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Abstract

The conversion of positive-frequency waves into negative-frequency waves
at the event horizon is the mechanism at the heart of the Hawking radiation of
black holes. In black-hole analogues, horizons are formed for waves propagat-
ing in a medium against the current when and where the flow exceeds the wave
velocity. We report on the first direct observation of negative-frequency waves
converted from positive-frequency waves in a moving medium. The measured
degree of mode conversion is significantly higher than expected from theory.
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1 Introduction

The theory of Hawking radiation of black holes [1] connects three separate disciplines
of physics — quantum mechanics, general relativity and thermodynamics [2] —
and has been applied to test potential quantum theories of gravity [3, 4]. The
radiation of astrophysical black holes is too feeble to be detectable, but laboratory
analogues [5, 6, 7, 8] of the event horizon may demonstrate the physics behind
Hawking radiation. Most candidates of artificial black holes rely on quantum fluids
[8, 9, 10, 11, 12], but here we report on an experiment with a classical fluid: water
[13]. A horizon is formed when flowing water exceeds the wave velocity. We observed
a key ingredient of the classical mechanism behind Hawking radiation, the generation
of waves with negative frequencies [1, 15, 16]. However, the measured conversion
of positive into negative-frequency waves is significantly higher than expected from
theory [13] for reasons we do not yet understand.
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Figure 1: Tracing wave packets backwards in time at the horizon of a black hole.

Schematic space-time diagram showing a wave packet escaping into space (top), poten-

tially reaching an observer. This wave packet oscillates at positive frequencies, but it

originates from two distinct waves, one with positive and another one with negative fre-

quencies, shown below the escaping wave packet in the space-time diagram (for times in

the past). This mixing of positive and negative frequencies is the classical root of the quan-

tum Hawking radiation [1]. Note that the deflection of the incident waves at the horizon

depends on the dispersion properties of the ”space-time medium” [17, 18, 19, 20, 21]. In

astrophysics, these properties are unknown, in contrast to laboratory analogues.
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In 1974 Hawking [1] predicted that black holes are not black: they radiate. The
event horizon generates pairs of quanta; one particle of each pair emerges into space
while its partner falls into the singularity. The quantum physics of pair creation at
horizons is based on the features of classical wave-packet propagation [14, 15, 16]
as follows: Figure 1 shows a wave packet escaping from the horizon. In a thought
experiment, Hawking [14] traced such wave packets backwards in time and realized
that they originate from two distinct waves: one oscillating with positive frequencies
and another one with negative frequencies. Note that one can visualize negative
frequencies in the way waves propagate in space and time, i.e in space-time diagrams
or videos, but negative frequencies do not directly appear in snapshots of wave
packets. Figure 2 compares the space-time diagrams of ordinary positive-frequency
waves with the behavior of negative-frequency waves. The figure shows that the
lines of equal phase in space-time have negative slopes for negative frequencies, as
we discuss in Sec. 2.

Figure 2: Positive versus negative-frequency waves. The left diagram shows the space-

time diagram of a wave with positive frequency, while the right diagram shows a negative-

frequency wave. Section 2 explains the physics of negative-frequency waves in moving

media. The pictures show space-time diagrams of waves in media moving with uniform

speed. The left diagram displays a wave with positive wavenumber k, whereas the right

diagrams shows a wave with negative k and negative frequency ω′ in the co-moving frame.

The distinction between positive and negative frequencies is important for quan-
tum fields [14, 15, 16]: the positive frequencies distinguish the annihilation and the
negative frequencies the creation operators. A process that mixes positive and neg-
ative frequencies thus creates particles; the horizon spontaneously emits radiation.
Figure 1 illustrates the wave packets of the particles that escape into space; the
particles that fall into the black hole are shown in figure 3. They originate from
mixtures of the two initial wave packets of Figure 1. Therefore the created quanta
appear in entangled pairs, one escaping, the other one falling into the singularity.

Seen from outside, the black hole turns out [14, 15, 16] to emit black-body
radiation with a temperature [1] that is proportional to the surface gravity at the
horizon, or, equivalently, inversely proportional to the size of the black hole, the
Schwarzschild radius. Since Hawking’s prediction, the radiation of horizons has
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Figure 3: Hawking partner. Schematic space-time diagram of a wave packet propagating

against the ”space-time flow” on the other side of the horizon, drifting towards the singu-

larity of the black hole. Like the wave illustrated in Fig. 1 this wave packet originates from

waves with positive and negative frequencies. These waves are mixtures of the escaping

waves of Fig. 1 traced backwards in time; hence the escaping quanta and the in-falling

quanta form entangled partners.

been regarded as a confirmation for black-hole thermodynamics [2] and as a crucial
test case for quantum theories of gravity such as superstring theory [3] and loop
quantum gravity [4].

