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Abstract

In relativistic quantum mechanics wave functions of particles satisfy

field equations that have initial data on a space–like hypersurface. We

propose a dual field theory of “wavicles” that have their initial data on

a time–like worldline. Propagation of such fields is superluminal, even

though the Hilbert space of the solutions carries a unitary representation

of the Poincaré group of mass zero. We call the objects described by

these field equations “Kairons”. The paper builds the field equations

in a general relativistic framework, allowing for a torsion. Kairon fields

are section of a vector bundle over space-time. The bundle has infinite–

dimensional fibres.

1 Introduction

Einstein’s Special Theory of Relativity united space and time into one space–
time continuum. Julian Barbour in his book ”The End of Time” [1] proposed to
go even further by building a whole philosophy around the idea of timelessness.
Yet the fact is that what we human beings perceive, what counts, is not time-
lessness and not even the continuous, linear clock time. What counts for human
beings are ”events”, irreversible discontinuities in time. This was the view of
Ilya Prigogine [2] who has stressed the need for second time, ”time of becoming”
in contrast to the ordinary time, time of ”being”. But how to implement this
idea in physics?

Prigogine suggested that irreversibility is somehow implanted into the fun-
damental laws of microphysics. Yet it seems that we are still lacking the relevant
mathematical structures, structures that go beyond ”master equations”, struc-
tures that apply to the very ways of how we talk about the physical reality.

∗E-mail address: arkadiusz.jadczyk@cict.fr
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The present paper is an attempt at constructing, theoretically, such a new
structure. This effort resulted from observing a natural duality between space
and time, and by exploiting this duality. Because time is one–dimensional, while
space is three–dimensional, this duality is not of a kind that can be immediately
seen at the classical level. Here time serves as a parameter for the dynamics,
space is an arena where the dynamics is taking place. And yet this duality
becomes apparent when we go to the quantum description level.1

Mathematical investigations of the structure of quantum theories have led,
starting from Birkhoff and von Neumann, to the concept of “quantum logic”,
a noncommutative generalization of the classical logic of Aristotle and Boole.
There are different ways of constructing examples of non-Boolean logics, one of
them being via the concept of “orthogonality”.

Normally, when discussing orthogonality, we have in mind orthogonality of
vectors and vector subspaces in a Hilbert space. But it does not have to be
so. We can, for instance, consider events in Minkowski space M and call two
events, x and y “orthogonal”, x⊥y, if they are can not be connected by a time–
like interval. This leads to a non–Boolean logic (M,⊥) that has the essential
properties of a quantum logic - it is a complete orthomodular lattice.

Since the orthogonality relation is invariant under the Poincarè group, we
get a covariant logic and we can look for covariant representations of this logic,
where the Poincaré group operations will be represented by unitary operators.
The simplest covariant representation of this “causal logic of the Minkowski
space” can be constructed from the solutions of a massless free Dirac equation.
But we can also consider a dual orthogonality relation x⊤y that holds if an only
if x 6= y and x is time–like or light–like with respect to y. This relation also
leads to a non-Boolean logic but (M,⊤), satisfies a somewhat weaker axioms
than (M,⊥). It is an ortho–modular partially ordered set, but not a lattice [4].

The term “Kairons” has been chosen for naming the wavicles giving rise to
this reversed space–time logic in reference to one of the two important Greek
gods of time. The standard, linear and continuous time is associated with the
name of the “dancer” time – Chronos, while the god of the discontinuous time,
the “jumper”, is called Kairos 2 The natural question that appears is: what
kind of a field equations lead to covariant representations of (M,⊤)?

In order to answer this question it is necessary to realize that the key ele-
ment is the “probability current”. In the case of the Dirac equation (massive or
massless) the probability current is given by the sesquilinear form jµ = Ψ̄γµΨ
that is “conserved”: ∂µj

µ = 0. Such a representation of the probability cur-
rent, that is standard in physics books, is somewhat misleading. In fact, the
probabilistic representation works also for a massless Dirac equation that is con-
formally invariant. In such a case what we get naturally from the geometry is
not a vector–valued current, but a 3–form j that is closed dj = 0. That means
that (for solutions that have compact support on space-like hypersurfaces) the
integral of j over a space–like hypersurface does not depend on the choice of this

1Cf. “Relativistic Quantum Events” , Ref. [3].
2More on this subject in the forthcoming paper “Some aspects of contemporary Kairicity ”

by P. Angès and the present author
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hypersurface; the physical interpretation of this fact reads: “the particle moves
along a time–like worldline and will be detected with certainty by any instant
measurement determining its presence.”

If we want to have a dual picture, where the roles of ”space–like” and “time–
like”are reversed, we need not a particle but a “wavicle”, an object located on a
hypersurface that is intersected by any “observer’s” time–like worldline. While
a particle is a singularity in space , a wavicle must be a singularity in time . For
this we need a current that is a closed 1–form, not a closed 3–form as it is for
particles. It is clear that it is rather impossible to deduce field equations leading
to such a current from an action principle. A direct approach is necessary. This
is the approach taken in the present paper.

As a template we take a pseudo-Euclidean space E(1,m) of signature (1,m).
The main object is the positive light cone C+∗

0 and its projective image isomor-
phic to an (m − 1)–dimensional sphere S. In this paper we work over the field
of real numbers R.

Sec 2 is devoted to the recall of algebraic constructions that are taking place
in one fibre of a bundle. Bundles are discussed in Sec. 3.

In Sec. 2.1. we introduce the space of frames F (V ) of a vector space V of
dimension m, its subset P which is a reduction of F (V ) to a subgroup G ⊂
GL(m), and discuss the space P ×RQ of geometric quantities of type R, where
R is a left action of a G on a space Q.

In Se. 2.2 we represent geometric quantities of type R as equivariant func-
tions on P. All this is standard and is being recalled in order to fix our notation
used in the sequel.

In Sec. 2.3 we take V to be (m+ 1) dimensional and specify G as SO0(1,m)
– the generalized Lorentz group. The important objects are the positive light
cones C+∗

0 ⊂ E(1,m) and C0+∗ ⊂ V. We introduce the invariant measure on C+∗

0

and the action Λ → ρΛ of SO0(1,m) on the projective light cone isomorphic
to the sphere S ⊂ R

m−1. This action dtermines a family of cocycles γr, r ∈ R

on SO0(1,m)× S that are used later for the construction of a family of infinite
dimensional representations Rr of SO0(1,m). We also analyze the SO0(1,m)–
noninvariance of the canonical SO(m) invariant measure on S. Representations
Rr on C∞(S) and, more generally, on spaces of vector valued differential forms
on S are discussed in Sec. 2.4.

