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Abstract

A spherically symmetric charged ideal fluid solution of Einstein field
equation is given in the presence of the cosmological constant and
two well known example of this type of solution is presented. If the
matter is confined in a region, the exterior spacetime is considered as
RN-de Sitter (Reissner-Nordström de Sitter) and to complete solution
matching conditions are examined. We show that the function which
is related to the dynamics of the system will determine the fate of
the system: expansion, contraction or bouncing situations may oc-
cur for different configurations. The initial conditions of the matter
determine the final form of the system and therefore the nature of
the singularities in the presence of the electric charge and the cosmo-
logical constant is examined to reveal their effects on the singularity
formation during collapse.
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1 Introduction

Cosmological observations indicate that the expansion of the universe is ac-

celerating. A simple phenomenological interpretation of the data in terms of

dark energy has been successful thus far [1]; dark energy is assumed to have

negative pressure, unlike ordinary mass-energy, and thus leads to a negative

force that may account for the acceleration of the universe. Recent obser-

vations indicate that universe is dominated by dark energy (∼ 70%), which

can be thought of as a perfect fluid with an energy-momentum tensor given

by

T µν
D = (µD + pD) u

µuν + pD gµν, (1)

where µD+pD = 0 and pD < 0. The inclusion of source term (1) in Einstein’s

field equations amounts simply to a cosmological constant Λ given by

Λ = −pD > 0. In this way, dark energy may be represented by a positive

cosmological constant Λ in the Einstein field equations

Rµν −
1

2
gµνR + Λgµν = Tµν . (2)

The cosmological constant has a long history in Newtonian and relativistic

gravity theories. It was introduced into general relativity by Einstein as a

means of balancing the gravitational attraction of the matter on cosmological

scales, leading to the Einstein static universe model. Alternatively, it can be

thought of as a measure of the energy density of the vacuum.

In this paper the gravitational motion of charged matter is considered

in the presence of a cosmological constant. To simplify matters, a perfect

fluid distribution is considered that is electrically charged and undergoes

spherically symmetric collapse or expansion in the absence of external fields.
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The exterior field is given by the Reissner-Nordström-de Sitter metric

ds2 = −(1−2M

r̂
+
Q2

r̂2
−Λ

3
r̂2)dt̂2+

dr̂2

(1− 2M

r̂
+

Q2

r̂2
− Λ

3
r̂2)

+ r̂2(dθ̂2+sin2 θ̂dφ2)

(3)

where M is the net mass and Q is the net charge of the system and Λ is the

cosmological constant of the RN-de Sitter spacetime.

The gravitational collapse phenomena is still open problem in the general

relativity and it has not been taken its final form yet. Throughout the studies

it is shown that the initial conditions are determinative of the final fate of

the collapse [2]. If the collapse can not be stopped in an equilibrium state

and allows to formation of the singularities as a result, the end state of

the collapse can either be black hole or naked singularity depending on the

character of the singularities. If all singularities are hidden behind an event

horizon singularities can not be seen by distant observer and the end state

becomes ”a black hole”, or if the singularities are bare and can be visible by

distant observer, the end state becomes ”naked singularity” [2].

One of the physical features affected on the gravitational collapse is shear.

In [3], shear effects on the gravitational collapse of the spherical massive cloud

with non-radial pressure are studied and shown that sufficiently strong shear

effects near singularity delay the formation of the apparent horizon and allow

the formation of the naked singularity.

In [4] effects of the cosmological constant on the gravitational collapse

of the pressureless matter is studied and shown that positive gravitational

constant plays repulsive role and slows down the collapse process.

As a property of matter how does electric charge affect the collapse phe-

nomenon? This question finds some answers through the following papers

and needs to be completed. A solution for the spherical symmetric charged
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stars are considered in point of view formation of the black holes and voids

in [5]. In [6] , the gravitational collapse of the spherical symmetric charged

radiating Vaidya-RN type spacetimes are studied. To avoid singularities due

to charge of the matter in spherical symmetric collapse is examined in [7]. As

a stellar model, relativistic structure, stability and gravitational collapse of

the charged fluid is studied in [8], the specific values of the electric charge of

the fluid allows formation of naked singularity besides black hole formation.

A spherically symmetric charged ideal fluid is examined in [9] due course of

gravitational collapse. Similar to solution presented in [9], in this work, we

give a solution of Einstein field equations in de Sitter spacetime which is in

isotropic form. Furthermore, we examine the effects of the electric charge on

the collapse phenomenon in the presence of the cosmological constant.