However, near the event horizon, fields are subject to frequency shifts beyond
the Planck scale [17, 18, 19, 20, 21], as Fig. 1 schematically illustrates: the incident
wave packets oscillate at significantly higher frequencies than the outgoing waves.
The mechanism that could limit the frequency shifting at the horizon of the as-
trophysical black hole is unknown. Hawking radiation may thus depend on as yet
unknown physics or may not exist at all. There is no observational evidence for
Hawking radiation in astrophysics yet; and it seems unlikely that there ever will
be for practical reasons — radiation with characteristic thermal wavelengths in the
order of the Schwarzschild radius, a few km for solar-mass black holes, is obscured
by the cm-waves of the Cosmic Microwave Background.

Astrophysical black holes are too large for noticeable Hawking radiation, but lab-
oratory analogues [5, 6, 8, 7] of black holes offer valuable insights into the mechanism
of radiating horizons. Most analogues are based on a simple idea [8, 9, 10]: black
holes behave like moving fluids. Consider waves with phase velocity c′ in a medium
of flow speed u. If the magnitude of u exceeds c′ waves can no longer propagate
upstream; they are trapped beyond a horizon. The horizon creates wave-quanta
[5, 6, 7, 8], the analogue of Hawking radiation [1], with an effective temperature
that depends on the flow gradient at the horizon, the analogue [5, 6, 7, 8] of the
surface gravity. The radiation is only noticeable if the temperature of the fluid lies
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Figure 4: White-hole horizon. In order to demonstrate in a laboratory setting the tracing

of wave packets backwards in time at a black-hole horizon, one has to time-reverse Fig. 1.

The time-reversed black hole is the white hole. The arrow indicates the direction of the

moving medium that establishes a horizon for counter-propagating waves.

below the effective Hawking temperature. Superfluids [8] like Helium-3 or ultracold
quantum gases [11, 12] may form radiating horizons for their elementary excitations
and so would moving optical media for photons [7, 22].

On the other hand, at the heart of the Hawking effect lies a classical process
that can be demonstrated with classical fluids such as water: the generation of
waves with negative frequencies. For this, one should reproduce the characteristic
behavior of wave packets at horizons traced backwards in time illustrated in Fig.
1. This is possible with a time-reversed black hole — a white-hole horizon — as
shown in Fig. 4. The horizon of the white hole corresponds to the following analogy:
imagine a fast river flowing out into the sea, getting slower. Waves cannot enter the
river beyond the point where the flow speed exceeds the wave velocity; beyond this
point the river resembles an object that nothing can enter, the white hole. Such
wave blocking has been comprehensively studied in the fluid-mechanics literature
[23, 24, 25, 26, 27, 28], but to our knowledge the generation of negative-frequency
waves has never been observed before.
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2 Negative frequencies

What are negative-frequency waves? Consider linear one-dimensional1 wave prop-
agation in a moving medium: a wave with phase ϕ propagates in the x direction
against the flow u. The phase evolves in time t as

ϕ =

∫
(k dx − ω dt) (1)

where k denotes the wavenumber and ω the frequency in the laboratory frame.
Imagine we construct at each point x a frame that is co-moving with the fluid. In
the locally co-moving frames2 dx = dx′+u dt′ and dt = dt′, and so the phase evolves
in terms of the co-moving coordinates as the integral of k dx′ − ω′ dt′ with

ω′ = ω − uk . (2)

Equation (2) simply describes the Doppler effect — waves are frequency-shifted due
to the motion of the medium. In a locally co-moving frame, ω′ can only depend
on the wavenumber k and the properties of the medium, but not explicitly on the
position: ω′ is a function ω′(k) that is given by the dispersion relation. The phase
velocity c′ is defined as ω′/k, whereas the group velocity is

vg =
∂ω

∂k
= v′

g + u , v′

g =
∂ω′

∂k
. (3)

What can we say about the dispersion relation in general? In isotropic media, ω′2

is an even function of k, because waves should be able to propagate in positive
and negative directions in the same way. Without loss of generality we assume
that the medium moves in the negative direction (from the right to the left). In
this case, counter-propagating waves have positive phase velocities c′. Therefore we
take the branch of ω′ where ω′/k is positive, i.e. where c′ is an odd function of k
that is positive for positive k. We also assume that the counter-propagating waves
move with positive group-velocities v′

g in the medium and that the group-velocity
dispersion of the medium is normal, i.e. v′

g monotonically decreases for increasing
|k|. Figure 5 shows our specific case that satisfies these general requirements.

