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ABSTRACT

Hot spots residing on the surface of an accretion disc have been considered
as a model of short-term variability of active galactic nuclei. In this paper
we apply the theory of random point processes to model the observed signal
from an ensemble of randomly generated spots. The influence of general
relativistic effects near a black hole is taken into account and it is shown
that typical features of power spectral density can be reproduced. Con-
nection among spots is also discussed in terms of Hawkes’ process, which
produces more power at low frequencies. We derive a semi-analytical way
to approximate the resulting power-spectral density.
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1 INTRODUCTION

Radiation from accreting black holes varies on different timescales [1]. In X-rays, the
observed light-curve, f ≡ f(t), is a complicated noisy curve that can be represented
by a broad-band power spectrum [2]. It has been proposed [3, 4] that ‘hot spots’
are a possible contributor to this variability. These spots are supposed to occur on
the surface of an accretion disc following its irradiation by coronal flares [5, 6, 7]. A
model light-curve can be constructed as a sum of contributions from many point-like
sources that are orbiting above an underlying accretion disc. The observed signal is
modulated by relativistic effects as photons propagate towards a distant observer.
In order to characterise the light curves we need to introduce some appropriate

estimator of the source variability. In a mathematical sense, one applies a functional:
f → S [f ], where S [.] is a map from functions defined on R to functions on R

k

(k ≥ 0). The variability estimator can be a single number (for example, the mean
flux or the ‘rms’ characteristic), or function of one variable (power spectrum density
or probability distribution) or of many variables (poly-spectra, rms–flux relation,
etc). A signal of such a spotted accretion disc should be intrinsically stochastical.
Hence, the variability estimator S [f ], derived from a piece of the light-curve, is a
random value, too.
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2 T. Pecháček and V. Karas

Various schemes have been proposed in which spots are mutually interconnected
in some way [8, 9]. We want to investigate this type of models within a com-
mon mathematical basis. Other authors have developed different approaches to the
problem [10, 11].

2 SPOT MODELS AND THE ACCRETION DISC VARIABILITY

2.1 Model assumptions and variables

Let us have K samples of the observed light-curves from the same source, fj . The
law of large numbers ensures that

1

K

K
∑

j=1

S [fj ] → E [S [f ]] , K → ∞, (1)

where E[.] is the mean value operator. The average value of the functional is formally
defined

E [S [f ]] ≡
∑

{All possible fj(t)}

(Probability of fj)× S [fj ] , (2)

where the sum goes over all possible light-curves generated by this model. We will
show how to define and parameterise “the space of all possible light-curves” and
how to perform the averaging when the functional is the power spectrum.
The general model is constrained only by the following three assumptions about

the creation and evolution of spots:

(i) Each spot is described by its time and place of birth (tj , rj and φj) on the
disc surface.
(ii) Every new occurrence starts instantaneously; afterwards the emissivity decays
gradually to zero. The total emitted radiation energy is finite.
(iii) The intrinsic emissivity can be fully determined by a finite number of pa-
rameters which form a vector ξj .

For a simple demonstration of this concept see figure 1. The disc itself has a passive
role in our present considerations. We will treat it as a geometrically thin, optically
thick layer lying in the equatorial plane.

2.2 Random point processes

The concept of point processes is a generalisation of well-known random processes
which were developed as a description of time-dependent random values [12]. Point
processes are used as statistical description of configurations of some randomly
distributed points in space R

n.



Modeling an accretion disc stochastical variability 3

One way of describing a configuration of points is by their counting measure,
N(A), which for every A ⊂ R

n gives a number of points lying in A. One defines
the intensity measure,

M1(A) = E [N(A)] . (3)

Similarly to random processes, the point process can be characterised by its mean

value andmoments. For every A ⊂ R
n, M1(A) is the mean number of points lying in

A. The second-order moment measure is defined in the same way on the Cartesian
product of spaces Rn × R

n:

M2(A×B) = E [N(A)N(B)] . (4)

Let xiN be one possible configuration of points, i.e. the support of some N(.) For
the functions f(x) and g(x, y) on R

n and R
2n, respectively, it follows [13, 14]

E





∑

{xi}N

f(xi)



 = E





∫

X

f(x)N(dx)



 =

∫

Rn

f(x)M1(dx) (5)

E





∑

{xi}N , {yi}N

g(xi, yi)



 = E





∫

R2n

g(x, y)N(dx)N(dy)





=

∫

R2n

g(x, y)M2(dx× dy). (6)

The concept of point process can be further generalised in the following way. We
add a mark κi from the mark set K to each coordinate xi from {xi}N . Marks carry
additional information. The resulting point process on the set R

n × K is called
the ‘marked point process’ if for every A ⊂ R

n it fulfills the condition Ng(A) ≡
N(A×K) < ∞.
The random measure Ng(A) represents the ground process of the marked process