In the following section, a spherically symmetric solution of the Einstein-

Maxwell equations is given in the presence of the cosmological constant. The

exterior spacetime of the charged fluid sphere is considered the RN-de Sitter

spacetime and matching conditions about two distinct (interior and exterior)

regions are examined in section 3. Two well known examples of this type

of solutions, RN-de Sitter and Mc Vittie-de Sitter are given. Section 4 is

devoted to the gravitational collapse of the charged fluid and formation of

the singularities. Since the co-moving character of the spacetime may give

coordinate dependent results, it is necessary to use coordinate free ”null

geodesics method” where the nature of the singularities does not change its

character. Therefore, the nature of the singularities are investigated null

geodesic method. Throughout the paper we use units such that c = 1 and

(8πG = 1).
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2 Interior solution

Imagine a co-moving system of coordinate for the interior (t, ρ, θ, φ) that

remains at rest with the moving charged matter and is given by

ds2 = −a2 dt2 + b2 dρ2 +R2 ρ2dθ2 +R2 ρ2 sin2 θdφ2 (4)

where a = a(t, ρ), b = b(t, ρ) and R = R(t, ρ) are arbitrary positive functions

of time coordinate t and radial coordinate ρ. To consider shear free motion

of the matter that is the ideal fluid, we take R = ρ b(t, ρ). (4) is assumed

to be the solution of the field equations (2) with a cosmological constant Λ0

and a source Tµν = Tm
µν + T em

µν , where

Tm
µν = (µ+ p) uµuν + p gµν (5)

and the electromagnetic energy-momentum tensor is defined by

T em
µν = 2(gαβFαµFβν −

1

4
gµνFαβF

αβ) . (6)

Here electromagnetic field tensor is Fµν = ∂νAµ − ∂µAν and Aµ is the vector

potential. The spherical symmetry of the spacetime ensures existence of a

radial electric field in general.

After a suitable choice of the gauge is Ai = 0, At = Φ(t, ρ) chosen, ac-

cording to the metric (4) the only non-zero component of Fµν becomes

Ftρ = −∂Φ/∂ρ . Then, non-vanishing components of the electromagnetic

energy momentum tensor for the spacetime with the gauge chosen above are

given by

T t
t = − q2

ρ4 b4
,

T t
t = T ρ

ρ = −T θ
θ = −T φ

φ (7)
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where q is the total charge of the fluid. It is easily seen that T = tr T ν
µ = 0

as expected. The Maxwell equations

∂

∂xµ
[
√−gF νµ] = 4π

√−gJν (8)

with
√−g = ab3ρ2 sin θ for the spacetime (4) become

∂

∂t

(

b

a

∂Φ

∂ρ

)

= 0 . (9)

It is seen that total charge q defined by

b

a

∂Φ

∂ρ
=

q

ρ2
(10)

is independent of time and related to the charge density ζ by the equation

dq

dρ
= 4πρ2b3ζ. (11)

The electric current is given by J t = ζut in terms of the electric charge density

and 4-velocity ut = a−1. Since the total energy momentum tensor is the sum

of the electromagnetic T em
µν and matter part Tm

µν , the total energy-momentum

components will be obtained as

Tt
t = −µ− q2

ρ4 b4
, Tρ

ρ = p− q2

ρ4 b4
,

Tθ
θ = p+

q2

ρ4 b4
, Tφ

φ = p+
q2

ρ4 b4
(12)

where µ are p are the matter-energy density and pressure respectively. It is

supposed that the matter field satisfies the weak energy condition. For any

timelike vector vµ

Tm
µν v

µ vν ≥ 0 (13)

which gives

µ ≥ 0, µ+ p ≥ 0 . (14)
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Furthermore, the conservation of the energy uµT
µν

; ν = 0 gives the relation

1

(µ+ p)

∂µ

∂t
= − 3

b

∂b

∂t
. (15)

Now we are going to examine the geometry part of the problem given

by the metric (4) and consider the Einstein tensor Gµν = Rµν − Rgµν/2 as

follows

Gtt = 3
ḃ2

b2
− a2

b2



2
b′′

b
−
(

b′

b

)2

+
4

ρ

b ′

b





Gtρ = −2a

(

ḃ

ab

)′

Gρρ =

(

b ′

b

)2

+ 2
a′

a

b′

b
+

2

ρ

(

b′

b
+

a′

a

)

− b2

a2

(

2
b̈

b
+

ḃ2

b2
− 2

ȧ

a

ḃ

b

)

Gθθ = ρ2
[

1

ρ

(

a′

a
+

b′

b

)

+
a′′

a
+

b′′

b
− b′2

b2
+

b2

a2

(

2
ȧ

a

ḃ

b
− ḃ2

b2
− 2

b̈

b

)]

Gφφ = sin2 θ Gθθ. (16)

where “dot” and “prime” represent derivatives with respect to t and ρ, re-

spectively.

By using the energy-momentum tensor of the fluid obtained in (12), the

field equations (2) take the form

Gtρ = 0 , (17)

1

a2
Gtt − Λ0 = µ+

q2

ρ4 b4
, (18)

1

b2
Gρρ + Λ0 = p− q2

ρ4 b4
, (19)

Gρρ −
1

ρ2
Gθθ = − 2 q2

ρ4 b2
(20)
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where Λ0 is the cosmological constant for the interior region. For the sake of

the generality, the cosmological constant of the interior region Λ0 is taken to

be different from the cosmological constant of the exterior region Λ in the

beginning.