In Sec. 2.5 We construct spaces Yp
r of equivariant p–forms on P with values

in a vector space W and discuss several important examples of elements of these
spaces. An invariant integration over the sphere S is introduced in Theorem 1.
This integration is used later on for the construction of the conserved (dj = 0)
current.

In Sec 2.6 we interpret Y0
r (S;R) as spaces of homogeneous functions of degree

−r on the positive light cone C+∗ ⊂ V. In Sec. 3 we move from algebra to
geometry by introducing an (m + 1)–dimensional manifold M endowed with
an SO0(1,m) structure and a compatible principal connection, possibly with a
non–zero torsion. In fact, we slightly generalize our scheme allowing also for
a degenerate space–time metric. After recalling some important properties of
the exterior covariant covariant derivative in Proposition 3, we construct, in
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Sec. 3.2, the Kairon bundle Y[P ]. In Proposition 4 several equivalent ways of
interpreting cross sections of this bundle are given. In Sec 3.3 we comment on
the generalized torsion, and in Sec. 3.4 we introduce the field equations (Eq.
(31) and prove (Proposition 5) that these field equations lead to the conservation
(Eq. (32)) of the current jΨ1,Ψ2 defined by integration over the sphere of a form
that is bilinear in the solutions of the field equations.

In Sec. 4 we specialize to the case of M being the flat Minkowski space
E(1,m). The Kairon field is then described by a (real valued) function Ψ(x,ω),
where x is a point in M and ω is a “space direction” at x. The field equation
are now reduced to a simple form given in Eq. (33). In Proposition 6 the
initial value problem is solved, where it is shown that each solution Ψ(x,ω) is
uniquely determined by its values Ψ(γ(s),ω) on an arbitrary time–like worldline
γ(s). The field propagates along isotropic hyperplanes, therefore its propagation
is superluminal3.

In Sec. 4.2 the conserved current is used for the construction of the (real)
Hilbert space of solutions. Poincaré invariance is studied in Sec. 4.2, where it
is shown that this Hilbert space carries a natural unitary representation of the
Poincaré group.

This paper will be purely mathematical. A possible physical interpretation
of the results as well as a generalization to the case of Spinning Kairons, using
Clifford algebraic techniques, will be given in a forthcoming paper.

2 Algebraic Preliminaries

We will be working in the smooth category, so that all manifolds, maps, and
actions will be assumed to be smooth. All vector spaces in this paper will be
over the field of real numbers R. We denote by R

+ the multiplicative semigroup
of strictly positive real numbers. If M is a manifold, we will denote by C∞(M)
the space of smooth R–valued functions on M and by

∧p(M) the C∞(M)–
module of differential p–forms on M. If W is a vector space, we will denote
by
∧p

(M ;W ) the C∞(M)–module of W–valued p–forms on M. If f is a map
between manifolds f : M → N then f∗ :

∧p(N ;W ) →
∧p(M ;W ) is the

pullback map.
When dealing with fiber bundles, there are a number of constructions that

are taking place in each fiber separately, and usually deal with algebra only. In
order for this paper to be as self–contained as possible we provide these alge-
braic preliminaries and separate them from the rest of the text in the following
subsections.

2.1 Geometric quantities of type R

Let V be a vector space of dimension m. We denote by F (V ) the space of linear
frames of V. The general linear group GL(m) acts transitively and freely on

3For a discussion of superluminal solutions of massless field equations cf. also [5]
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F (V ) from the right:

GL(m) ∋ A : e = (ei) 7→ eA = (ej A
j
i).

If G is a subgroup of GL(m), then an orbit P of G in F (V ) is called a G–
structure on V.

Let P be a G–structure on V, and let R be a left action of G on a manifold
Q. On the direct product manifold P×Q one can then introduce the equivalence
relation:

(e, p) ∼ (e′, p′) ⇔ ∃A ∈ G such that ((e′ = eA) ∧ (p = R(A)p′)). (1)

Denoting by e · p the equivalence class of (e, p) ∈ P ×Q, we thus have

eA · p = e · R(A)p, ∀A ∈ G. (2)

The set of all such equivalence classes is denoted by P ×R Q, and its elements
are called geometric quantities of type R [6, Ch. II.6].

Example: For instance, let GL+(m) denote the subgroup of GL(m) consisting
of all m × m matrices of positive determinant. Then a GL+(m) structure is
called an orientation of V. Denoting by R+ the multiplicative group of positive
real numbers let ρw be the action of GL+(m) on R defined by

ρw : GL+(m) ∋ A 7→ det(A)w ∈ R. (3)

Let F+ ⊂ F (V ) be a fixed orientation. Given a real number w, let V w denote
the space F+ × ρw R, associated to F+ via the representation ρw. Elements of
V w are called densities of weight w .4 Every oriented frame e ∈ F+ defines an
oriented m–vector e1 ∧ . . . ∧ em. Let Λm

+ denote the set of all such m–vectors.
Then Λm

+ ≃ R+ and R+ acts freely and transitively on Λm
+ by multiplication.

It follows that V w can be also considered as the space associated to Λm
+ via the

action R+ ∋ x : y 7→ xwy, y ∈ R+.

Any algebraic or geometrical structure of Q that is invariant under the action R
of G can be transported from Q to P ×RQ. In particular, if Q is a vector space
W , and if R is a linear representation of G on W, then P ×R W inherits from
W the vector space structure of the same dimension as W. If {Ei} is a basis in
W, then, for every frame e ∈ P, the vectors ei = e ·Ei form a basis in P ×R W.

Let us recall that if we choose G ⊂ GL(m), W = R
m, and if R is the natural

action of G on R
m :

(R(A)x)i = Ai
j x

j ,

then F (V ) ×R W is naturally isomorphic to V. If we choose W = R
m∗, and if

R′ is the natural representation of G on R
m∗:

(R′(A)y)j = yi (A−1)
i

j ,

then F (V ) ×R′ W is naturally isomorphic to V ∗ – the dual of V.