Suppose that the laboratory frequency ω is fixed. The wavenumber k is given by
the Doppler formula (2) and the dispersion relation ω′(k). In general, the solution of
this equation is multi-valued: each frequency ω corresponds to several wavenumbers
k, i.e. to several physically allowed waves. As visualized in Fig. 5, the physically
allowed waves are determined by the points k where the line ω − uk intersects the
curve ω′(k). One of these wavenumbers k is always negative, as Fig. 5 illustrates.
Since ω′ is an odd function of k, the co-moving frequency ω′ must be negative for
negative k, although the frequency ω in the laboratory frame is always positive. We
call waves with negative co-moving frequencies negative-frequency waves. Imagine

1The essential physics of horizons is contained in one-dimensional wave propagation, even in
the case of the three-dimensional black hole, because near horizons the wavelength is dramatically
reduced such that their curvatures are insignificant.

2For simplicity we ignore effects of relativistic velocities.
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we display the wave propagation in a space-time diagram, see Fig. 2. According to
Eq. (1) the lines of constant phase ϕ have positive slopes dt/dx for positive k and
negative slopes for negative k. We regard this behavior as the characteristic feature
of negative-frequency waves.

Figure 5: Doppler formula (2) versus dispersion relation (4) for ω′ plotted in arbitrary

units. The wavenumber ki describes the incident wave, kb the blue-shifted and kh the

Hawking wave with negative wavenumber k and negative frequency ω′.

Figure 5 shows that for negative-frequency waves the slope of the curve ω′(k) is
smaller than the slope of the Doppler line, smaller than −u. As a consequence of
Eq. (3) the group velocity vg in the laboratory frame must be negative. Therefore,
negative-frequency waves cannot be launched directly, but they can be the result of
a mode conversion from incident positive-frequency waves.

3 Water waves

Following a suggestion by Schützhold and Unruh [13], we studied water waves in
the channel schematically shown in Fig. 6. A ramp in the channel creates a gradient
in flow speed. The flowing water forms a white-hole horizon, an object that waves
cannot enter, when the flow |u| matches the group velocity ∂ω′/∂k of the waves.
Water waves — gravity waves — obey the dispersion relation [29]

ω′2 = gk tanh(kh) (4)

where g denotes the gravitational acceleration of the Earth at the water surface
and h is the height of the channel. In the limit of long wavelengths, i.e. small
wavenumbers k, the dispersion relation (4) reduces to ω′2 = gh k2; waves propagate
with c′ =

√
gh. We see from the Doppler formula (2) that, in this limit, ω′ is

connected to ω and k by a quadratic form, which defines a space-time geometry
[30]. A rigorous analysis [13] proves that the propagation of water waves is exactly
equivalent to wave propagation in space-time geometries, as long as |k| is much
smaller than 1/h. So, in our case, the channel height h serves as a simple analogue
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of the Planck scale; waves with wavelengths shorter than h do not experience the
effective space-time geometry anymore. Close to the horizon, the incident waves are
compressed until k reaches the scale of 1/h.

Figure 6: Schematic diagram of the experiment.

To characterize the waves, we use the graphical solution of the Doppler formula
(2) combined with the dispersion relation (4) shown in Fig. 5. For a given positive
frequency ω, either one or three real solutions exist, one negative and possibly two
positive k. Only in the case of a positive solution will the wave-maker launch waves,
because the group velocity (3) of the negative-frequency wave is negative. The
slope of ω′ at the smallest positive k is higher than the slope of the Doppler line
ω − uk. For this wavenumber the group velocity is positive: this k describes the
incident wave. When the incident wave propagates against the rising current, the
slope of the Doppler line rises until the two positive k merge. At this point, the
flow matches the group velocity of the wave. The incident wave is converted into a
short-wavelength wave; it is blue-shifted below the effective Planck scale h. For the
blue-shifted wave, ∂ω′/∂k lies below the flow speed |u|: the blue-shifted wave drifts
back with negative group velocity (3), but k is positive and so is the frequency ω′.
Figure 5 shows that such wave blocking [23, 24, 25, 26, 27, 28] cannot occur below a
critical flow speed. In order to estimate [26] the critical u we replace tanh(kh) in the
dispersion relation (4) by the asymptotic value of 1. A real k ceases to exist when
the discriminant of the resulting quadratic equation vanishes, for |u| = u∗ = g/(4ω).
Since the dispersion curve (4) lies below the asymptotics, this procedure [26] gives
an overestimation of the critical flow speed.