Then, the trace of field equations becomes

(3p− µ)− 2

b2

(

a′′

a
+

a′ b′

a b
− b′2

b2
+

2b′′

b
+

2a′

a ρ
+

4b′

b ρ

)

− 6

a2

(

ȧ ḃ

a b
− ḃ2

b2
− b̈

b

)

= 4Λ0 .

(21)

Equation (17) has the solution

ḃ = a b k(t) , (22)

where k(t) is an arbitrary function of time, then equation (20) becomes

(

a′′

a
+

b′′

b

)

−
(

1

ρ
+ 2

b′

b

)(

a′

a
+

b′

b

)

=
2 q2

b2ρ4
. (23)

A solution of the full Einstein field equations can be found by following the

method given in the reference [9] as follows:

a =
1− ν λ2

r2

1 +
λ

r
+

ν λ2

r2

, b =
1

W 1/2

λ0

λ
r (1 +

λ

r
+

ν λ2

r2
) (24)

where ν =
1

4

(

1− η0
2

λ0
2

)

, λ(t) =
λ0

f(t)
, W = (α− γr2)(δr2 − β)

and (αδ − βγ) > 0. α, β, δ, γ, η0 are all real and λ0 > 0, ν ≥ 0 are pos-

itive constants. Moreover, f(t) is positive arbitrary function of time and

cosmological constant Λ0 .
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Since the radial coordinate transformation does not change the co-moving

character of the metric, for the sake of the brevity, we used the transformation

r =

(

αρ2 + β

γρ2 + δ

)1/2

. (25)

Then, the physical quantities mass-energy density and pressure satisfying

relations (18), (19), can be written in following form

µ = −Λ0 + 3

(

ḟ

f

)2

+
192f 2

(

αβ(−η0
2 + λ0

2) + 2r(αβ + δγr4)λ0f + 4δγr6f 2
)

N4
0

,

p = Λ0 −
r2(5(η20 − λ2

0)− 8rλ0f + 4r2f 2) ḟ 2

f 2N1
− 2N0 f̈

fN1

+
64f 2(αr2 − γ2)3(βr2 − δ)2N2

N5
0N1(αδ − βγ)5r10

(26)

with

N0 = −η0
2 + λ0

2 + 4rλ0f + 4r2f 2 , N1 = η20 − λ2
0 + 4r2f 2 ,

N2 =
1

r14 (β γ − α δ)4

(

4 f 2η0
4(α− r2γ)

6
(β − r2 δ)

2
(4f 2r2 + η0

2 − λ0
2)

+(β γ − α δ)4r4
(

−αβη60 − (2 f r + λ0)
4 (4 f 2 r6 γ δ − αβ λ0

2)

+η0
4 (−4 f 2 r2 (−3αβ + r2 β γ + r2 α δ) + 8 f r α β λ0 + 3αβ λ0

2)

+η0
2(2fr + λ0)

(

8f 3r5(−βγ − αδ + 3 r2 γ δ)

+4 f 2 r2(−4αβ + r2βγ + r2αδ + r4γδ)λ0 − 10 f r α β λ0
2 − 3αβ λ0

3
)))

(27)

and the total charge of the fluid is given by

q =
η0

(αδ − βγ)2r3
(α− γr2)3/2 (δr2 − β)3/2 . (28)
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Consider the spacetime given by the line element (24) describes whole space-

time then, by setting of arbitrary constants (α, β, δ, γ, η0, λ0, ν) and func-

tion of time f in special forms, well known solutions of Einstein field equations

such as RN-de Sitter and charged McVittie solutions can be obtained.

1) RN-de sitter solution.

The line element of the isotropic RN-de Sitter spacetime in [10] is given by

ds2 = −

[

1− m2

w2r2
+

q̃2

w2r2

]2

[

(1 +
m

wr
)2 − q̃2

w2r2

]2 dt
2 + w2

[

(1 +
m

wr
)2 − q̃2

w2r2

]2

(dr2 + r2dθ2 + r2 sin2 θ2dφ2)

(29)

where m is the mass and q̃ is the electric charge of the black hole and w = eH

is function of the Hubble parameter which is in general a function of time.

If we take

f = w = e
√

Λ0/3 t, λ0 = 2m, η0 = 2q̃, α = δ = 1, β = γ = 0 (30)

the line element (24) reduces to isotropic RN-de Sitter line element (29).

In this configuration η0/2 and λ0/2 are considered as total charge and

mass of the black hole, respectively. Since ḟ /f =
√

Λ0/3 > 0 , therefore

ḃ/b > 0 , then the spacetime expands in time and H = const. =
√

Λ0/3

corresponds to the cosmological constant of RN-de Sitter spacetime. Fur-

thermore, since m (or λ0) and q̃ (or η0) are constants, µ = p = 0, are all zero

as expected.