4Our definition of the weight differs by the sign from the one used by Schouten [7, Ch.
II.8].
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2.2 Geometric quantities as equivariant functions

Let G be a subgroup of GL(m) and let P ⊂ F (V ) be a G–structure. Let, as it
was discussed above, R be the right action of G on Q. A function Φ : P → Q,

P ∋ e 7→ Φ[e] ∈ Q, is said to be equivariant of type R if

Φ[eA] = R(A−1) Φ[e]. (4)

There is a one–to–one correspondence Φ 7→ Φ̃ ∈ P ×R Q between equivariant
functions on P of type R and geometric quantities of type R, that is elements
of P ×R Q. If Φ : P → Q is equivariant of type R then, as it can be easily seen,
the class P ×R Q ∋ Φ̃ = e · Φ[e], in fact, does not depend on e ∈ P. Conversely,
if Φ̃ is in P ×R Q, then for each e ∈ P there exists a unique Φ[e] ∈ Q such
that Φ̃ = e · Φ[e]. The Q–valued function e 7→ Φ̃[e] is then, by the construction,
equivariant of type R.

In applications, in order to avoid cumbersome notation, it is sometimes
convenient to suppress the notational difference between geometric quantities
interpreted as elements of P ×R Q or as equivariant functions on P. The exact
meaning should in such a case be deduced from the context.

2.3 The invariant measure on the light-cone

We will denote by E(1,m) (resp. E(1,m)∗) the space R
(m+1) (resp. R

(m+1)∗)
endowed with the quadratic form q

q(p0, p1, . . . , pm) = (p0)2 − (p1)2 − . . . − (pm)2. (5)

We will use the same symbol q for the induced dual quadratic form

q(p0,p) = p20 − p21 − . . . − p2m, (6)

the meaning will be clear from the context. The form q is invariant under the
natural action of the group SO0(1,m) - the connected component of the identity
of the full invariance group O(1,m) ⊂ GL(m+ 1) of q.

Note 1 For brevity, in the following, G will stand for SO0(1,m) and S will
stand for the unit sphere Sm−1 ⊂ R

m∗. From now on we will denote by V a
fixed m+ 1–dimensional vector space equipped with a SO0(m, 1) structure P .

Since the quadratic form q is G–invariant, it induces a quadratic form, which
we will denote by Q, on V and on V ∗. We denote by 〈·, ·〉 the associated sym-
metric bilinear form on V and on V ∗ of signature (1,m). All frames e ∈ P

are then orthonormal with respect to 〈·, ·〉 : e ∈ P =⇒ 〈eα, eβ〉 = ηαβ =
diag(1,−1, . . . ,−1).

Throughout the paper the Greek indices α, β, µ, ν, etc. will run through
0, . . . ,m, while, unless explicitly specified otherwise, the Latin indices i, j, k
etc. will run through 1, . . . ,m. Bold symbols p,q, etc. will be used for vectors
in R

m and in R
m∗, while the symbol ω = (ω1, . . . , ωm) will be reserved for
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vectors in R
m∗ of unit norm. We will use the symbol ω to denote isotropic

vectors of the form ω = (1,ω), so that ω0 = 1,
∑m

i=1(ωi)
2 = 1.

A typical basis e ∈ P will be also denoted as eα, the dual basis as eα, and
a typical vector p in V ∗ will be decomposed with respect to such a basis as
p = pαe

α. Most of our constructions will take place in V ∗.

If Λ is in G (= SO0(1,m)), and if ω ∈ R
m∗ is a unit vector, then ωΛ

will denote the vector in E(1,m)∗ with components (ωΛ)α = ωβΛβ
α, that is

(ωΛ)0 = Λ0
0 + ωiΛ

i
0, (ωΛ)i = Λ0

i + ωjΛ
j
i.

Let C+∗

0 be the positive isotropic cone in E(1,m)∗:

C+∗

0 = {(p0, p1, . . . , pm) : q(p0,p) = 0, p0 > 0}.

C+∗

0 is naturally diffeomorphic to R
m∗\{0}, since it is uniquely parametrized by

the non–zero vectors p = (p1, . . . , pm) ∈ R
m∗. It is well known that the m-form

µ0(p) =
dp1 ∧ . . . ∧ dpm

|p|
(7)

is invariant with respect to the action of G on C+∗

0 induced by its natural action
on E(m,1). To see that this is the case, notice first that, owing to the transitivity
of the G action on C+∗

0 , the invariant m–form µ0, if it exists, is unique up to a
scale. To fix the scale, with q given by Eq. (6), we impose the condition:

dq ∧ µ0(p) = 2dp0 ∧ . . . ∧ dpm (8)

at the points of C+∗

0 , where we notice that dp0 ∧ . . . ∧ dpm is naturally G–
invariant. Then a simple calculation shows that µ0 defined in (7) indeed satisfies
(8).

Owing to its invariance under the action of G, the form µ0 defines an m–
form µ on the positive isotropic cone (with respect to the quadratic form Q)
C+∗ ⊂ V ∗. Explicitly, given a frame P ∋ e = {eα} we have:

µ(p; ξ(1), . . . , ξ(m)) =
ǫi1... imξ

(1)
ii
. . . ξ

(m)
im

p0
, (9)

where p ∈ C+∗, p =
∑m

0 pαe
α, ξ(i) ∈ TpC

+∗ are tangent vectors to C+∗ at

p, considered as vectors in the vector space V ∗, with coordinates ξ
(i)
α , ξ(i) =

ξ
(i)
0 e0 +

∑m
j=1 ξ

(1)
j ej , and ǫi1... im is the fully antisymmetric Kronecker tensor,

with i1, . . . , im ∈ {1, . . . m}. The invariance of the measure µ0 is reflected by
the fact that the value of the right hand side of Eq. (9) does not depend on the
choice of a frame e ∈ P.

The linear action of the group G restricts to the action on the cone C+∗

0 , and
thus induces an action on the projective cone that is isomorphic to the sphere
S ≈ {p ∈ C+∗

0 : p0 = 1}. We will denote this action by G ∋ Λ 7→ ̺Λ : S → S ⊂
R

m∗. Explicitly:

̺Λ(ω)i =
(ωΛ−1)i
(ωΛ−1)0

. (10)
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Definition 1 A function γ(Λ,ω) on G× S, with values in R, satisfying:

(i) γ(I,ω) = 1, ∀ω ∈ S,

(ii) γ(Λ1Λ2,ω) = γ(Λ1, ̺Λ2
(ω))γ(Λ2,ω), ∀ (Λ1,Λ2 ∈ G, ω ∈ S)

is called a cocycle.

