

the relation of wφ ∼ Ωφ and that of ŵφ ∼ Ω̂φ for these models ( δ = −[w(Ω)− ŵ(Ω̂ = Ω)]/w(Ω) ).
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FIG. 3: The curve of the quintessence model with U(φ) =

U0(e
−φ/2 + e−20φ) in the w′ − w phase space. This curve

crosses the the boundary for thawing and freezing fields [19]
and the lower bound w′ = −(1− w)(1 + w) in [2, 3].
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