The spacetime (24) contracts only if ḟ /f is negative. If we take f = e−
√

Λ0/3 t,

it will correspond to isotropic RN black hole in anti-de Sitter spacetime. Here
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the physical quantities mass-energy density and the pressure are also zero as

the previous case.

The cosmological constant is the reason of the time evolution of the prob-

lem. Therefore, if we take Λ0 = 0, the contraction (expansion) of the space-

time disappears, it becomes static.

2) Charged McVittie-de Sitter solution.

A perfect fluid solution of Einsteins equations corresponding to the Schwarzschild

field embedded in a RobertsonWalker background is given by McVittie [11].

In expanding universe the McVittie solution represents a white hole, whereas

it represents a black hole in contracting universe [12]. In addition to the re-

pulsive effect of the expansion of the spacetime, the repulsive character of the

electric charges (Coulomb force) of the fluid will be greater in small regions

and will support formation of white hole in the beginning in the McVittie-de

Sitter spacetime.

If we consider (η0 6= 0 β = 0, α and δ positive) in (24), the charged

Mc Vittie-de Sitter solution is obtained and the isotropic metric components

become

a =
4α r2 f 2 + (δ + γ r2) (η0

2 − λ0
2)

4α r2 f 2 + 4 r
√

α(δ + γ r2) f λ0 − (δ + γ r2) (η02 − λ0
2)
,

b =
4α r2 f 2 + 4 r

√

α(δ + γ r2) f λ0 − (δ + γ r2) (η0
2 − λ0

2)

4α r2 (δ + γ r2) f
. (31)

The matter density and the pressure can be written as

µ = −Λ0 + 3

(

ḟ

f

)2

−
128f 3

(

2f(α− r2γ)
6
η0

4 + 3r5α4γδ3(2fr + λ0)
3 + r4α4δ3η0

2 (2f (α− 4r2γ)− 3rγλ0)
)

α4δ2
(

η02 − (2fr + λ0)
2
)4

11



p = Λ0 −
256 f 4 δ γ r6

N1N2
0

+

(

ḟ

f 2

)

5(λ2
0 − η20) + 8rλ0 f − 4 r2 f 2

N1
− 2

(

f̈

f

)

N3
0

N1

(32)

and the charge becomes

q =
η0

α2δ1/2
(α− γ r2)3/2. (33)

By taking cosmological constant Λ0 = 0, and electric charge η0 = 0 , un-

charged ordinary McVittie solution can be recovered

a =
−2

√
α rf +

√
δ + γr2 λ0

2
√
α rf +

√
δ + γr2 λ0

, b =
2
√
α rf +

√
δ + γr2 λ0

4α r2(δ + γr2) f
. (34)

Mass-energy density and the pressure of the fluid become

µ = 3

(

ḟ

f

)2

+
384λ0 δ γ r

5 f 3

(2rf − λ0)3(2rf + λ0)3
,

p =
256 δ γ r6 f 4

(2rf − λ0)(2rf + λ0)5
+

(

ḟ

f 2

)

5λ0 + 8λ0 r f − 4r2 f 2

(2rf − λ0)(2rf + λ0)
− 2

(

f̈

f

)

(2rf + λ0)
5

(2rf − λ0)
.

(35)

Now let us consider the charged fluid is confined in a region in which dynam-

ical evolution of the system is described by the time dependent function f(t)

and the exterior spacetime to the confined matter is RN-de Sitter. Exterior

and interior regions separate the spacetime into two distinct parts such that

they meet on the boundary surface. To complete the solution, it is neces-

sary to show that the distinct solutions must satisfy boundary conditions on

the boundary surface. In the following section we will investigate matching

conditions.
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3 Matching conditions

Let us consider a spherical boundary surface which divides spacetime into

two distinct four-dimensional manifolds which admit Σ as their boundaries

at rΣ = bρΣ = r̂Σ = const..

Let t̂, r̂, θ̂, φ̂ be the Reissner-Nordström de Sitter coordinates for the

matter-free region. Then, the metric is

ds2+ = −Adt̂2 + A−1dr̂2 + r̂2(dθ̂2 + sin2 θ̂ dφ̂2) (36)

where

A = 1− 2M

r̂
+

Q2

r̂2
− Λ

3
r̂2

with the interior metric is in original form and given by

ds2
−
= −a2 dt2 + b2 dρ2 + b2 ρ2(dθ2 + sin2 θ dφ2) (37)

where a and b are functions of coordinates ρ and t. Under the coordinate

transformations

θ̂ = θ, φ̂ = φ (38)

motion of the boundary surface can be given by the following equations

f+ : r̂ − r̂Σ(t̂) = 0, f− : ρ− ρΣ = 0. (39)

To match the exterior spacetime with the interior spacetime we use the Israel

junction conditions [13]. These conditions require the interior and exterior

solutions of the gravitational field equations to be joined smoothly up to a

coordinate transformation but the partial derivatives may change discontin-

uously across the boundary surface of the matter.
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Let ds2Σ be the line element of the boundary surface Σ, ds2+ represent the

exterior and ds2
−
represent the interior spacetime line elements. The junction

conditions which state the equality of the first fundamental forms and the

discontinuity of the second fundamental forms can be given as

ds2Σ = ds2
−
|Σ = ds2+|Σ ,

K+
ij −K−

ij − gij K = τij (40)

where K = gij
(

K+
ij −K−

ij

)

and τij is the surface energy momentum tensor.