The horizon also converts [19, 20, 21] by tunnelling a part of the incident wave
into the negative-k branch of Fig. 5 that has a positive slope, generating a wave
with negative co-moving frequency, the classical analogue of Hawking radiation. In
fluid dynamics, the blue-shifted waves have been discussed and observed in connec-
tion with wave-blocking [23, 24, 25, 26, 27, 28] but to our knowledge the negative-
frequency waves have neither been theoretically analyzed in the fluid-dynamics lit-
erature nor experimentally observed.

4 Experiment

We performed our experiment at ACRI, a private research company working on
environmental fluid mechanics problems such as coastal engineering. The Génimar
Laboratory, a department of ACRI, features a wave-tank 30m long, 1.8m wide and
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1.8m deep. The wave-maker is of piston-type and can generate waves with periods
ranging from 0.6s to 2.5s with typical amplitudes around 5cm to 30cm. A current can
be superimposed in the same direction as the wave propagation or in the opposite
one, with a maximum flow rate around 1.2m3/s. To generate a water-wave horizon,
we insert a ramp immersed in water, with positive and negative slopes separated by
a flat section; and send on it a train of waves against the reverse fluid flow produced
by the pump. At the place where the flow speed equals the group velocity of the
waves a horizon is created. The geometrical parameters are: maximum water height
1.4m or 1.6m; positive slope 15.5◦; length of the flat part 6m; minimum water height
30cm or 50cm; negative slope 18.5◦. We fix the physical characteristics of the waves,
period and amplitude, and only vary the background flow. We record the waves with
the three video cameras indicated in Fig. 6. As the background velocity is turbulent
(the Reynolds number based on the water height is very large) and varies with
depth, the horizon should be deduced from the mean velocity 〈u(h, t)〉 measured
at the interface between air and water; the brackets denote time averaging. Due
to experimental constraints, we measured the background flow with a MHD sensor
averaged during 10s. The velocity profile on the flat part of the background flow is
plug-like. Our first control parameter is umax, the maximum of the counter-current
plug velocity over the flat part of the geometric profile without water waves. We
have checked that the velocity profiles are similar along a cross section of the tank.
The second control parameter is the period of oscillations of the wave-maker. Both
parameters are displayed in the phase diagram of Fig. 7.

In our experiments, we observed indications of wave conversion in the presence
of horizons, but the cleanest data we obtained was for flow speeds just below the
horizon condition. In this case, the wave conversion still occurs [31], although it is
reduced in magnitude. Without a group-velocity horizon, the flow is much quieter,
wave breaking and turbulence are significantly reduced. Figure 8 shows the space-
time diagrams of two typical cases, one illustrating the conversion into short waves
with positive phase velocity, and the other showing waves with negative frequency
superposed on the incident waves.

5 Numerical simulations

In order to test whether conversion into negative-frequency modes occurs even in
the absence of a horizon, we applied Unruh’s method [19] for numerically simulating
waves in moving media. We consider wave packets propagating against the current
in a simple one-dimensional model for the flow, using periodic boundary conditions,
and analyse the mode conversion. This simulation does not describe the influence
of turbulence, nonlinearity, the three-dimensional aspects of our experiment nor the
variation of the flow with water depth, but it captures the qualitative aspects of the
Hawking effect and proves that the mode conversion can occur without a horizon, a
regime where the experiment is least affected by wave breaking and turbulence. A
related example of Hawking radiation without horizon has been studied before [31]
that qualitatively agrees with our findings, although our case is significantly more
extreme. Figure 9 shows the result of a wave packet interacting with the spatially
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Figure 7: Phase diagram of our experiment. Each circle corresponds to a run with wave

period T = 2π/ω and maximal flow speed umax. The dots indicate runs where we observed

negative-frequency waves, the squares runs with horizons. In regimes without horizons we

saw a transition to mode conversion into purely positive frequencies below the lower dotted

line in the diagram. The points (a) and (b) indicate the parameters used in Fig. 8.

dependent flow given by

u(x) = −u0 − u1[tanh(ax) − tanh(a(x − x0))] ; (5)

the fluid moves left at velocity −u0 at x < 0, decreasing to −u0 − u1 between x = 0
and x = x0 and returning to −u0 at x > x0. Gravity waves with the perturbation
w(t, x) of the velocity potential obey the equation [13]