Remark 1 By putting Λ2 = Λ and Λ1 = Λ−1 it follows from (i) and (ii) above
that for a cocycle γ and all Λ ∈ G, ω ∈ S the following formula holds:

γ(Λ−1, ̺Λ(ω)) = γ(Λ,ω)−1. (11)

Lemma 1 For every real number r ∈ R, the function γr : G × S → R
+ given

by the formula
γr(Λ,ω) = ((ωΛ−1)0)r (12)

is a cocycle, that is γr satisfies conditions (i) and (ii) in the Definition 1 above.
Moreover, for any r, s ∈ R we have

γr γs = γr+s. (13)

Proof. The proof follows by a straightforward calculation, along the lines given
in Ref. [9, Lemma 4].

�

Let, for each e ∈ P, Φe be the map Φe : E(1,m)∗ → V ∗ given by:

Φe(x) = xα e
α, x ∈ E(1,m)∗. (14)

We will denote by φe the restriction of Φe to the isotropic cone C+∗

0 ⊂ E(1,m)∗ :

φe(p) = |p|e0 + pi e
i. (15)

Finally, we denote by φ̂e the restriction of φe to S ⊂ R
m∗ :

φ̂e : S ∋ ω 7→ e0 + ωi e
i ∈ V ∗, ω

2 = 1. (16)

S

C+∗

0 C+∗

E(1,m)∗ V ∗

z

u

[

[

[

[

[℄

φ̂e

w

φe

z

u

z

u

w

Φe

(17)

Notice that while the image φe(C+∗

0 ) is the positive isotropic cone C+∗ in V ∗

that is independent of e ∈ P, the image φ̂e(S) ⊂ C+∗ varies with e.
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Lemma 2 For each e ∈ P let σ[e] = φ̂∗e(µ) be the (m − 1)–form on S defined
by

σ[e](ω; ζ(1), . . . , ζ(m−1)) = φ̂∗e(µ)(ω; ζ(1), . . . , ζ(m−1))

= µ(φ̂e(ω); dφ̂e(ζ(1)), . . . , dφ̂e(ζ
(m−1))),

(18)

where ζ(1), . . . , ζ(m−1) ∈ R
m∗ are vectors tangent to S at ω. Then σ[e] is, in

fact, independent of e ∈ P, and is the standard, SO(m) invariant volume form
σ0 on S. For Λ ∈ G we have:

(̺∗Λσ0)(ω) = γ1−m(Λ,ω)σ0(ω), (19)

where ̺∗Λσ0 is the pullback of σ0 by ̺Λ.

Proof. It follows directly from the definition of φ̂e that dφ̂e(ζ) = ζi e
i, and

(φ̂e(ω))0 = 〈e0, φ̂e(ω)〉 = 1. Therefore, applying (9), we get

σ[e](ω; ζ(1), . . . , ζ(m−1)) = ǫi1... imωi1ζ
(1)
i2

. . . ζ
(m−1)
im

, (20)

which is the standard volume form σ0, on S ⊂ R
m∗ - cf. [8, p. 165]. The

formula (19) has been proven for V in Ref. [9, Proposition 6]. The proof for V ∗

goes much the same way.

�

2.4 The representations Rr of G on C
∞(S)

In this subsection we will define a family of (infinite dimensional) representations
Rr, r ∈ R, of the group G = SO0(1,m) on the space of (smooth) functions on
S. The representations Rr will be closely related to the representations induced
from representations of a little group, the subgroup of G that stabilizes the point
ω = (0, 0, . . . 0, 1) ∈ S, except that our representations will be, at this stage,
non-unitary (cf. however Proposition 8 below), so that we will skip the part of
the induced representation theory (Radon-Nikodym derivative) that is usually
added there to guarantee unitarity. We will adapt the definition of the induced
representation as given, for instance, in Ref. [11, Ch. 5, p. 174, Eq. (36), and
p. 215, Theorem 6.7]5

Definition 2 Let W be a finite–dimensional vector space and let γ be a cocycle.
Given p ∈ {0, . . . ,m − 1}, the following formula defines the representation Rp

γ

of G on the space
∧p

(S;W ) of W–valued p–forms on S

Rp
γ(Λ)ψ = ̺Λ−1

∗(γ(Λ, ·)ψ). (21)

The representation Rp
γ : Λ 7→ Rp

γ(Λ) is called the representation determined by
the cocycle γ. When γ = γr, as in Eq. (12), then Rp

γr
will be denoted simply by

Rp
r .

When W = R we will use the brief notation
∧p

(S) for
∧p

(S;R). Notice that
∧p

(S;W ) =
∧p

(S) ⊗W.

5We will also skip measure–theoretical considerations, as we work in the category of smooth
functions and actions.
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2.5 The spaces Yp

r
of equivariant forms

We will denote by Yp
r (S;W ) the space of Rp

r–equivariant maps from P to
∧p

(S;W ). Explicitly, if ψ : P ∋ e 7→ ψ[e] ∈
∧p

(S;W ) is such a map, then

ψ[eΛ](ω) = γr(Λ,ω)−1 (̺∗Λψ[e])(ω), Λ ∈ G, e ∈ P, ω ∈ S. (22)

We will simply write Yp
r for Yp

r (S;R). The next Proposition follows immediately
from the definitions and from Eq. (13).

Proposition 1 If φ ∈ Yp
r and ψ ∈ Yq

s (S;W ) then (φ ∧ ψ) ∈ Yp+q
r+s (S;W ).

�

For the proof of the next Theorem we will need the following Lemma.

Lemma 3 The following are examples of elements of spaces Yp
r :

(i) The map φ̂, P ∋ e 7→ φ̂[e] = φ̂e ∈ C∞(S;V ∗), defined in Eq. (15) – cf.
also Diagram 17 – is in Y0

−1(S;V ∗).

(ii) Given a vector v ∈ V and a frame e ∈ P consider the function fv[e] : S →
R defined by fv[e](ω) = v[e]αωα = v[e]0 + v[e]iωi. Then f : v 7→ fv is a
linear map from V to Y0

−1.

(iii) The constant map σ : e 7→ σ[e] = σ0 defined in Lemma 2 and assigning
to each e ∈ P the standard SO(m)–invariant volume form σ0 on S, is a

member of Y
(m−1)
(1−m) .