In case of vanishing surface energy momentum tensor i.e. for τij = 0, the

discontinuity condition reduces to the equality of forms i.e., equality of the

extrinsic curvatures

K+
ij = K−

ij . (41)

The continuity of the metric components in (40) at ρ = ρΣ on the boundary

surface gives the following relations

r̂Σ = ρΣ b(t, ρΣ) , dτ = a(t, ρΣ) dt , (42)

dτ =

√

√

√

√A(r̂Σ)−
1

A(r̂Σ)

(

dr̂Σ

dt̂

)2

dt̂, (43)

and

d r̂

dτ
= ρ

db

dτ
=

ρ

a

db

dt
|Σ, (44)

(

dτ

dt̂

)2

=
A2

A+ (dr̂/dτ )2
|Σ . (45)

The non-zero second fundamental forms for the interior and the exterior

regions are given by

K−

θθ = sin2 θ K−

φφ = ρ (b ρ)′ (46)

14



K+
θθ = sin2 θ K+

φφ =
r̂ A

√

√

√

√A− 1

A

(

dr̂

dt̂

)2
(47)

and

K−

ττ = − a′

a b
(48)

K+
ττ =

dr̂

dτ

d2t̂

dτ 2
− dt̂

dτ

d2r̂

dτ 2
+

3

2A

∂A

∂r̂

(

dr̂

dτ

)2
dt̂

dτ
− A

2

∂A

∂r̂

(

dt̂

dτ

)3

.(49)

By using the equality of the angular components of the second fundamental

forms (46, 47) we obtain the following relations

A r̂
dt̂

dτ
= ρ (b ρ)′ , (50)

A =

(

ρ

b

∂b

∂ρ
+ 1

)2

− ρ2

a2

(

∂b

∂t

)2

. (51)

Since b is function of time dependent function f , (51) gives a condition that

f should satisfy at any time t . Furthermore, the equality of the timelike

components of the extrinsic curvatures, (48) with (49), gives

(Adt̂/dτ),τ
dr̂/dτ

=
1

ab

∂a

∂ρ
, (52)

in other words it corresponds to Gtρ = 0 that is, no new information is

obtained from timelike components of K±

µν . Since the radial pressure of the

fluid is zero on the boundary surface, this condition reduces to the continuity

of the energy momentum tensors in radial direction T ρ
ρ = T r̂

r̂ |Σ which gives

p(t, ρ)− Λ0 =
q2(ρ)−Q2

b4 ρ4
− Λ . (53)

For the sake of the generality we started with different cosmological constants

for interior and exterior regions, but the continuity of the energy momentum
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tensor in the radial direction compels their equality “Λ0 = Λ” . Then, the

electric charge distribution can be written as

q =







η0W
3/2
Σ /∆2ρ3Σ = Q ρ ≥ ρΣ

η0W
3/2/∆2ρ3 ρ < ρΣ

where Q is the total electric charge of the fluid confined in the region ρ ≤ ρΣ,

and WΣ is the value of W at ρ = ρΣ given by (24).

4 Gravitational collapse

If the collapse phenomena allows their formation two types of singularities

may form during collapse: physical and spacetime singularities [2]. Physical

singularities make physical quantities (such as mass-energy density, pressure)

singular and the space-time singularities make the metric components and

the curvature indefinite. In the gravitational collapse manner, among the

spacetime singularities the shell focusing and shell crossing singularities are

being considered. The shell crossing singularity occurs at distances where

change of the radius of the fluid sphere in radial direction is zero R′ = 0

(with R > 0), and the shell focusing singularity forms at distances which

make radius of the fluid sphere zero (R → 0). The shell crossing singularities

can be considered weak with respect to the shell focusing singularity in the

gravitational collapse treatment [14]. Therefore, we are only interested in

the formation of the shell focusing singularity, i.e., R → 0 as ρ → 0 with

R′ > 0 .

In the literature many factors effective on the formation of the naked

singularities are examined [2], [3], [15] and it is pointed out that, one way

of a singularity to be naked is to disturb the apparent horizon surface and

delay its formation [3]. According to the idea, if the trapped surface forms
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before the singularity surface then, the singularity becomes hidden inside a

black hole. Otherwise, the trapped surface forms after the singularity surface

and the singularity becomes naked. In another words, if the time period for

the formation of the event horizon is longer than the time period for the

formation of the singularities, singularities become bare and they can be

seen by distant observer. This criterion is probably easy and efficient, but

it is not clear if this is always equivalent to naked singularity formation and

in a way it is coordinate dependent statement. In one coordinate system

these two timings may be related in a certain way, but may not be related in

another coordinate system. Therefore, the coordinate independent and a full

proof condition ”the families of null geodesics come out of the singularity”

should be examined [2]. We will give this analysis in the next section.