N . When the dynamics of the process is governed only by the ground process and
marks are mutually independent and identically distributed random values with
the distribution functions G(dκ), then the process intensity and the second order
measure fulfill

M1(dx × dκ) = M1g(dx)G(dκ), (7)

M2(dx1 × dκ1 × dx2 × dκ2) = Mg2(dx1 × dx2)G(dκ1)G(dκ2). (8)

2.3 Relationship between point processes and spots

Let us assume a surface element orbiting at radius r with constant emissivity I and
orbital frequency Ω(r). This should represent an infinitesimally small spot. For the
flux measured by an observer at inclination θo we find

f(t) = IF (t, r, θo). (9)
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The periodical modulation of the signal is determined by relations

F (t(φ), r, θo) = F (φ, r, θo), (10)

t(φ) =
φ

Ω(r)
+ δt(φ, r, θo), (11)

where F (φ, r, θo) is the transfer function describing the total amplification of signal
emitted from then disc surface element on the coordinates r and φ. The function
δt(φ, r, θo) is the time delay of the signal (hereafter we will omit θo in the argument
of F for simplicity). Now, we consider a process consisting of statistically dependent
events,

f(t) =
∑

j

I(t− δj , ξj)F (t− δpj, rj), (12)

where: I(t, ξ) = θ(t)g(t, ξ) is the profile of a single event; δj = tj + t0j is time
offset; δpj = δj + tpj is the phase offset; θ(t) is the Heaviside function; and g(t, ξ)
is non-negative function of k + 1 variables t and ξ = (ξ1, . . . , ξk), which is on the
interval 〈0, ∞) integrable in the variable t for all values of parameters ξ ∈ Ξ. The
set Ξ is some measurable subset of Rk. For a fixed value of r, F (t, r) is a periodical
function of t, with the angular frequency Ω(r).
Quantities ξj , tj , rj , tpj and t0j are random values. The vector ξj determines

the duration and shape of each event, tj is time of ignition of the j–th event, and
t0j the corresponding initial time-offset. Parameter tpj determines the initial phase
of the periodical modulation. Processes of this kind and their power spectra were
mathematically studied by Brémaud and Massoulié, [15, 16].
Power spectral function of a stationary stochastic process X(t) is

S(ω) = lim
T→∞

1

2T
E
[

|FT [X(t)](ω)|
2
]

, (13)

where FT [ ] is the incomplete Fourier transform,

FT [X(t)] =

T
∫

−T

X(t)e−iωtdt. (14)

This can be evaluated by using the complete Fourier transform,

T
∫

−T

X(t)e−iωtdt =

∞
∫

−∞

X(t)χ〈−T, T 〉(t)e
−iωtdt = 2

sin(Tω)

ω
⋆F [X(t)](ω), (15)

where χA(x) is the characteristic function of set A, which equals 1 for x ∈ A and 0
for x 6∈ A. Symbol ⋆ denotes the convolution operation.
By applying this transformation on the process (12) we find

FT [f(t)](ω) =
2 sin(Tω)

ω
⋆
∑

j

F [I(t− δj , ξj) F (t− δpj, rj)](ω). (16)
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Figure 1. The model light-curve (panel a) is obtained as a sum of elementary events
(panel b). Profile of each individual event is assumed to be I(t, τ ) = (t/τ )2 exp (−t/τ ) θ(t),
as described in the text. Their normalization is identical. The final light-curve is fully
determined by the form of the individual contributions together with a set of points in t–τ
plane (panel c), which represent pairs of ignition times and temporal constants τ of each
event.

The Fourier transform of a single event I(t− δj , ξj)F (t− δpj, rj) is then

F [I(t− δj , ξj)F (t− δpj, rj)](ω) = e−iωδjF [I(t, ξj)] ⋆ F [F (t+ tpj , rj)]. (17)

Function F (t, r) is periodical in time, and so it can be expanded:

F (t, r) =

∞
∑

k=−∞

ck(r)e
ikΩ(r)t, (18)

where Ω(r) is the frequency of F (t, r). We find

F [F (tp, r)] (ω) =

∞
∑

k=−∞

ck(r)e
ikΩ(r)tpδ (ω − kΩ(r)) , (19)

F [I(t, ξ)] ⋆ F [F (t+ tp, r)] =

∞
∑

k=−∞

ck(r)e
ikΩ(r)tpF [I(t, ξ)] (ω − kΩ(r)) . (20)

The above given formulation of the problem falls perfectly within the mathematical
framework of point processes.
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2.4 The case of independent decaying spots (Poisson process)