Proof. (i) The statement follows by a straightforward calculation. Let e = (eα)
be a basis in P, and let (eα) be the dual basis. For Λ ∈ G we have

φ̂[eΛ](ω) = ωα(eΛ)α = (eΛ)αωα = Λ−1α
βωαe

β

= (Λ−10
0 + Λ−1i

0ωi)

(

e0 +
Λ−10

j + Λ−1i
jωi

Λ−10
0 + Λ−1i

0ωi

ej

)

= γ1(Λ,ω)φ̂[e](̺Λ(ω)) = γ1(Λ,ω)(ρ∗Λφ̂[e])(ω).

(ii) Notice that fv[e](ω) = 〈eα, v〉ωα = 〈eαωα, v〉 = 〈φ̂[e](ω), v〉, therefore the
results follows from (i).
(iii) We first notice that by Lemma 1 we have (γr)−1 = γ−r. The statement
follows then from Eqs. (19) and (22).

�
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Theorem 1 Let φ, ψ be in Y0
m/2. Then, for every v ∈ V, the (m − 1)–form

φ∧ψ ∧ fv ∧ σ is in Y
(m−1)
0 and the following integral I(φ, ψ, v) does not depend

on the frame e ∈ P :

I(φ, ψ, v) =

∫

S

φ[e] ∧ ψ[e] ∧ fv[e] ∧ σ[e]. (23)

The map I(φ, ψ) : v 7→ I(φ, ψ, v) ∈ R is linear in v, and defines a bilinear form
on Y0

m/2 with values in V ∗.

Proof. It follows from Proposition 1 and from Lemma 3 (ii),(ii) that φ∧ψ∧fv∧σ

is in Y
(m−1)
0 , therefore φ[e] ∧ ψ[e] ∧ fv[e] ∧ σ[e] is an (m − 1)–form on S that

is independent of the choice of e ∈ P. The rest of the theorem is na immediate
consequence of the definitions.

�

2.6 The spaces Y0
r
. as spaces of homogeneous functions on

C∗+

While working with the spaces Yp
r of equivariant form–valued functions is suffi-

cient for technical purposes, it is convenient to have a geometrical interpretation
of the results. For this end we will only need a geometrical interpretation of the
spaces Y0

r .

In Section 2.2 above we introduced the spaces of quantities of type R, where
R is a representation of the structure group G on a vector space F. In our case
we take G = SO(1,m), and we will identify, in this section, the spaces Y0

r with
the spaces Y−r(C+∗) of homogeneous functions of degree −r on C+∗.

Definition 3 For each r ∈ R let Yr(C+∗) be the vector space of smooth real
functions on C+∗, homogeneous of degree r. That is, a smooth function f :
C+∗ → R is in Yr(C+∗) if and only if f(λp) = λrf(p) for all λ ∈ R

+, p ∈ C+∗.

In particular, for every v ∈ V the function fv :

C+∗ ∋ p 7→ fv(p) =< v, p >= vαpα ∈ R

is homogeneous of degree 1.

Proposition 2 The function space Yr(C+∗) is naturally isomorphic to the space

Y0
−r. More precisely, if f ∈ Yr(C+∗), then φ̂∗(f) defined by

φ̂∗(f)[e](ω) = f(φ̂[e](ω)) (24)

is in Y0
−r.

11



Proof. Indeed, with the notation as above, we have

φ̂∗(f)[eΛ](ω) = f(φ̂[eΛ](ω)) = f(γ1(Λ,ω)(̺∗Λφ̂[e])(ω))

= γ1(Λ,ω)rf((̺∗Λφ̂[e])(ω))

= γr(Λ,ω)̺∗Λ(φ̂∗(f)[e])(ω).

The result follows then from Eq. (22).

�

3 The Kairon field

Let M be an (m + 1)–dimensional manifold. Let V be a vector bundle over
M, with a typical fiber R

m+1, V =
⋃

x∈M Vx, endowed with a G = SO0(1,m)
structure. Its dual vector bundle will be denoted by V∗. We will denote by
F =

⋃

x∈M Fx the bundle of linear frames of V , and by P =
⋃

x∈M Px the
principal sub–bundle of F that defines the G structure on V . We will denote
by C+∗ the bundle of positive isotropic cones in the fibres of V∗. Let Θ be a
1–form over M with values in V , thus, for each ξ ∈ TxM, Θx is a linear map
Θx : TxM → Vx. We will call Θ the soldering form.

Remark 2 In a simplified version of the theory one can identify V with the tan-
gent bundle of M. In this simplified case Θ would be the identity map. However,
we are proposing a more general formulation, which allows us to treat gravity as
a composite field, along the lines developed in Ref. [12], where we have discussed
“gauge theories of gravity”, so that the soldering form can as well be not of a
maximal rank over certain parts of M.

We will assume that P is equipped with a principal connection. The corre-
sponding exterior covariant derivative6, acting on differential forms with values
in the associated bundles will be denoted as D. Of particular interest for us will
be the vector bundle V∗, which can be thought of as being associated to P via
the representation R′ of G on E(1,m)∗ given by:

R′(Λ) : E(1,m) ∋ (pµ) 7→ (Λ−1)
ν

µ pν Λ ∈ G, (25)

and its sub–bundle C+∗ of positive isotropic cones : C+∗ =
⋃

x∈M C+∗

x ⊂ V∗

x .

3.1 Recall of differential geometric concepts

Let (P, π,M,G) be a principal bundle with base manifold M and structure
group G. Let R be a left action of G on a manifold Q. We denote by P ×RQ the
associated bundle (with a typical fiber Q), and by Γ(P ×R Q) the space of its

6For a good, modern introduction to differential geometrical concepts cf. the recent mono-
graph by Marián Fecko [13]
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(smooth) sections. We denote by C∞(P,Q)R the space of all smooth mappings
f : P → Q that are R–equivariant, that is such that f(pg) = R(g−1)f(p)
holds for p ∈ P and g ∈ G. As in Section 2.2 there is a natural one–to–one
correspondence between the elements of Γ(P ×R Q) and those of C∞(P,Q)R.
More generally, let R be a representation of G on a vector space W, and let
Ω(M,P ×R W ) be the graded algebra of P ×R W valued differential forms
on M. Let Ωhor(P,W )G be the graded algebra of W -valued horizontal, G–
equivariant, differential forms on M. Then there is a canonical isomorphism
q♯ : Ωk(M,P ×R W ) → Ωk

hor(P,W )G. For every Φ ∈ Ωk(M,P ×R W ), p ∈ P,

ζ1, . . . , ζk ∈ TpP we have:

p · (q♯(Φ)p(ζ1, . . . , ζk)) = Φπ(p)(dπp(ζ1), . . . , dπp(ζk)). (26)

For k = 0 the isomorphism q♯ reduces to the isomorphism between Γ(P ×R Q)
and C∞(P,Q)R. For details see e.g. Ref [14, Sec. (21.12),(22.14)].