Let us write metric components of (24) in the radial coordinates ρ ex-

plicitly to examine under which circumstances the situation corresponds to

collapse, expansion or bounce

a =
4f 2(αρ2 + β)− (λ2

0 − η20) (γρ
2 + δ)

4f 2(αρ2 + β) + 4f λ0

√

(αρ2 + β)(γρ2 + δ) + (λ2
0 − η20) (γρ

2 + δ)
,

b =
4f 2(αρ2 + β) + 4f λ0

√

(αρ2 + β)(γρ2 + δ) + (λ2
0 − η20) (γρ

2 + δ)

4f (αρ2 + β)(γρ2 + δ)

(54)

and define the physical radius R, the radius of 2-sphere

R = b ρ = ρ
4f 2(αρ2 + β) + 4f λ0

√

(αρ2 + β)(γρ2 + δ) + (λ2
0 − η20) (γρ

2 + δ)

4f (αρ2 + β)(γρ2 + δ)
.

(55)

As the radial coordinate ρ → 0 the physical radius shrinks to zero. We know

that if the spacetime is in the isotropic form the shear tensor is zero then it
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reduces to
Ṙ

R
=

ḃ

b
. (56)

By means of shear free property of the spacetime, the change of rate of the

physical radius that is, the expansion rate of the spacetime is given by

θ =
3

a

Ṙ

R
=

3ḟ

f
. (57)

This equality states the dynamics of this isotropic collapse problem is related

to ratio ḟ /f , and collapse (expansion) situation can only occur for the neg-

ative (positive) values of ḟ /f . Since f is a positive function of time, only if

ḟ < 0 (> 0) the negative (positive) expansion rate corresponds to contract-

ing (expanding) physical radius R . If ḟ < 0 changes its sign after a time

period then, it is called bounce. ḟ = 0 will be static solution. The time

evolution of the physical radius is explicitly written by

Ṙ

R
=

a ḟ

f
=

ḟ

f

4f 2(αρ2 + β)− (λ2
0 − η20) (γρ

2 + δ)

4f 2 (αρ2 + β) + 4f λ0

√

(αρ2 + β)(γρ2 + δ) + (λ2
0 − η20) (γρ

2 + δ)
.

(58)

from equations (56) and (57). By analyzing the time dependency of the R we

see that four different situation can be obtained: collapse, expansion, stable

and bouncing cases.

In the literature it is shown that positive cosmological constant delays

the formation of the singularities [16, 4]. By considering slowing down effect

of the positive cosmological constant on the collapse process let us take time

dependent function as f = e−(c−
√

Λ0/3) t where c is a positive constant. Since

Ṙ/R = −(c −
√

Λ0/3) a, with
√
gtt = a > 0, the expansion (contraction)

becomes dependent directly to the values of the cosmological constant Λ0. If

3c2 > Λ0 the collapse will continue to a certain radius and be stopped by the
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Coulomb’s repulsive force by the charge and it will reach to the central point

for uncharged matter. If 3c2 < Λ0 radius will expand until it reaches to the

boundary of the exterior region that is to the apparent horizon stated by the

matching condition (51) . Furtheremore 3c2 = Λ0 corresponds to static case.

In this example all three possible situations are obtained: expansion, crunch

and stable cases.

If the cosmological constant effects are dominant in the dynamics, it will

be more convenient to choose sample function as f = ec t−
√

Λ0/3 t2 (t ≥ 0 ) to

emphasize the cosmological constant dependency. In this model the change

of the radius with time Ṙ/R = (−c + 2Λ0 t) a, a > 0, is positive in the

beginning and negative for late time t. It means that the radius of the fluid

will decrease with time and after a period of time, here for t ≥ c
√

3/4Λ0 , the

radius will start to increase so, ”bounce” situation is obtained. a = 0 case

will be examined in the following part in details.

Physical singularities.

When pressures are non-zero, dynamical evolutions, as allowed by the Ein-

stein equations, are equally important as the initial data is to determine the

final fate of collapse. [17] . Dust solution of the gravitational problem is

highly important, but the isotropic form of the spacetime and set up of the

problem does not give the dust solution consistent with the conditions.

When their singularities are examined, it is seen that matter and charge

densities (26, 28) are regular everywhere but the pressure which is subjected

to the the weak energy condition (14) and satisfying the energy conservation

condition (15)

p = −(µ+
1

3

µ̇

a

ḟ

f
) (59)

diverges at the distance ρ = ρs which makes the metric component
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a =
√
gtt = 0

4f 2(αρ2 + β)− (λ2
0 − η20) (γρ

2 + δ) = 0, or ρs =

√

√

√

√

−4β f 2 + δ(λ2
0 − η20)

4α f 2 − γ(λ2
0 − η20)

.(60)

At ρs the physical region is split into two parts i.e. matter part is confined

in ρ ≤ ρs and exterior part starts from ρ > ρs where a is non-negative.