(∂t + ∂xu)(∂t + u∂x)w = ig∂x tanh(−ih∂x)w , (6)

giving the dispersion relation (4). The wave packet propagates to the right; the
flow speed nowhere reaches a value great enough to block the packet and create
a white-hole horizon. When the packet travels into the faster-flow region x > 0
some of it tunnels into the blue-shifted root of the dispersion relation and this part
propagates back to the left. There is also some tunnelling into the negative k root;
this portion has shorter wavelength than the blue-shifted waves and travels more
quickly to the left. The simulation shows that negative-frequency waves can be
generated without the presence of a horizon. The slope in the simulation is not
realistic for our experiment, however, otherwise there would be no visible kh in the
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Figure 8: Space-time diagrams, showing water waves propagating from the left to the
right with the parameters (a) and (b) of Fig. 7, initial amplitude 5cm and water height
1.4m. No horizon is formed, but mode conversion still occurs. (a) conversion into the
positive-frequency waves kb of Fig. 5; (b) waves with negative frequency (negative phase
slope as shown in Fig. 2). The images were extracted from the video data recorded with
camera 1 of Fig. 6. The right pictures display time traces along the lines indicated in
the space-time diagrams. The traces show that the additional waves are periodic in T ,
indicating that they are converted incident waves.

simulation. But in the experiment negative-frequency waves were clearly observed.
Apparently, the simple model [13] we used does not capture all the complexity of
our system.

6 Conclusions

We believe we have made the first direct observation of the conversion of incident
waves with positive frequency into negative-frequency waves in a moving medium.
In astrophysics, such a mode conversion occurs at the event horizon of black holes.
It represents the classical mechanism at the heart of Hawking radiation [1]. How-
ever, we were surprised how strong the experimentally observed mode conversion
is, because in numerical simulations of a simple model [13] we saw a significantly
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Figure 9: Wave-packet simulations. The left figure shows the incident wave packet trav-

eling in positive x direction, the right figure its partial conversion into two wavelength

components travelling in negative x direction. The components separate because of their

different group velocities; the Hawking component is visible in the centre of the figure.

The wrap-around is caused by periodic boundary conditions and most of the packet that

travels to the right beyond the conversion region is not shown. We used the parameters

u0 = 0.7m/s, u1 = 0.122m/s, a = 12m−1, h = 0.6m, T = 2.5s.

lower conversion. This model takes into account the correct dispersion relation (4),
but it does not describe turbulence, nonlinearity, nor the three-dimensional nature
of our experiment. It would be highly desirable to find out exactly what happens
to water waves at horizons. Unfortunately, with the current set-up we have not
sufficient data to characterize the actual process of mode conversion in detail. It is
conceivable that we have seen a new fluid-mechanics phenomenon that significantly
enhances the Hawking effect. Could it be a nonlinear mode conversion, a nonlinear
process generating harmonics with negative frequencies? We observed that the in-
cident waves become steeper as they propagate against the current. Hence, locally,
waves can be generated close to the crest, possibly with additional vorticity creation,
where geometric cusps could develop through nonlinear effects. These crests waves
are then swept away by the flow.3 Moreover, it remains to be checked in future ex-
periments whether a transverse curvature of the wave crest could also be responsible
for the creation of negative-frequency waves. In any case, despite the limitations of
our present experiment, we have found clear evidence for negative-frequency waves.
In this way, we have demonstrated a key ingredient of the quantum radiation of
black holes using a relatively simple classical laboratory analogue, waves in a water
tank.
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tors) The sea (John Wiley and Sons, New York, 1990).

[26] A. Chawla and J. T. Kirby, J. Geophys. Res. - Oceans 107, 3067 (2002).

[27] I. K. Suastika, M. P. C. de Jong, and J. A. Battjes, Experimental study of wave

blocking, in Proc. 27th Int. Conf. Coastal Eng., Sydney, 2000, Vol.1, pp. 227.

[28] I. K. Suastika, Wave Blocking, PhD Thesis, Technische Universiteit Delft, The
Netherlands, 2004, see http://repository.tudelft.nl/file/275166/201607.

[29] L. D. Landau and E. M. Lifshitz, Fluid mechanics (Elsevier, Amsterdam, 2004).

[30] L. D. Landau and E. M. Lifshitz, The classical theory of fields (Butterworth-
Heinemann, Oxford, 1995).
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