Let g denote the Lie algebra of G (carrying the adjoint representation of
G) and let ω be a principal connection on P. In particular we have that ω ∈
Ω1(P, g)G. We will denote by Dω (or simply by D, when it is clear from the
context which principal connection is being used) the exterior covariant deriva-
tive D : Ωk(P,W ) → Ωk+1(P,W ). By abuse of notation we will denote by the
same symbol D the exterior derivative acting on forms with values in associated
bundles, that is on elements of Ω(M,P ×R W ). For details see e.g. Ref. [14,
Sec. (22.15)]. We recall the following result, adapted from Ref. [15, Proposition
VIII, p. 254]:

Proposition 3 Let φ : W1 × . . . × Wl → W be an l–linear map and let
Φi ∈ Ωki

hor(P,Wi)
G be Wi–valued horizontal, G–equivariant differential forms

of degree ki, (i = 1, . . . , l). Then

D[φ∗(Φ1, . . . ,Φl)] =

l
∑

i=1

(−1)k1+...+ki−1φ∗(Φ1, . . . , DΦi, . . . ,Φl). (27)

�

Remark 3 For Φi of the form Φi = Ψi ⊗ wi, Ψi ∈ Ωki

hor(P,R)G, wi ∈ Wi, the
mapping φ∗ is defined as

φ∗(Φ1, . . . ,Φl) = (Ψ1 ∧ . . . ∧ Ψl) ⊗ φ(w1, . . . , wl). (28)

It extends by linearity for a general case. In other words φ∗ is the map φ applied
to the values of the forms, not to their arguments.

3.2 The Kairon bundle Υ[P].

In this paper we will discuss only real fields of spin 0. The case of spin 1
2 will

be discussed in a forthcoming paper.
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Let Y be the space of functions on the positive isotropic cone C+∗

0 ⊂ E(1,m)∗,

homogeneous of degree −m
2 ,

7 and let T be the natural representation of G on
Y :

(T (Λ)f)(p) = f(pΛ). (29)

We denote by Υ the associated vector bundle P ×T Y and by Γ(Υ) the C∞(M)
module of local sections of Υ. Even if the fibres of Υ are infinite dimensional
function spaces, we will apply the standard constructions of differential geometry
as they can be easily generalized and applied without changes to this particular
case - cf. e.g. [16, Ch. 5 and references therein].

The following proposition follows immediately from our previous discussion:8

Proposition 4 A section ψ ∈ Γ(Υ) can be interpreted in five different ways,
namely as:

(a) An equivariant function on P with values in Y, Ψ[eΛ] = T (Λ−1)Ψ[e].

(b) A function ψ̃ on M with values in Υ, ψ̃(x) ∈ Υx.

(c) A real–valued function ψ̂ on C+∗ homogeneous of degree −m
2 .

(d) A real valued function Ψ̃ : P × S → R, that is equivariant in the following
sense:

Ψ̃(eΛ,ω) =
(

Λ−10
0 + Λ−1i

0ωi

)−
m

2

Ψ̃(e, ̺Λ(ω)). (30)

(e) An equivariant function Ψ̂ : e 7→ Ψ̂[e] on P with values in C∞(S) defined
as Ψ̂[e](ω) = Ψ̃(e,ω).

�

3.3 Generalized torsion

Our connection is in the bundle P, not in the bundle of frames of M. We define
(generalized) torsion T as T = DΘ, the exterior derivative of the soldering
form. Thus DΘ is a two–form on M with values in the vector bundle V . In local
coordinates, it has components T a

µν , and there is no way of “lowering” the index
a, unless the soldering form Θ is bijective. In those regions of M where Θ is
bijective we can use it to define a metric tensor and a unique affine connection
on M by demanding that Θ is parallel with respect to the pair of connections:
the connection in the bundle P and the connection in the frame bundle of M. 9

7The reason for choosing this particular degree of homogeneouity will be evident from
Proposition 5.

8When necessary the standard precautions concerning local rather than global operations
should be applied.

9For more details concerning this last point cf. Ref. [12]
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3.4 The Field equations

Usually in physical theories the field equations are being deduced from a vari-
ational principle. Then conservation laws follow either from field equations or
from invariance principles. In our case we will postulate the field equations
directly, because it is not clear at this time whether some kind of a variational
principle leading to these field equations can be construed. The conservation
law will follow directly from the field equations.

Let us first discuss a particular consequence of Proposition 3 by taking W1 =
W2 = C∞(S), W3 = R

m+1 and the map φ : W1 ×W2 ×W3 → R given by:

φ(ψ1, ψ2, w) =

∫

S

ψ1(ω)ψ2(ω)wαωασ0(ω). (31)

We take Ψ1,Ψ2 ∈ Γ(Υ). Then Ψ̂1, Ψ̂2 are 0–forms on P with values in W1 =
W2 = C∞(S). The soldering form Θ can be considered as an equivariant hori-
zontal form Θ̂ = q♯(Θ) on P with values in R

m+1.