One may think that the physical singularity starts from the origin which

makes ρs = 0 (60). But it can not be allowed due to Coulomb’s repulsive force

of the fluid, or the fluid can only be compressed to a radius at which Coulomb

interactions balance the the gravitational collapse effects. This restriction can

be seen from conservation relation (15), that is time derivative of µ must be

positive. By taking the charge parameter limit highly big values (η0 → ∞ )

in µ̇, it gives us a relation to be satisfied by f

ḟ

f

(

ḟ

f

).

≥ 0 . (61)

Since f > 0 and ḟ /f < 0 for all t, that is f is decreasing function with

time, then the equation is always negative or zero. Zero case corresponds

to static solution but for the collapse situation we get only negative values.

Thus, existence of the electric charge violates the conservation of the energy

momentum for ρ → 0 . In other words, The conservation of the energy-

momentum does not allow formation of the shell focusing singularity. For

uncharged fluid η0 = 0, the central singularity can be reached and f =
√

δλ2
0/4β gives us shell focusing singularity formation period f .

For example, if we take time dependent function for neutral matter as

f = e−(c−
√

Λ/3) t , c > 0 with β = γ = 0 in (60) , the pressure will be singular

at the radial distance ρs ∼ f−1 = e(c−
√

Λ0/3) t which means singularity will

form later than Λ0 free case but the radius of the singularity surface will be

greater than that of Λ0.
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Spacetime singularities.

The Kretschmann scalar which is the square of the Riemann tensor and

defined by K = Rµνλσ R
µνλσ gives the essential, coordinate independent sin-

gularities of the spacetime. For the spherically symmetric isotropic spacetime

it can be given as

K =
1

a6 b8 ρ2

[

12a4ρ2b′
2
(a2b′

2
+ b2a′

2
) + 8b2a4(3a2b′

2
+ b2a′

2
)

+12b4ρ2ḃ2(a2ḃ2 + b2ȧ2) + 8a2b4ρ2ȧḃ(a′b′ + ba′′)− 8a2b2ρ2ḃ2(a2b′ 2 + 2b2a′ 2)

−16a2b3ρa′ḃ(2aρḃb′ − b2ȧ) + 8a4b3ρa′b′(2a′ − ρb′′) + 32a4b3ρb′ḃ(ρḃ′ − ḃ)

+12ab6ρ2b̈(ab̈− 2ȧḃ) + 8a6b2ρb′′(ρ+ 2b′) + 4a3b4ρ2a′′(aa′′ − 2bb̈)

−16a4bρ2b′′(a2b′ 2 + b2ḃ2)− 8a3b4ρb̈a′(ρb′ + 2ba′) + 16a3b4bρ2ḃ′(2ḃa′ − aḃ′)
]

.

(62)

K has polynomial singularities in a, b, ρ and divergent as
√
gtt = a → 0

(physical singularity), or ρ → 0 , R = bρ → 0 (central singularity) .

If the future directed non-spacelike (timelike or null) curves terminate in

the past at the singularity then the singularity is called naked otherwise it

is covered. The procedure is coordinate-free method. To clarify the nature

of the singularities the future directed non-spacelike geodesics are examined,

specially null geodesics [2, 14] . Outgoing radial null geodesics of the isotropic

spacetime (4) are given by
dt

dρ
=

b

a
. (63)

If null geodesic equation is written in terms of physical radius R and u = ρα

we get
dR

du
=

R′

αρα−1

(

1 +
b

a

Ṙ

R′

)

. (64)
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The singularity is naked if the null geodesics terminate in the past at the

singularity with positive finite value and it is hidden or covered if the limit

lim
ρ→ρs

dR

du
= lim

ρ→ρs

R′

αρα−1

(

1 +
b

a

Ṙ

R′

)

(65)

is negative. As stated before, the existence of the electric charge restricts the

formation of the central singularity, only uncharged matter collapse (η0 = 0)

ends with central singularity. If all constants about the fluid defined in (24)

are non-zero except η0 = 0 and for a 6= 0 singularity starts from origin. The

second term in the parenthesis becomes zero as ρs → 0 since R′ > 0 and

Ṙ = ρ ḃ. Therefore, limit becomes positive and equal to 1, then the central

singularity is naked. If we take η0 = β = γ = 0 in (60) at which a = 0

singularity forms at ρs =
√

δλ2
0/4αf

2 . In this limit the (65), therefore the

nature of the singularity becomes parameter dependent.

In this case the limit becomes related to the sign of the time derivative of

f and the constant α as sgn(ḟ)/sgn(α) . For (α > 0, ḟ > 0) or (α < 0, ḟ < 0

with δ < 0), limit becomes positive and therefore the central singularity

becomes naked. But, for (α > 0, ḟ < 0) or (α < 0, ḟ > 0 with δ < 0)

limit is negative therefore, the central singularity is covered. It is possible

to give a lot of example such f functions so that sgnḟ changes with time

during process other than f = ec t−
√

Λ0/3 t2 where ”bounce” situation occurs.