Knowing the incomplete Fourier transform of f(t) we can now calculate its squared
absolute value and perform the averaging over all realizations of the process. Be-
tween −T and T the process is influenced by all events ignited during the preceding
interval 〈−∞, T 〉, however (because of fast decay of every single event), this can
be restricted onto 〈−(T + C), T 〉, where C is a sufficiently large positive constant.
Therefore, every realization of the process f(t) on the interval 〈−T, T 〉 can be de-
scribed by set of points in (k + 4)–dimensional space (tj , t0j , tpj , rj , ξj), where
tj ∈ 〈−(T + C), T 〉.
Equation (12) represents a very general class of random processes. However, in

all reasonable models of spotted accretion discs the values of initial time delay and
phase are functions of initial position of each spot (r and φ), i.e.

t0 = δt(r, φ), tp =
φ

Ω(r)
+ t0. (21)

Fourier transform of the resulting signal can be then simplified,

F [I(t− t0j , ξj) F (t− t0j + tpj , rj)](ω)

=

∞
∑

k=−∞

ck(r)e
ikφF [I(t− δt(r, φ), ξ)] (ω − kΩ(r)) . (22)

Every realization of this process is completely determined by set of points (tj , φj , rj , ξj)
from some subset of Rk+3.
For the sum of K complex numbers zi it follows

∣

∣

∣

∣

∣

K
∑

i=1

zi

∣

∣

∣

∣

∣

2

=

(

K
∑

i=1

zi

)(

K
∑

i=1

zi

)∗

=

(

K
∑

i=1

zi

)(

K
∑

i=1

z∗i

)

=

K
∑

i=1

K
∑

j=1

ziz
∗
j . (23)

Defining the function s(t, φ, r, ξ;ω) as

s(t, φ, r, ξ;ω) =
2 sin(Tω)

ω
⋆

(

e−iωt

∞
∑

k=−∞

ck(r)e
ikφF [I(t− δt, ξ)] (ω − kΩ(r))

)

.

(24)

According to (23) we can write

|FT [f(t)](ω)|
2 =

∣

∣

∣

∣

∣

∣

∑

j

s(tj , φj , rj , ξj ; ω)

∣

∣

∣

∣

∣

∣

2

=
∑

j

∑

l

s(tj , φj , rj , ξj ; ω) s
∗(tl, φl, rl, ξl; ω). (25)
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Due to Campbell’s theorem (6),

E
[

|FT [f(t)](ω)|
2
]

= E





∑

j

∑

l

s(tj , φj , rj , ξj ; ω) s
∗(tl, φl, rl, ξl; ω)





=

∫

A×A′

s(t, φ, r, ξ; ω) s∗(t′, φ′, r′, ξ′; ω)m2(t, φ, r, ξ, t
′, φ′, r′, ξ′) dAdA′, (26)

where m2 is density of the second-order moment measure corresponding to the
random point process of (tj , φj , rj , ξj). The set A is a Cartesian product of sets,

A = 〈−(T + C), T 〉 × 〈0, 2π〉 × 〈rmin, rmax〉 × Ξ. (27)

Now we can perform the limit (13). It can be shown that the result is independent
on the value of C. In order to obtain an explicit formula for the power spectral
density we have to specify the form of M2(.). In the simplest case we assume
events that are mutually independent with uniformly distributed ignition times.
The process can be described as a marked point process with a Poissonian process
as the ground process. The intensity and the second-order measure for the ground
process are:

Mg1(dt) = ndt, (28)

Mg2(dt dt
′) =

[

n2 + nδ(t− t′)
]

dt dt′, (29)

where n is the mean rate of events. Other parameters are treated as independent
marks with common distribution G(dφdr dξ). The second-order measure of the
process has a form

M2(dt dφdr dξ dt′ dφ′ dξ′) =
[

n2G(dφdr dξ)G(dφ′ dr′ dξ′) + nG(dφdr dξ)

× δ(t− t′)δ(φ − φ′)δ(r − r′)δ(ξ − ξ′)
]

dtdt′. (30)

For the power spectrum we obtain this general formula,

S(ω) = 4π2n

∞
∑

k=−∞

∞
∑

l=−∞

∫

K

ck(r)c
∗
l (r)e

i(l−k)φF [I(t− δt(r, φ), ξ)] (ω − kΩ(r))

× F∗ [I(t− δt(r, φ), ξ)] (ω − lΩ(r))G(dφdr dξ). (31)

2.5 Introducing a relationship among spots (Hawkes process)

The assumption that the spots are mutually statistically independent seems to
be a reasonable first approximation, however, the actual ignition times and spot
parameters should probably depend on the history of a real system. As an example
of such non-Poissonian process, we calculated the power-spectral density (PSD) for
a model in which the spot ignition times are distributed according to the Hawkes
[17] process.
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The Hawkes process consists of two types of events. Firstly, new events are
generated by Poisson process operating with the intensity λ. Secondly, an existing
event with ignition time ta can give birth to new event at time t according to Poisson
process with varying intensity µ(t − ta). So the mean number of events found at
time t is

m(t) = λ+
∑

i, ti<t

µ(ti) = λ+

∫

µ(t)N(dt). (32)