Proposition 5 With Ψ1,Ψ2 ∈ Γ(Υ), x ∈ M, ξ ∈ TxM and e ∈ Px let
ĵΨ1,Ψ2

[e](ξ) be defined by the formula

ĵΨ1,Ψ2
[e](ξ) =

∫

S

Ψ̂1[e](ω)Ψ̂2[e](ω)Θ(ξ)αωασ0(ω). (32)

Then ĵΨ1,Ψ2
[e] is independent of e and defines a 1–form jΨ1,Ψ2

on M. Moreover,
if we assume that Ψ1,Ψ2 satisfy the field equations:

Θ ∧DΨi =
1

2
ΨiDΘ, (i = 1, 2), (33)

then the form jΨ1,Ψ2
is closed:

d jΨ1,Ψ2
= 0. (34)

Proof. It is clear from the definitions that ĵΨ1,Ψ2
= φ∗(Ψ̂1, Ψ̂2, Θ̂). Since ĵΨ1,Ψ2

is R–valued we have that dĵΨ1,Ψ2
= DĵΨ1,Ψ2

. On the other hand, from Propo-
sition 3 we have that

DĵΨ1,Ψ2
= φ∗(DΨ̂1, Ψ̂2, Θ̂) + φ∗(Ψ̂1, DΨ̂2, Θ̂) + φ∗(Ψ̂1, Ψ̂2, DΘ̂). (35)

Now, using the field equations (33), and skipping the argument [e], we have that

φ∗(DΨ̂1, Ψ̂2, Θ̂) =
∫

S

(

DΨ̂1 ∧ Ψ̂2 ∧ Θ̂α
)

(ω)ωασ0(ω)

= −
∫

S

(

Ψ̂2 ∧ Θ̂α ∧DΨ̂1

)

(ω)ωασ0(ω)

= − 1
2

∫

S

(

Ψ̂1 ∧ Ψ̂2 ∧DΘ̂α
)

(ω)ωασ0(ω).

(36)
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Similarly

φ∗(Ψ̂1, DΨ̂2, Θ̂) = −
1

2

∫

S

(

Ψ̂1 ∧ Ψ̂2 ∧DΘ̂α
)

(ω)ωασ0(ω), (37)

and finally

φ∗(Ψ̂1, Ψ̂2, DΘ̂) =

∫

S

(

Ψ̂1 ∧ Ψ̂2 ∧DΘ̂α
)

(ω)ωασ0(ω). (38)

Thus, taking into account Eq. (35) we have (34).

�

Remark 4 Introducing a U(1) principal bundle with a principal connection and
replacing the exterior covariant derivative D by the exterior covariant derivative
including the U(1) connection, it is easy to generalize our field equations and
get current conservation dj = 0 for charged kairons.

4 The case of a flat Minkowski space

In this section we will study the solutions of the field equations (33) for the case
whereM is the flat space E(1,m) endowed with the natural orientation and time–
orientation, and with the natural zero connection (thus zero torsion). For the
bundle P we take the bundle of oriented and time–oriented orthonormal frames,
therefore Θ will be the identity map. If e ∈ P then < eµ, eν >= ηµν , where η =
diag(−1,+1, . . . ,+1). We will endow M with the standard coordinate systems
(we will call them Lorentz frames) related one to another by transformations
from the proper inhomogeneous Lorentz group, the semi–direct product of the
proper ortochronous Lorentz group SO0(1,m) and the group of translations
R

(m+1). We will use the standard terminology of special relativity: light cone,
time–like and space–like vectors etc.

The field equations (33), in a Lorentz frame xµ take the form

(ωµ∂ν − ων∂µ)Ψ(x,ω) = 0, (39)

where ω0 = 1,ω2 = 1. It follows that for each ω, and for each bivector f =
(fµν), the solutions are constant on the trajectories of the vector field fµνωµ∂ν .

These vector fields, for different f commute and they span the m–dimensional
hyperplane Xω that is annihilated by the 1–form ω. Since ω is a light–like
co–vector, the plane Xω is isotropic: it is generated by the light–like vector
ωµ = ηµνων and m−1 space–like vectors. We will first show that every solution
of Eqs. (39) is uniquely determined by the initial data g(t,ω) on the time axis
x0 = t,x = 0, t ∈ R.

Proposition 6 (Initial value problem) Let g(t,ω) be an arbitrary function on
R × Sm−1. There exists a unique solution Ψ(x,ω) of the field equations (39)
that coincides with g on the time axis x = 0.
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Proof. Fix an isotropic co–vector ω = (1,ω). Let (y0,y) be an arbitrary point in
M that is not on the time axis (that is, y 6= 0). The line connecting a point (x0, 0)
on the time axis to this point is given by x0(s) = sy0 + (1 − s)x0, x(s) = sy.

The tangent vector to this line has components (y0 − x0,y), and the value of ω
on the tangent vector is then y0 − x0 +ω ·y. It takes the value zero if and only
if x0 = y0 + ω · y. It follows that

Ψ(y0,y) = Ψ(y0 + ω · y,0). (40)

Therefore Ψ is determined by its values on the time axis. The values of Ψ on
the time axis can be arbitrary, because any two different points on the axis
are connected by a time–like vector, while all vectors on an isotropic plane are
either space or light–like.

It is easy to generalize the above property to a more general class of time–like
paths.

Corollary 1 Let T be the set of all time–like paths γ(s), s ∈ R with the prop-
erty that γ has a non–empty intersection with each maximal isotropic plane.
Then, for each γ ∈ T , every solution Ψ of the field equations (39) is uniquely
determined by its values on γ.

Proof. The proof goes as in the proposition above by first noticing that any
two points on γ are connected by a time–like interval, while no two points on a
maximal isotropic plane are connected by such an interval.

�

Region of
propagation

ω = +1

Region of
propagation

ω = −1

γ(s)

supp(Ψ) ∩ γ

γ
′(s)

su
p
p
(Ψ

)
∩

γ
′

Figure 1: Kaironic Field propagation in 1 + 1 dimensions.
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Remark 5 A typical example of a time–like trajectory that is not in T is a
world–line of a uniformly accelerated observer (hyperbolic motion), such as ob-
tained from the trajectory γ(s) = (s,0) by a special conformal transformation.

4.1 The Hilbert space of solutions

Let γ be a path of class T and suppose that Ψ is a solution of the field equations
with the property that it vanishes outside of a compact part of γ. That means
there exists s0 > 0 such that Ψ(γ(s),ω) = 0 for |s| > s0. Then, owing to the
propagation formula (40), Ψ vanishes in the interior of the past last cone with
apex at (−s0, γ(−s0)) and in the interior of the future light cone with apex at
(s0, γ(s0)). If γ′ is another path in T , then γ′ has also the property that Ψ
vanishes on γ′ outside of a compact set.

Proposition 7 Let D(Υ) be the vector space of solutions Ψ of the field equa-
tions (39) with the property that supp(Ψ) ∩ γ is compact for every path γ ∈ T .