Otherwise the process will be collapse or expansion.

Furthermore, it should be also emphasize that the physical singularity

(a → 0 singularity) coincides with the apparent horizon for the extremal

case λ0 = η0 and β = 0 . Apparent horizon is the boundary surface of the

trapped regions and makes (51) zero

A = b−2R ′2 − a−2Ṙ2 = 0 . (66)
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5 Conclusion

In this work spherical symmetric charged solution of Einstein field equations

is given in the presence of cosmological constant. The matter is considered as

ideal fluid and subjected to the weak energy condition. Two specific examples

of this type of solution isotropic RN-(anti)de Sitter and charged Mc Vittie-

de Sitter solutions are given. When the matter is confined in a region, the

exterior spacetime exterior is taken RN-de Sitter and to complete analysis

the matching conditions are examined. In these calculations, in the name

of the generality, we started with the different cosmological constant for the

interior Λ0 and exterior Λ regions but the junction conditions, continuity of

the energy-momentum tensor in the radial direction gives their equality.

In the reference [9], spherical symmetric gravitational collapse of charged

fluid is studied in black hole formation point of view, that is, strong cosmic

censorship hypothesis is considered. In this work, by considering weak cos-

mic censorship hypothesis we see that besides formation of the black hole

the process allows formation of the naked singularity and the existence of

the cosmological constant permits bouncing situations as well. The singular-

ity structure analysis is done by using coordinate free null geodesic method.

The initial data about the matter (energy density, pressure and the elec-

tric charge) therefore, constants about the solution determine the final fate

of the collapse. Existence of the electric charge prevents formation of the

central singularity and the cosmological constant causes bouncing situation

for both charged and neutral matters. Uncharged matter distribution allows

formation of the central singularity and it will be naked.

The results are compatible with the results given in the literature. For

further studies, the gravitational collapse phenomena can be studied for the
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spacetimes other than isotropic form.
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M. Hortaçsu for his kind interest. This work is partially supported by

TUBITAK.

References

[1] P.J.E., Peebles, B., Ratra, Rev. Mod. Phys. 75 559 (2003); T., Pad-

manabhan, Phys. Rep. 380 235 (2003) hep-th/0212290; V., Sahni,

Class. Quant. Grav. 19 3435 (2002), astro-ph/0202076; S.C., Tiwari, gr-

qc/0310102

[2] R., Goswami, P. S. , Joshi, Class. Quant. Grav. 21 3645 (2004), gr-

qc/0310133; R. Goswami, P. S. Joshi, Phys. Rev. D 69 027502(2004),

gr-qc/0310122; S.S. Deshingkar, P.S. Joshi, I.H. Dwivedi, Phys. Rev. D

65 084009(2002), gr-qc/0111053; A. Ilha, A. Kleber, J.P.S. Lemos J.

Math. Phys. 40, 3509 (1999); T.P. Singh, J. Astrophys. Astron. 20

221,(1999), gr-qc/9805066; W. Rudnicki, P. Ziba J. Math. Phys. 40, 3084

(1999); I. H. , Dwivedi, P. S. Joshi, Commun. Math. Phys. 166 117

(1994) gr-qc/9405049; D. M. Eardley, J. Math. Phys. 36, 3004 (1995);

I. H. Dwivedi, P. S. Joshi, Lett. Mat. Phys. 27 235(1993); P. S. Joshi,

I. H. , Dwivedi, Phys. Rev. D 45 2147 (1992); P. S. , Joshi, I. H. Dwivedi,

Commun. Math. Phys. 146 333(1992);

[3] P.J. Joshi, N. Dadhich, R. Maartens, Phys. Rev. D 65 101501 (2002),

gr-qc/0109051

[4] D. Markovic, S.L. Shapiro, Phys. Rev. D 61 084029 (2000), gr-qc/9912066

24



[5] F. Fayos, J.M.M. Senovilla, R. Torres, Class. Quant. Grav. 20 2579(2003),

gr-qc/0206076;

[6] P., Lasky, A., Lun, arXiv:0704.3634

[7] A. Krasinski, K. Bolejko, Physical Review D 73 124033(2006), gr-

qc/0602090

[8] C.R. Ghezzi, Phys. Rev. D 72 104017(2005), gr-qc/0510106

[9] B. Mashhoon, M.H. Partovi, Phys. Rev. D20 2455 (1979)

[10] C.J. Gao, S.N. Zhang, Phys. Lett. B595 28 (2004) gr-qc/0407045

[11] G.C. Mc Vittie, General Relativity and Cosmology, Chapman Hall, Lon-

don (1956); W.G. Unruh Phys. Rev. D40 1048 (1989)

[12] B. Nolan, Class. Quant. Grav. 16 1227(1999)

[13] W. Israel, Nuovo Cimento B44, 1 (1966)

[14] T.P. Singh, Physical Review D 58 024004 (1998), gr-qc/9711049
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