For a stationary process the first moment density is constant. Averaging both sides
of the previous equation we find,

m1 =
λ

1− ν
, ν =

∞
∫

−∞

µ(t)dt. (33)

Stationarity of the process implies, that the second-order measure density can de-
pend only on the difference of its arguments. It can be proven [14] that

mg2(t, t
′) = c(t− t′) +m2

g1 +mg1δ(t− t′), (34)

where the c(t) is an even function. Thus, for the corresponding marked process
with independent marks we find M2(dt dφdr dξ dt′ dφ′ dξ′):

M2 =

[(

λ2

(1− ν)2
+ c(t− t′)

)

G(dφdr dξ)G(dφ′ dr′ dξ′)

+
λ

1− ν
G(dφdr dξ)δ(t− t′)δ(φ − φ′)δ(r − r′)δ(ξ − ξ′)

]

dtdt′. (35)

This second-order measure is almost identical to that of the Poissonian process
(there is only one additional term associated with the function c(t)). The resulting
PSD is

S(ω) = 4π2 λ

1− ν

∞
∑

k=−∞

∞
∑

l=−∞

∫

K

ei(l−k)φck(r)c
∗
l (r)F [I(t− δt(r, φ), ξ)] (ω − kΩ(r))

× F∗ [I(t− δt(r, φ), ξ)] (ω − lΩ(r))G(dφdr dξ) + 4π3F [c(t)] (ω)

×
∞
∑

k=−∞

ck(r)

∫

K

e−ikφF
[

I(t− δt(r, φ), ξ′)
]

(ω − kΩ(r))G(dφdr dξ)

×

∞
∑

l=−∞

∫

K′

eilφ
′

c∗l (r
′)F∗ [I(t− δt(r′, φ′), ξ)] (ω − lΩ(r′))G(dφ′ dr′ dξ′). (36)

The function c(t) can be calculated from the mean number of secondary events
µ(t). Assuming µ(t) = να exp(−αt)θ(t) we obtain

c(t) =
λαν(1 − ν/2)

(1− ν)2
exp(−α(1− ν)|t|). (37)
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Figure 2. Power spectra from the spot model driven by the Poisson process (top row)
and the Hawkes process (bottom row), calculated for spots orbiting and evolving on the
surface of a thin accretion disc (rin = 6, rout = 100 gravitational radii). Two values
of observer’s inclination θo are shown for comparison. The red (thin, noisy) curve is a
result of direct numerical simulation. Blue (thick, continuous) curves are the analytical
approximations based on eqs. (31) and (36), respectively. We assumed probability density
function ρ(τ ) ∝ 1/τ . The magenta (vertical) lines denote the Keplerian orbital frequency
Ω(r) at the inner and the outer edges of the disc. One can see that the Hawkes’ process
tends to enhance the low-frequency part of PSD and shift the break frequency towards
lower values, below Ω(rout).

It is interesting to notice that the above-given formal approach can actually pro-
vide a useful analytical formula to approximate the power spectrum. Figure 2 shows
exemplary PSD which were obtained by (i) direct computations of the light-curve
and the resulting PSD, and by (ii) the semi-analytical approach with Poissonian
and Hawkes processes.

3 CONCLUSIONS

We have studied the properties of power spectral density within the model of ac-
cretion disc variability driven by orbiting spots. The origin and evolution of spots
were described in terms of Poissonian and Hawkes’ processes. The latter belongs to
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a category of avalanche models. We developed an analytical approximation of PSD
and compared it with our numerical results from light-curve simulations. In this
way we were able to demonstrate the precision of formulae (31) and (36). The an-
alytical approximation evaluates very fast and provides the main trend of the PSD
shape while avoiding the noisy form of the numerically simulated spectra. Our ap-
proach allows us to investigate the resulting PSD as a function of the assumed type
of process, which describes creation of parent spots and the subsequent cascades
of daughter spots. In particular, we can investigate the predicted PSD slope at
different frequency ranges and we can locate the break frequency depending on the
model parameters.
The resulting PSD can be approximated by a broken power-law. For every sta-

tionary process the quantities S(0) and
∫∞

0
S(ω)dω are finite. Therefore, the func-

tion S(ω) flattens (S(ω) ≈ ω0) near ω = 0 and it must decrease faster than 1/ω at
high frequencies. Power-spectra generated by the spot model behave in this way.
The low-frequency limit is a constant, whereas the-high frequency behaviour de-
pends mainly on the shape of the spot emission profile, I(t, ξj). In our calculations
the emissivity was a decaying exponential and the slope was equal to −2 at high
frequencies. The most interesting part of the spectra in between those two limits is
influenced by both the emissivity profile and the underlying process.
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