Then, for any Ψ1,Ψ2 ∈ D(Υ) the integral:

〈Ψ1,Ψ2〉 =

∫

Sm−1

dσ0(ω)

∫ +∞

−∞

ds γ̇(s)αωα Ψ1(γ(s),ω)Ψ2(γ(s),ω) (41)

does not depend on the choice of the path γ ∈ T and defines a real pre–Hilbert
structure in D(Υ).

Proof. The integral (41) is nothing but the integral of the one–form j given by
Eq. (32) over the path γ. If γ′ is another path in T , then it is always possible
to make a closed oriented loop by adding segments l and l′ that are outside of
supp(Ψ) (cf. Fig. 1). Then the integral of jΨ1,Ψ2

over this loop vanishes owing
to the fact jΨ1,Ψ2

is a closed one–form (cf. Eq. (34). It follows the integrals
of jΨ1,Ψ2

over γ and over γ′ are equal. By choosing γ(s) = (s,0) we have
γ̇(s)

α
ωα = 1, therefore the scalar product is positive definite and thus it defines

a pre–Hilbert structure on D(Υ).

�

4.2 Poincaré invariance

Our presentation will be here more sketchy than in the previous sections and
we will use the shortcuts, the notation and the rigor typical for the papers on
theoretical physics.

The Poincaré group SO0(m, 1)sR
m+1 acts on the bundle P of orthonormal

frames of the Minkowski space by bundle automorphims that preserve the flat
connection. Therefore it acts on the space of solutions of the field equations (39)
preserving the invariant scalar product (41). It is instructive to see this action
explicitly and to identify the infinitesimal generators of this action in terms of
the Hilbert space L2(R, Sm−1) of initial data on the x0 axis of a fixed Lorentz
reference frame.

18



The simplest way to obtain the explicit expressions for the group action is
by using the formulation (c) of Proposition 4. For simplicity we will use the
symbol Ψ(x;ω) (resp. Ψ(x,ω)) to denote Ψ̂ (resp. the restriction of Ψ̂ to the
section ω0 = 1 of the positive light–cone C∗).

4.2.1 Lorentz invariance

Let φΛ : M →M be a Lorentz transformation:

φΛ(x)µ = Λµ
ν x

ν , Λ ∈ SO0(m, 1). (42)

This transformation induces the action on C+∗, which we will denote by the
same symbol, φΛ(ω)µ = ωνΛ−1ν

µ. If Ψ(x;ω) is a solution of the field equations
(39) then the transformed solution UΛΨ is given by:

(UΛΨ)(xµ;ωα) = (φΛ−1∗Ψ)(xµ;ωα) = Ψ(Λ−1µ
ν x

ν ; (ωΛ)α). (43)

The next step is to set ω = (1,ω) and to write

ωβΛβ
α = ωαΛα

0

ωβΛβ
α

ωαΛα
0

. (44)

The fraction term is on the section of the light–cone by the plane ω0 = 1 and
its space part is, taking into account Eq. (10), equal to ̺Λ−1(ω). On the other
hand, as a function of ω, the function Ψ is homogeneous of degree −m

2 . Therefore
we have that

(UΛΨ)(xµ;ω) = ((ωΛ)0)−m/2 Ψ(Λ−1µ
ν x

ν ; ̺Λ−1(ω)). (45)

Now we restrict (UΛΨ)(xµ, ωα) to the x0 axis xi = 0. We have then Λ−10
ν x

ν =

Λ−10
0 x

0, and yi
def
= Λ−1i

ν x
ν = Λ−1i

0 x
0, therefore

(UΛΨ)(x0,0;ω) = ((ωΛ)0)−m/2 Ψ
(

(Λ−10
0x

0,y; ̺Λ−1(ω)
)

(46)

Since Ψ is a solution of the field equations, we can use the propagation formula
(40) to obtain the following formula on the x0 axis:

(UΛΨ)(x0;ω) = ((ωΛ)0)−m/2Ψ(Λ−10
0x

0 + ̺Λ−1(ω) · y; ̺Λ−1(ω)) (47)

We now compute the term

A = ̺Λ−1(ω) · y =
(ωΛ)i
(ωΛ)0

Λ−1i
0x

0. (48)

Notice that we have:

ωαΛα
iΛ

−1i
0 = ωα(Λα

βΛ−1β
0 − Λα

0Λ−10
0)

= ωα(δα0 − Λα
0Λ−10

0)

= 1 − (ωΛ)0Λ−10
0.
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Therefore

A =
x0

(ωΛ)0
− Λ−10

0x
0,

which gives us the final expression for the Lorentz transformed solution in terms
of the initial data:

(UΛΨ)(x0;ω) = ((ωΛ)0)−m/2 Ψ

(

x0

(ωΛ)0
; ̺Λ−1(ω)

)

. (49)

While the invariance of the scalar product (41) follows from our geometrical
considerations, because of rather non–standard nature of the transformations,
it is instructive to verify the unitarity of UΛ directly.

Proposition 8 Transformations UΛ given by Eq. (49) preserve the scalar prod-
uct (41) on R× Sm−1:

〈Ψ1,Ψ2〉 =

∫

Sm−1

σ0(ω)

∫

∞

−∞

dx0 Ψ1(x
0;ω)Ψ2(x0;ω). (50)

Proof. It is sufficient to show that transformations UΛ preserve the norm. We
have

‖UΛΨ‖2 =

∫

Sm−1

σ0(ω)

∫

∞

−∞

dx0 (ωΛ)−m
0 Ψ2

(

x0

(ωΛ)0
; ̺Λ−1(ω)

)

.

Introducing a new variable y0 = x0

(ωΛ)0
, dx0 = (ωΛ)0 dy0, we obtain

‖UΛΨ‖2 =

∫

Sm−1

σ0(ω)

∫

∞

−∞

dy0 (ωΛ)−m+1
0 Ψ2

(

y0; ̺Λ−1(ω)
)

.

We can now introduce a new variable ω
′ = ̺Λ−1(ω). Taking into account the

fact that owing to the Eq. (19) we have

(ωΛ)−m+1
0 σ0(ω) = γ(Λ−1,ω)1−mσ0(ω) = σ0(ω′),

which completes the demonstration.

�

4.2.2 Translation invariance

The action of time translations is evidently unitary, therefore we need to consider
only space translations, With a ∈ R

m we have

(UaΨ)(x0;ω) = Ψ(x0,−a;ω) = Ψ(x0 − a · ω;ω). (51)

The unitarity follows from translation invariance of the Lebesgue measure dx0.
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